Radiation ELETRODYNAMICS

Embed Size (px)

Citation preview

  • 8/18/2019 Radiation ELETRODYNAMICS

    1/56

    Radiation by Moving Charges

    May 19, 20101

    1J.D.Jackson, ”Classical Electrodynamics”, 3rd Edition, Chapter 14Radiation by Moving Charges

    http://goforward/http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    2/56

    Liénard - Wiechert Potentials

      The Liénard-Wiechert potential describes the electromagneticeffect of a moving charge.

     Built directly from Maxwell’s equations, this potential describes thecomplete, relativistically correct, time-varying electromagnetic fieldfor a point-charge in arbitrary motion.

     These classical equations harmonize with the 20th centurydevelopment of special relativity, but are not corrected forquantum-mechanical effects.

     Electromagnetic radiation in the form of waves are a natural result

    of the solutions to these equations.  These equations were developed in part by Emil Wiechert around

    1898 and continued into the early 1900s.

    Radiation by Moving Charges

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    3/56

    Liénard - Wiechert Potentials

    We will study potentials and fields produced by a point charge, for whicha trajectory  x 0(t 

    ) has been defined a priori.

    It is obvious that when a charge  q  is radiating is giving away  momentumand energy, and possibly angular momentum and this emission affectsthe trajectory. This will be studied later. For the moment, we assumethat the particle is moving with a velocity much smaller than  c .The density of the moving charge is given by

    ρ( x , t ) = q δ ( x  −  x 0[t ])   (1)and since in general the current density   J   is  ρ v , we also have

     J ( x , t ) = q  v δ ( x  −  x 0[t ]) ,   where    v (t ) =   d  x 0dt 

      (2)

    In the Lorentz gauge (    ∇ ·  A + (1/c )∂ Φ/∂ t  = 0) the potential satisfy thewave equations (??) and (??) whose solutions are the retarded functions

    Φ( x , t ) =    ρ( x , t − | x  − x |/c )

    | x 

     − x 

    |  d 3x  (3)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    4/56

     A( x , t ) =  1

        J ( x , t − | x  − x |/c )| x  − x |   d 

    3x  (4)

    It is not difficult to see that these retarded potentials take into accountthe finite propagation speed of the EM disturbances since an effectmeasured at  x   and  t  was produced at the position of the source at time

    t̃  = t − | x  − x 0(t̃ )|c 

      (5)

    Thus, using our expressions for  ρ  and  J   from eqns (1) and (2) and

    putting   β  ≡  v /c ,

    Φ( x , t ) = q    δ ( x  −  x 0[t − | x  − x |/c ])

    | x 

     − x 

    |  d 3x  (6)

     A( x , t ) = q 

        β (t − | x  − x |/c )δ ( x  −  x 0[t − | x  − x |/c ])| x  − x |   d 

    3x  (7)

    Radiation by Moving Charges

    http://goforward/http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    5/56

    Note that for a given space-time point ( x , t ), there exists only  one point

    on the whole trajectory, the retarded coordinate ̃ x    coresponding to theretarded time  t̃  defined in (5) which produces a contribution

    ̃ x  =  x 0(t̃ ) =  x 0 (t − | x  − x 0|/c )   (8)Let us also define the vector

     R (t ) =  x  − x 0(t )   (9)

    in the direction  n ≡   R /R . Then

    Φ( x , t ) =   q 

       δ ( x  −  x 0[t − R (t )/c ])

    R (t )  d 3x  (10)

     A( x , t ) =   q     

    β (t − R (t 

    )/c )δ ( x 

    −  x 0[t − R (t 

    )/c ])R (t )

      d 3x  (11)

    Because the integration variable  x  appears in  R (t ) we transform it byintroducing a new parameter  r ∗, where

     x ∗ =  x 

    − x 0 [t 

    −R (t )/c ]   (12)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    6/56

    The volume elements  d 3x ∗ and  d 3x  are related by the Jacobiantransformation

    d 3x ∗ = Jd 3x  ,   where   J  ≡

    1 −  n(t ) ·  β (t )

      (13)

    is the Jacobian (how?).With the new integration variable, the integrals for the potentialtransform to

    Φ( x , t ) = q 

       δ ( x ∗) d 3x ∗

    | x  − x ∗ −  x 0(t̃ )|(1 −  n ·  β )(14)

    and A( x , t ) = q 

         β (t̃ ) δ ( x ∗) d 3x ∗| x  − x ∗ −  x 0(t̃ )|(1 −  n ·  β )

    (15)

    which can be evaluated trivially, since the argument of the Dirac deltafunction restricts  x ∗ to a single value

    Φ( x , t ) =

      q 

    (1 −  n ·  β )| x  − ̃ x |

    t̃ 

    =

      q 

    (1 −  n ·  β )R 

    t̃ 

    (16)

     A( x , t ) =   q  β 

    (1−

     n·

     β )| x  −

    ̃ x |t̃ 

    =   q  β 

    (1−

     n·

     β )R t̃ 

    (17)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    7/56

    Liénard - Wiechert potentials

    Φ( x , t ) =

      q 

    (1 −  n ·  β )| x  − ̃ x |

    t̃ 

    =

      q 

    (1 −  n ·  β )R 

    t̃ 

    (18)

     A( x , t ) =

      q  β 

    (1 −  n ·  β )| x  − ̃ x |t̃ 

    =

      q  β 

    (1 −  n ·  β )R t̃ 

    (19)

    These are the  Liénard - Wiechert potentials.

    It is worth noticing the presence of the term (1 −  n ·  β ), which clearlyarises from the fact that the velocity of the EM waves is finite, so the

    retardation effects must be taken into account in determining the fields.

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    8/56

    Special Note about the shrinkage factor (1 −  n ·  β )Consider a thin cylinder movingalong the  x -axis with velocity  v .To calculate the field at  x  when theends of the cylinder are at (x 1, x 2),we need to know the location of theretarded points x̃ 1  and x̃ 2

    x 1

    −x̃ 1

    x  − x̃ 1=

      v 

    c   and

      x 2

    −x̃ 2

    x  − x̃ 2=

      v 

    c   (20)

    by setting L̃ ≡ x̃ 2 − x̃ 1  and  L ≡ x 2 − x 1  and subtracting we get

    L̃− L =   v c 

    L̃   →   L̃ =   L1

    −v /c 

      (21)

    That is, the  effective length  L̃  and the  natural length  L  differ by the

    factor (1 −  x  ·  β )−1 = (1 − v /c )−1 because the source is moving relativeto the observer and its velocity must be taken into account when

    calculating the retardation effects.

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    9/56

    Liénard - Wiechert potentials :  radiation fields

    The next step after calculating the potentials is to calculate the fields viathe relations

     B  =   ∇×  A   and    E  = −1c 

    ∂  A

    ∂ t  −  ∇Φ   (22)

    and we write the Liénard - Wiechert potentials in the equivalent form

    Φ( x , t ) =   q 

       δ (t  − t − R (t )/c )

    R (t )  dt  (23)

     A( x , t ) =   q  

       β (t )δ (t  − t  + R (t )/c ])R (t )

      dt  (24)

    where  R (t ) ≡ | x  − x 0(t )|. This can be verified by using the followingproperty of the Dirac delta function (how?)

       g (x )δ [f   (x )]dx  =

      g (x )|df   /dx |

    f   (x i )=0

    (25)

    which holds for regular functions  g (x ) and  f   (x ) of the integrationvariable  x   where  x i  are the zeros of  f   (x ).

    • The advantage in pursuing this path is that the derivatives in eqn (22)

    can be carried out before the integration over the delta f unction.Radiation by Moving Charges

    Thi d i lifi h l i f h fi ld id bl i

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    10/56

    This procedure simplifies the evaluation of the fields considerably since,we do not need to keep track of the retarded time until the last step.We get for the  electric field

     E ( x , t )   =

      −q     ∇

    δ (t  − t  +  R (t )/c )R (t 

    ) dt 

    −   q c 

    ∂ 

    ∂ t 

        β (t )δ (t  − t  + R (t )/c )R (t )

      dt    (26)

    Thus, differentiating the integrand in the first term, we get (HOW?)

     E ( x , t )   =   q   

      nR 2 δ 

    t  − t  +  R (t 

    )c −    ncR δ t  − t  +  R (t 

    )c 

    dt 

    −   q c 

    ∂ 

    ∂ t 

        β (t )δ (t  − t  + R (t )/c )R (t )

      (27)

    But (HOW?)

    δ 

    t  − t  +  R (t )

    = −  ∂ 

    ∂ t δ 

    t  − t  +  R (t 

    )

      (28)

     E ( x , t ) =  q 

        n

    R 2δ 

    t  − t  +  R (t 

    )

    c  dt +

    ∂ 

    ∂ t     ( n −  β )

    cR (t ) δ 

    t  − t  +  R (t 

    )

    c  (29)

    Radiation by Moving Charges

    W l h i l i h Di d l f i d i

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    11/56

    We evaluate the integrals using the Dirac delta function expressed inequation (25). But we need to know the derivatives of the deltafunction’s arguments with respect to  t . Using the chain rule of differentiation

    d dt 

    t  − t  +  R (t 

    )c 

    =

    1 −  n ·  β t̃ 

    (30)

    with which we get the result (HOW?):

     E ( r , t ) = q     n(1 −  n ·  β )R 2t̃  +

     q 

    ∂ 

    ∂ t     n −

     β 

    (1 −  n ·  β )R t̃  (31)Since

    ∂ R 

    ∂ t   =

    ∂ R 

    ∂ t ∂ t 

    ∂ t  = − n· v ∂ t 

    ∂ t  = c 1 − ∂ t 

    ∂ t  ⇒  ∂ ̃t 

    ∂ t   =

      1

    (1−

     n·

     β )(32)

    Thus

    ∂ 

    ∂ t 

       n −  β 

    (1 −  n ·  β )R 

    t̃ 

    =  1

    (1 −  n ·  β )∂ 

    ∂ ̃t 

       n −  β 

    (1 −  n ·  β )R 2

    t̃ 

    (33)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    12/56

    By using the additional pieces

    Ṙ |t̃  = −c  n ·  β 

    t̃ (34)

    ̇ n|t̃  =  c 

     n( n ·  β ) −  β 

    t̃ 

    (35)

    d ̃t 

    1 −  n ·  β 

    t̃ 

    = −

     n ·  ̇ β  +   β ·  ̇ n

      (36)

    and we finally get

     E ( r , t ) = q 

    ( n −  β )(1 − β 2)(1 −  n ·  β )3R 2

    + n ×

    ( n −  β )×  ̇ β 

    c (1 −  n ·  β )3R 

    t̃ (37)

    A similar procedure for   B  shows that

     B ( r , t ) =   ∇×  A =  n(t̃ )×  E    (38)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    13/56

    Some observations

     When the particle is at rest and unaccelerated with respect to us,the field reduces simply to Coulomb’s law  q  n/R 2. whatever

    corrections are introduced the do not alter the empirical law.

     We also see a clear separation into the  near field  (which falls off as1/R 2) and the  radiation field  (which falls off as 1/R )

     Unless the particle is accelerated ( β̇  = 0), the field falls off rapidlyat large distances. But when the radiation field is present, itdominate over the near field far from the source.

      As  β  → 1 with  β̇  = 0 the field displays a “bunching” effect. This“bunching” is understood as being a retardation effect, resultingfrom the finite velocity of EM waves.

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    14/56

    Power radiated by an accelerated charge

    If the velocity of an accelerated charge is small compared to the speed of light (β  → 0) then from eqn (37) we get

     E  =  q 

     n × ( n ×  ̇ β )

    ret

    (39)

    The instantaneous energy flux is given by the Poynting vector

     S  =   c 4π  E  ×  B  =   c 4π | E |2 n   (40)The power radiated per unit solid angle is

    dP 

    d Ω =

      c 

    4πR 2| E |2 =   q 

    2

    4πc | n × ( n ×  ̇ β )|2 (41)

    and if  Θ is the angle between the acceleration  ̇ v   and  n  then the powerradiated can be written as

    dP 

    d Ω =

      q 2

    4πc 3|̇ v |2 sin2 Θ   (42)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    15/56

    Larmor Formula

    The total  instantaneous power radiated is obtained by integration overthe solid angle. Thus

    P  =  q 2

    4πc 3|̇ v |2

       π0

    2π sin3 Θd Θ = 2

    3

    q 2

    c 3|̇ v |2 (43)

    This expression is known as the  Larmor formula  for a nonrelativisticaccelerated charge.

    NOTE  : From equation (39) is obvious that the radiation is polarized in

    the plane containing  ˙ v   and  n.

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    16/56

    Relativistic Extension

    Larmor’s formula (43) has an “easy” relativistic extension so that can beapplied to charges with arbitrary velocities

    P  =  23

    e 2

    m2c 3|̇ p |2 (44)

    where  m  is the mass of the charged particle and   p   its momentum.The Lorentz invariant generalization is

    P  = −2

    3

    e 2

    m2c 3dp µ

    d τ 

    dp µ

    d τ 

      (45)

    where  d τ  = dt /γ   is the proper time and  p µ is the charged particle’senergy-momentum 4-vector. Obviously for small  β   it reduces to (44)

    −dp µ

    d τ 

    dp µ

    d τ    =d  p 

    d τ 2 −

      1

    c 2dE 

    d τ 2

    =d  p 

    d τ 2 − β 2

    dp 

    d τ 2

    (46)

    If (45) is expressed in terms of the velocity & acceleration (E  = γ mc 2 & p  = γ m v   with  γ  = 1/(1 − β 2)1/2), we obtain the Liénard result (HOW?)

    P  = 2

    3

    e 2

      γ 6 ̇ β 2

    −  β 

    × ̇ β 

    2

      (47)Radiation by Moving Charges

    A li i

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    17/56

    Applications

    •   In the charged-particle accelerators radiation losses are sometimesthe limiting factor in the maximum practical energy attainable.

    •   For a given applied force the radiated power (45) depends inverselyon the square of the mass of the particle involved.  Thus these radiativeeffects are largest for electrons.•   In a  linear accelerator  the motion is 1-D. From (46) we can findthat the radiated power is

    P  =  23

    e 2

    m2c 3

    dp dt 

    2

    (48)

    The  rate of change of momentum  is equal to  the rate of change of the energy  of the particle per unit distance. Thus

    P  = 2

    3

    e 2

    m2c 3

    dE 

    dx 

    2

    (49)

    showing that for linear motion the power radiated depends only on theexternal forces which determine the rate of change of particle energy with

    distance, not on the actual energy or momentum of  the particle.Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    18/56

    The ratio of  power radiated to power supplied by external sources is

    dE /dt   =

     2

    3

    e 2

    m2c 31

    dE 

    dx  →  2

    3

    (e 2/mc 2)

    mc 2dE 

    dx   (50)

    Which shows that the radiation loss in an electron linear accelerator willbe unimportant unless the gain in energy is of the order of  mc 2 = 0.5MeVin a distance of  e 2/mc 2 = 2.8 × 10−13cm, or of the order of 2 × 1014MeV/meter. Typically radiation losses are completely negligiblein linear accelerators since the gains are less than 50MeV/meter.

      Can you find out what will happen in circular accelerators likesynchrotron or betatron?In circular accelerators like synchrotron or betatron can change drastically.In this case the momentum  p  changes rapidly in direction as the particle

    rotates, but the change in energy per revolution is small. This meansthat:  

    d  p 

    d τ 

    = γω| p |   1c 

    dE 

    d τ   (51)

    Radiation by Moving Charges

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    19/56

    Then the radiated power, eqn (45), can be written approximately

    P  = 2

    3

    e 2

    m2c 3γ 2ω2| p |2 = 2

    3

    e 2c 

    ρ2  β 4γ 4 (52)

    where  ω = (c β/ρ),  ρ  being the orbit radius.The radiative loss per revolution is:

    δ E  = 2πρ

    c β 

      P  = 4π

    3

    e 2

    ρ

     β 3γ 4 (53)

    For high-energy electrons (β  ≈ 1) this gets the numerical value

    δ E (MeV) = 8.85 × 10−2 [E (GeV)]4

    ρ(meters)  (54)

    In a 10GeV electron sychrotron (Cornell with  ρ ∼ 100m) the loss perrevolution is 8.85MeV. In LEP (CERN) with beams at 60 GeV

    (ρ ∼ 4300m) the losses per orbit are about 300 MeV.

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    20/56

  • 8/18/2019 Radiation ELETRODYNAMICS

    21/56

    If   β  and ̇ β  are nearly constant (e.g. if the particle is accelerated for short

    time) then (57) is proportional to the angular distribution of the energyradiated.For the Poynting vector (55) the angular distribution is

    dP (t )

    d Ω  =

      e 2

    4πc 

    | n × {( n −  β )×  ̇ β }|2(1 −  n ·  β )5

    (58)

    The simplest example is   linear motion   in which  β  and

     ̇ β  are parallel i.e. β ×  ̇ β  = 0 and (HOW?)

    dP (t )

    d Ω  =

      e 2v̇ 2

    4πc 3sin2 θ

    (1 − β  cos θ)5   (59)

    For  β   1, this is the Larmor result(42). But as  β  → 1, the angulardistribution is tipped forward andincreases in magnitude.

    Radiation by Moving Charges

    •  The angle  θmax   for which the intensity is maximum is:

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    22/56

    g y

    cos θmax =  1

    3β 

     1 + 15β 2 − 1

      for   β  ≈ 1   → θmax ≈   1

    2γ   (60)

    For relativistic particles,  θmax   is very small, thus the angular distributionis confined to a very narrow cone in the direction of motion.•  For  small angles  the angular distribution (59) can be written

    dP (t )

    d Ω  ≈   8

    π

    e 2v̇ 2

    c 3  γ 8

      (γθ)2

    (1 + γ 2θ2)5  (61)

    The peak occures at  γθ = 1/2, and the half-power points at  γθ = 0.23

    and  γθ = 0.91.Radiation by Moving Charges

    •  The root mean square angle of emission of radiation in the relativistic

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    23/56

    limit is

    θ21/2 =   1γ 

      =  mc 2

    E   (62)

    The  total power   can be obtained by integrating (59) over all angles

    P (t ) = 2

    3

    e 2

    c 3 v̇ 2γ 6 (63)

    in agreement with (47) and (48).   In other words this is a generalizationof Larmor’s formula.

    • It is instructive to express this is terms of the force acting on the

    particle.This force is   F   = d  p /dt  where  p  = mγ  v   is the particle’s relativisticmomentum. For linear motion in the  x -direction we have  p x  = mv γ  and

    dp x 

    dt   = mv̇ γ  + mv̇ β 2γ 3 = mv̇ γ 3

    and Larmor’s formula can be written as

    P  = 2

    3

    e 2

    c 3| F |2m2

      (64)

    This is the total charge radiated by a charge in instantaneous linear

    motion.Radiation by Moving Charges

    Angular distr of radiation from a charge in circular motion

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    24/56

    Angular distr. of radiation from a charge in circular motion

    The angular distribution of radiation for a charge in instantaneous

    circular motion with acceleration ̇ β  perpendicular to its velocity   β   is

    another example.We choose a coordinate system such

    as   β  is in the z-direction and ̇ β   in

    the x-direction then the generalformula (58) reduces to (HOW?)

    dP (t )

    d Ω  =

      e 2

    4πc 3|̇ v |2

    (1

    −β  cos θ)3 1 −

      sin2 θ cos2 φ

    γ 2(1

    −β  cos θ)2   (65)

    Although, the detailed angular distribution is different from the linearacceleration case the characteristic  peaking  at forward angles is present.In the   relativistic limit  (γ   1) the angular distribution can be written

    dP (t )

    d Ω   ≈

      2e 2

    πc 3

    γ 6  |̇ v |2

    (1 + γ 2

    θ2

    )3 1 −

      4γ 2θ2 cos2 φ

    γ 2

    (1 + γ 2

    θ2

    )2   (66)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    25/56

    The root mean square angle of emission in this approximation is similarto (62) just as in the 1-dimensional motion. (SHOW IT?)The  total power radiated  can be found by integrating (65) over allangles or from (47)

    P (t ) = 2

    3

    e 2|̇ v |2c 3

      γ 4 (67)

    Since, for circular motion, the magnitude of the rate of momentum isequal to the force i.e.   γ ṁ v  we can rewrite (67) as

    P circular(t ) =

     2

    3

    e 2

    m2c 3γ 2

    d  p 

    dt 

    2(68)

    If we compare with the corresponding result (48) for rectilinear

    motion, we find that the radiation emitted with a transverseacceleration is a factor  γ 2 larger than with a parallel acceleration.

    Radiation by Moving Charges

    Radiation from a charge in arbitrary motion

    http://goforward/http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    26/56

    Radiation from a charge in arbitrary motion

    •   For a charged particle in arbitrary & extremely relativistic motion theradiation emitted is a superposition of contributions coming from

    accelerations parallel  to and  perpendicular  to the velocity.•   But the radiation from the parallel component is negligible by a factor1/γ 2, compare (48) and (68). Thus we will keep only the perpendicularcomponent alone.•   In other words the radiation emitted by a particle in arbitrary motionis the same emitted by a particle in instantaneous circular motion, with aradius of curvature  ρ

    ρ =  v 2

    v̇ ⊥≈   c 

    2

    v̇ ⊥(69)

    where  v̇ ⊥   is the perpendicular component of the acceleration.

    •   The angular distribution of radiation given by (65) and (66)corresponds to a narrow cone of radiation directed along theinstantaneous velocity vector of the charge.

    •   The radiation will be visible only when the particle’s velocity isdirected toward the observer.

    Radiation by Moving Charges

    Since the angular width of the beami 1/ h i l ill l

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    27/56

    is 1/γ  the particle will travel adistance of the order of 

    d  =  ρ

    γ 

    in a time

    ∆t  =  ρ

    γ v 

    while illuminating the observerIf we consider that during the illumination the pulse is rectangular , thenin the time ∆t  the front edge of the pulse travels a distance

    D  = c  ∆t  =  ρ

    γβ 

    Since the particle is moving in the same direction with speed  v  and movesa distance  d   in time ∆t  the rear edge of the pulse will be a distance

    L =  D − d  =

    1

    β  − 1

     ρ

    γ  ≈   ρ

    2γ 3  (70)

    behind the front edge as the pulse moves off.

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    28/56

    The Fourier decomposition of a finite wave train, we can find that thespectrum of the radiation will contain appreciable frequency components

    up to a critical frequency,

    ωc  ∼   c L ∼

    ρ

    γ 3 (71)

    •   For circular motion the term c /ρ   is the angular frequency of rotationω0  and even for arbitrary motion plays the role of the fundamentalfrequency.•   This shows that a relativistic particle emits a broad spectrum of frequencies up to  γ 3 times the fundamental frequency.

    •   EXAMPLE :   In a 200MeV sychrotron,  γ max ≈ 400, whileω0 ≈ 3 × 10

    8

    s −1

    . The frequency spectrum of emitted radiation extendsup to  ω ≈ 2 × 1016s −1.

    Radiation by Moving Charges

    Distribution in Frequency and Angle of Energy Radiated

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    29/56

    Distribution in Frequency and Angle of Energy Radiated ...

    •   The previous qualitative arguments show that for relativistic motionthe radiated energy is spread over a wide range of frequencies.

    •   The estimation can be made precise and quantidative by use of Parseval’s theorem of Fourier analysis.The general form of the power radiated per unit solid angle is

    dP (t )

    d Ω  = | A(t )|2 (72)

    where  A(t ) =   c 

    2 R   E 

    ret 

    (73)

    and   E   is the electric field defined in (37).•   Notice that here we will use the observer’s time instead of theretarded time since we study the observed spectrum.The total energy radiated per unit solid angle is the time integral of (72):

    dW 

    d Ω  =

       ∞−∞

    | A(t )|2dt    (74)

    This can be expressed via the Fourier transform’s as an integral over the

    frequency. Radiation by Moving Charges

    The Fourier transform is:

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    30/56

     A(ω) =  1√ 

       ∞−∞

     A(t )e i ωt dt    (75)

    and its inverse:

     A(t ) =   1√ 2π

       ∞−∞

     A(ω)e −i ωt d ω   (76)

    Then eqn (74) can be written

    dW 

    d Ω  =

      1

    2π    ∞

    −∞

    dt    ∞

    −∞

    d ω    ∞

    −∞

    d ω A∗(ω) ·  A(ω)e i (ω−ω)t  (77)

    If we interchange the order of integration between  t  and  ω  we see thatthe time integral is the Fourier represendation of the delta functionδ (ω − ω). Thus the energy radiated per unit solid angle becomes

    dW 

    d Ω  =    ∞

    −∞ | A(ω)

    |2d ω   (78)

    The equality of equations (74) and (78) is a special case of  Parseval’stheorem.

    NOTE:  It is customary to integrate only over positive frequencies, since

    the sign of the frequency has no physical meaning.

    Radiation by Moving Charges

    The energy radiated per unit solid angle per unit frequency interval is

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    31/56

    dW 

    d Ω  =

       ∞0

    d 2I (ω,  n)

    d ωd Ω  d ω   (79)

    where d 2I 

    d ωd Ω = | A(ω)|2 + | A(−ω)|2 (80)

    If   A(t ) is real, form (75) - (76) it is evident that   A(−ω) =  A∗(ω). Then

    d 2

    I d ωd Ω

     = 2| A(ω)|2 (81)

    which relates the power radiated as a funtion of time to the frequencyspectrum of the energy radiated.NOTE :  We rewrite eqn (37) for future use

     E ( r , t ) = e 

     n −  β γ 2(1 −  n ·  β )3R 2

    + n ×

    ( n −  β ) ×  ̇ β 

    c (1 −  n ·  β )3R 

    ret

    (82)

    Radiation by Moving Charges

    By using (82) we will try to derive a general expression for the energyradiated per unit solid angle per unit frequency interval in terms of an

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    32/56

    radiated per unit solid angle per unit frequency interval in terms of anintegral over the trajectory of the particle.We must calculate the Fourier transform of (73) by using (82)

     A(ω) =

      e 28π2c 

    1/2    ∞−∞

    e i ωt 

     n × [( n −  β ) ×  ˙ β ]

    (1 −  β ·  n)3ret

    dt    (83)

    where  ret  means evaluated at  t  = t  + R (t )/c . By changing theintegration variable from  t   to  t  we get

     A(ω) =

      e 2

    8π2c 

    1/2

       ∞

    −∞

    e i ω(t +[R (t )/c ]) n × [( n −  β )×  ̇ β ]

    (1 −  β ·  n)2dt  (84)

    since the observation point is assumed tobe far away the unit vector   n  can be

    assumed constant in time, while we can usethe approximation

    R (t ) ≈ x  − n · r (t ) (85)where  x   is the distance from the origin  O  to the observation point  P , and

     r (t ) is the position of the particle relative to  O .

    Radiation by Moving Charges

    Th (84) b

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    33/56

    Then (84) becomes:

     A(ω) =   e 2

    8π2c 1/2

       ∞

    −∞

    e i ω(t − n· r (t )/c ) n × [( n −  β ) ×  ̇ β ]

    (1 − β ·  n)

    2dt    (86)

    and the energy radiated per unit solid angle per unit frequency interval(81) is

    d 2I 

    d ωd Ω  =

      e 2ω2

    4π2c  

      ∞

    −∞ e i ω(t − n· r (t )/c ) n

    ×[( n

    − β )

    × ̇ β ]

    (1 −  β ·  n)2 dt 2

    (87)

    For a specified motion  r (t ) is known,    β (t ) and ̇ β (t ) can be computed,

    and the integral can be evaluated as a function of  ω  and the direction of  n.

    If we study more than one accelerated charged particles, a coherent sum

    of amplitudes   A j (ω) (one for each particle) must replace must replace the

    single amplitude in (87).

    Radiation by Moving Charges

    If one notices that, the integrand in (86) is a perfect differential(excluding the exponential)

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    34/56

    (excluding the exponential)

     n × [( n −  β ) ×  ̇ β ](1

    − β 

    · n)3

    =  d 

    dt 

     n × ( n ×  β )

    1

    − β 

    · n

      (88)

    then by integration by parts we get to the following relation for theintensity distribution:

    d 2I 

    d ωd Ω =

      e 2ω2

    4π2c     ∞

    −∞

     n × ( n ×  β )e i ω(t − n· r (t )/c )dt 2

    (89)

    For a number of charges  e  j   in accelerated motion the integrand in (89)becomes

    e  β e −i (ω/c ) n· r (t ) →N 

     j =1e  j  β  j e 

    −i (ω/c ) n· r  j (t ) (90)

    In the limit of a continuous distribution of charge in motion the sum over j  becomes an integral over the current density   J ( x , t ) :

    e  β e −i (ω/c ) n· r (t ) →   1c 

       d 3x  J ( x , t )e −i (ω/c ) n· x  (91)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    35/56

    Then the intensity distribution becomes:

    d 2I 

    d ωd Ω =

      ω2

    4π2c 3

     

      dt 

       d 3x e i ω(t − n· x /c ) n × [ n ×  J ( x , t )]

    2

    (92)

    a result that can be obtained from the direct solution of theinhomogeneous wave equation for the vector potential.

    Radiation by Moving Charges

    What Is Synchrotron Light?

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    36/56

    When charged particles are accelerated, they radiate. If electrons areconstrained to move in a curved path they will be accelerating toward theinside of the curve and will also radiate what we call  synchrotronradiation.

    •  Synchrotron radiation of this type occursnaturally in the distant reaches of outer space.•  Accelerator-based synchrotron light was seenfor the first time at the GE Research Lab

    (USA) in 1947 in a type of accelerator knownas a synchrotron.•  First considered a nuisance because it causedthe particles to lose energy, it recognized in the1960s as light with exceptional properties.

    •  The light produced at today’s light sources isvery bright. In other words, the beam of x-raysor other wavelengths is thin and very intense.Just as laser light is much more intense andconcentrated than the beam of light generatedby a flashlight.

    Radiation by Moving Charges

    Synchrotrons

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    37/56

    Synchrotrons are particle accelerators - massive (roughly circular)machines built to accelerate sub-atomic particles to almost the speed of light.

    •  The accelerator componentsinclude an  electron gun, one ormore  injector accelerators  (usuallya linear accelerator and asynchrotron but sometimes just a

    large linear accelerator) to increasethe energy of the electrons, and astorage ring where the electronscirculate for many hours.•   In the storage ring, magnets forcethe electrons into circular paths.•  As the electron path bends, lightis emitted tangentially to the curvedpath and streams down pipes calledbeamlines to the instruments wherescientists conduct their experiments.

    Figure:  Components of a synchrotronlight source typically include (1) anelectron gun, (2) a linear accelerator,(3) a booster synchrotron, (4) astorage ring, (5) beamlines, and (6)

    experiment  stations.Radiation by Moving Charges

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    38/56

    Synchrotrons

  • 8/18/2019 Radiation ELETRODYNAMICS

    39/56

    Radiation by Moving Charges

    Synchrotron Radiation

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    40/56

    • To find the distribution of energy in

    frequency and in angle it is necessary tocalculate the integral (89)•  Because the duration of the pulse isvery short, it is necessary to know thevelocity   β  and the position  r (t ) over

    only a small arc of the trajectory.•  The origin of time is chosen so that att  = 0 the particle is at the origin of coordinates.•  Notice tht only for very small angles  θthere will be appreciable radiationintensity.

    Figure:  The trajectory lies on the

    plane  x  − y   with instantaneousradius of curvature  ρ. The unitvector  n  can be chosen to lie in thex  − z  plane, and  θ  is the angle withthe x-axis.

    Radiation by Moving Charges

    The vector part of the integrand in eqn (89) can be written

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    41/56

     n × ( n ×  β ) =  β − sin(vt /ρ) + ⊥ cos(vt /ρ)sin θ   (93)•

       = 2   is a unit vector in the  y -direction, corresponding to the

    polarization in the plane of the orbit.•   ⊥ =  n ×2  is the orthogonal polarization vector correspondingapprox. to polarization perpendicular to the orbit plane (for small  θ).•   The argument of the exponential is

    ω

    t −  n · r (t )c 

    = ω

    t −  ρ

    c   sin

    vt ρ

    cos θ

      (94)

    •   Since we are dealing with small angle θ  and very short time intervalswe can make an expansion to both trigonometric functions to obtain

    ω

    t −  n · r (t )c 

    ≈  ω

    2

     1γ 2

     + θ2

    t  +   c 23ρ2

    t 3

      (95)

    where  β  was set to unity wherever possible.

    CHECK THE ABOVE RELATIONS

    Radiation by Moving Charges

    Thus the radiated energy distribution (89) can be written

    d2I 2 2

    http://find/http://goback/

  • 8/18/2019 Radiation ELETRODYNAMICS

    42/56

    d 2I 

    d ωd Ω =

      e 2ω2

    4π2c 

    −A(ω) + ⊥A⊥(ω)2 (96)where the two amplitudes are (How?)

    A(ω)   ≈   c ρ

       ∞−∞

    t  exp

    i  ω

    2

     1

    γ 2 + θ2

    t  +

     c 2t 3

    3ρ2

    dt    (97)

    A⊥(ω)   ≈   θ    ∞

    −∞

    expi  ω

    2  1

    γ 2 + θ2 t  +

     c 2t 3

    3ρ2 dt    (98)by changing the integration variable

    x  =  ct 

    ρ(1/γ 2 + θ2)1/2

    and introducing the parameter  ξ 

    ξ  = ωρ

    3c 

     1

    γ 2 + θ2

    3/2(99)

    allows us to transform the integrals into the form

    Radiation by Moving Charges

    ρ

    1 2   ∞ 3 1 3

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    43/56

    A(ω)   ≈   ρc 

     1

    γ 2 + θ2

    −∞

    x  exp

    i  3

    2ξ 

    x  +

     1

    3x 3

    dx    (100)

    A⊥(ω)  ≈

      ρ

    c θ  1

    γ 2 + θ2

    1/2

       ∞−∞

    exp i  32

    ξ x  + 13

    x 3 dx (101)These integrals are identifiable as Airy integrals or as modified Besselfunctions (FIND OUT MORE)

       ∞0

    x   sin i  32

    ξ x  + 13

    x 3 dx    =   1√ 3 K 2/3(ξ ) (102)   ∞0

    cos

    i  3

    2ξ 

    x  +

     1

    3x 3

    dx    =  1√ 

    3K 1/3(ξ ) (103)

    The energy radiated per unit frequency interval per unit solid angle is:

    d 2I 

    d ωd Ω =

      e 2

    3π2c 

    ωρc 

    2  1γ 2

     + θ2

    2

    K 22/3(ξ ) +  θ2

    1/γ 2 + θ2K 21/3(ξ )

    (104)

    •   The 1st term corresponds to radiation polarized in the orbital plane.

    •  The 2nd term term to radiation polarized perpendicular to that plane.

    Radiation by Moving Charges

    By integration over all frequencies we find the distribution of energy in

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    44/56

    By integration over all frequencies we find the distribution of energy inangle (Can you prove it?)

    dI 

    d Ω =   ∞0

    d 2I 

    d ωd Ω d ω =  7

    16

    e 2

    ρ

    1

    (1/γ 2 + θ2)5/2

    1 + 5

    7

    θ2

    (1/γ 2) + θ2

    (105)This shows the characteristic behavior seen in the circular motion casee.g. in equation (66).This result can be obtained directly, by integrating a slight generalization

    of the power formula for circular motion, eqn (65), over all times. Again:•   The 1st term corresponds polarization parallel to the orbital plane.•   The 2nd term term to perpendicular polarization.Integration over all angles shows that  seven (7) times as much energy isradiated with parallel polarization as with perpendicular polarization. In

    other words:The radiation from a relativistically moving charge is very strongly, but

    not completely, polarized in the plane of motion.

    Radiation by Moving Charges

    •   The radiation is largely confined to the plane containing the motion,

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    45/56

    being more confined the higher the frequency relative to  c /ρ.•   If  ω  gets too large, then  ξ  will be large at all angles, and then therewill be negligible power emitted at those high frequencies.

    •   The critical frequency beyond which there will be negligible totalenergy emitted at any angle can be defined by  ξ  = 1/2 and  θ = 0(WHY?).Then we find

    ωc  = 3

    2

    γ 3c ρ = 3

    2   E 

    mc 2

    3c 

    ρ

      (106)

    this critical frequency agrees with the qualitative estimate (71).•   If the motion is circular, then c /ρ   is the fundamental frequency of rotation, ω0.•   The critical frequency is given by

    ωc  = nc ω0   with harmonic number   nc  = 3

    2

      E 

    mc 2

    3(107)

    Radiation by Moving Charges

    For  γ   1 the radiation is predominantly on the orbital plane and we canevaluate via eqn (104) the angular distribution for  θ = 0.Th f fi d

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    46/56

    Thus for  ω  ωc  we findd 2I 

    d ωd Ω|θ=0 ≈   e 

    2

    c  Γ(2/3)

    π 2

    3

    41/3

    ωρ

    c  2/3

    (108)

    For  ω  ωc d 2I 

    d ωd Ω|θ=0 ≈   3

    e 2

    c   γ 2

     ω

    ωc e −ω/ωc  (109)

    These limiting cases show that the spectrum at  θ = 0 increases withfrequency roughly as  ω2/3 well bellow the critical frequency, reaches amaximum in the neighborhood of  ωc , and then drops exponentially to  0above that frequency.•   The spread in angle at a fixed frequency can be estimated bydetermining the angle  θc  at which  ξ (θc ) ≈ ξ (0) + 1.

    •  In the low frequency range  (ω

     ωc ),  ξ (0)

    ≈0 so  ξ (θc )

    ≈1 which

    gives

    θc  ≈

    3c 

    ωρ

    1/3=

      1

    γ 

    2ωc 

    ω

    1/3(110)

    We note that the low frequency components are emitted at  much wider

    angles than the average, 

    θ2

    1/2

    ∼γ −1.

    Radiation by Moving Charges

    •   In the high frequency limit  (ω > ωc ),  ξ (0) 1 and the intensityfalls off in angle as:

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    47/56

    d 2I 

    d ωd Ω ≈   d 

    2I 

    d ωd Ω|θ=0 · e −3ωγ 

    2θ2/2ω0 (111)

    Thus the critical angle defined by the 1/e  point is

    θc  ≈   1γ 

    2ωc 3ω

    1/2(112)

    This shows that the high-frequency components are confined to anangular range  much smaller  than average.

    Differential frequency spectrum

    as a function of angle. For

    frequencies comparable to the

    critical frequency   ωc , theradiation is confined to angles

    of order   1/γ   For much smaller(larger) frequencies the angular

    spread is larger (smaller).

    Radiation by Moving Charges

    The frequency distribution of the total energy emitted as the particle

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    48/56

    The frequency distribution of the total energy emitted as the particlepasses by can be found by integrating (104) over angles

    dI 

    d ω   = 2π   π/2−π/2

    d 2I 

    d ωd Ω cos θd θ ≈ 2π   ∞−∞

    d 2I 

    d ωd Ω d θ   (113)

    •   For the  low-frequency range we can use (95) at θ = 0 and (108) atθc , to get

    dI 

    d ω ∼ 2πθc d 2I 

    d ωd Ω |θ=0 ∼  e 2

    c ωρ

    c 1/3

    (114)

    showing the the spectrum increases as  ω1/3 for ω  ωc . This gives avery broad flat spectrum at frequencies below  ωc .•   For the high-frequency limit  ω  ωc  we can integrate (111) overangles to get:

    dI 

    d ω ≈

     3π

    2

    e 2

    c   γ 

     ω

    ωc 

    1/2

    e −ω/ωc  (115)

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    49/56

    A proper integration of over angles yields the expression,

    dI 

    d ω ≈

    √ 3

    e 2

    c   γ 

     ω

    ωc 

       ωω/ωc 

    K 5/3(x )dx    (116)

    In the limit  ω  ωc , this reduces to the form (114) with numericalcoefficient 13/4, while for  ω  ωc   it is equal to (115).

    Radiation by Moving Charges

    Bellow the behavior of  dI /d ω  as function of the frequency. The peakintensity is of the order of  e 2γ/c  and the total energy is of the order of e2γω /c = 3e2γ4/ρ This is in agreement with the value 4πe2γ4/3ρ for

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    50/56

    e  γωc /c  = 3e  γ  /ρ. This is in agreement with the value  4πe  γ  /3ρ  forthe radiative loss per revolution (53) in circular accelerators.

    Normalized synchrotron radiation spectrum

    1

    dI 

    dy   =

     9√ 

    3

    8π  y 

       K 5/3(x )dx 

    where  y  = ω/ωc   and   I   = 4πe 2γ 4/3ρ.

    Radiation by Moving Charges

    The radiation represented by (104) and (116) is called  synchrotronradiation because it was first observed in electron synchrotrons (1948).

    F i di i l ti th t i t ll di t b i

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    51/56

    •   For periodic circular motion the spectrum is actually discrete, beingcomposed of frequencies that are integral multipoles of the fundamentalfrequency  ω0 = c /ρ.

    •   Thus we should talk about the angular distribution of power radiatedin the  nth multiple of  ω0  instead of the energy radiated per unit frequencyinterval per passage of the particle. Thus we can write (WHY?)

    dP n

    d Ω

      =  1

    2πc 

    ρ

    2d 2I 

    d ωd Ω |ω=nω0   (117)

    P n   =  1

    ρ

    2dI 

    d ω |ω=nω0   (118)

    •   These results have been compared with experiment at various energysynchrotrons. The angular, polarization and frequency distributions areall in good agreement with theory.

    •   Because of the broad frequency distribution shown in previous Figure,covering the visible, ultraviolet and x-ray regions, synchrotron radiation is

    a useful tool for studies in condensed matter and biology.

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    52/56

    Fourier transform o the electric field produced by a charged particle in

    circular motion. The plots reveal that the number of relevant harmonicsof the fundamental frequency  ω0  increases with  γ . And the dominant

    harmonic is shifted to higher frequencies. (A.  γ  = 1,  β  = 0,  ωc  = 1,  B.

    γ  = 1.2,  β  = 0.55,  ωc  = 1.7,  C. γ  = 1.4,  β  = 0.7,  ωc  = 2.7,  D. γ  = 1.6,

    β  = 0.78,  ωc  = 4.1,

    Radiation by Moving Charges

    Thomson Scattering of Radiation

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    53/56

    When a plane wave of monochromatic EM radiation hits a free particle of charge  e  and mass  m  the particle will be accelerated and so emit

    radiation.The radiation will be emitted in directions other than the propagationdirection of the incident wave, but (for non-relativistic motion of theparticle) it will have the same frequency as the incident radiation.According to eqn (41) the instantaneous power radiated into polarizationstate   by a particle is (How?)

    dP 

    d Ω =

      e 2

    4πc 3

    ∗ ·  ̇ v 2 (119)If the propagation vector  k 0  and its thepolarization vector 0  can be written

     E ( x , t ) = 0E 0e i  k 0· x −i ωt 

    Radiation by Moving Charges

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    54/56

    The scattering geometry with a choice of polarization vectors for the outgoing wave isshown in the Figure.

  • 8/18/2019 Radiation ELETRODYNAMICS

    55/56

    gThe polarization vector 1   is in the planecontaining  n  and  k 0   ; 2   is perpendicular to

    it.In terms of unit vectors parallel to thecoordinate axes, 1  and 2  are:

    1   = cos θ (x  cos φ + y  sin φ) −z  sin θ2   =

      −x  sin φ + y  cos φ

    For an incident linearly polarized wave with polarization parallel to thex-axis, the angular distribution is (cos2 θ cos2 φ + sin2 φ).For polarization parallel to the y-axis it is  (cos2 θ sin2 φ + cos2 φ).For unpolarized incident radiation the scattering cross section is

    d σd Ω

     =

      e 2

    mc 2

    212

    1 + cos2 θ

      (124)

    This is called the  Thomson formula  for scattering of radiation by a free

    charge, and is appropriate for the scattering of  x-rays by electrons  or

    gamma rays by protons.Radiation by Moving Charges

    The total scattering cross section called the  Thomson cross section

    σT   = 8π

    3

      e 2

    2

    2(125)

    http://find/

  • 8/18/2019 Radiation ELETRODYNAMICS

    56/56

    T 3

    mc 2

    ( )

    The Thomson cross section for electrons is 0.665 × 10−24 cm2. The unitof length  e 

    2

    /mc 2

    = 2.82 × 10−13

    cm is called  classical electron radius.•  This classical Thomson formula is valid only for low frequencies wherethe momentum of the incident photon can be ignored.•  When the photon momentum   ω/c  becomes comparable to or largerthan  mc  modifications occur.

    • The most important is that the energy or momentum of the scattered

    photon is less than the incident energy because the charged particlerecoils during the collision.The outgoing to the incident wave number is given by  Compton formula

    k /k  = 1 +    ωmc 

    2(1

    −cos θ)

    −1

    (126)

    In quantum mechanics the scattering of photons by  spinless  pointparticles of charge  e  and mass  m  yields the cross section:

    d σ

    d Ω =

      e 2

    mc 22

    k 2

    |∗ · 0|2 (127)Radiation by Moving Charges

    http://find/http://goback/