Radiant Floor With Phase Change

Embed Size (px)

Citation preview

  • 8/21/2019 Radiant Floor With Phase Change

    1/29

    ThermalDynamicsofRadiantFloorHeatingwith

    WoodenFlooringSystems

    ByWarren

    Cent

    Abstract

    Radiantfloorheatingdesignsvaryinmaterialandconstructionmethods. Finiteelementmodelswere

    developedusingexistingandproposedfloordesignswiththeintentofcomparingheatingperformance.

    Performancemeasuresincludeduniformityoftemperatureacrossthesurfaceofthefloor,lengthof

    timenecessarytoreachtheoptimumheatingrange,andrateoftemperaturedegradationafterthe

    heatingsystemhasbeendeactivated. Flooringsystemsmodeledincludedslabongradeandwooden

    joistandsheathing. Surfacematerialsincludeconcrete/mortar,tile,finishwood,andaderivativeof

    paraffinwaxandpolyethylenerepresentingashapestabilizedphasechangematerial(SSPCM)below

    thesurface.

    The

    repeated

    heating

    cycle

    used

    was

    pumped

    water

    warmed

    to

    50C

    followed

    by

    5

    minutes

    ofdeactivation. Thecyclerestartedfortwoadditionalcyclesandthesystemwasthendeactivated. This

    studydiscoveredthelowertheconductioncoefficientofthesurfacematerialis,thelowerthe

    temperaturevarianceisonthesurfaceandthesystemfoundalowerdecreaseintemperatureovertime

    afterthesystemhadbeendeactivated. ItwasfoundthatintroducingaSSPCMtoafloorsystem

    increasedheatcapacityandcreatedauniformtemperatureoverthesurfaceofthefloor.

    Introduction

    Methodsofradiantfloorheatinghavebeenusedinmanyformsthroughouthistory. Alongwith

    providing

    an

    efficient

    method

    of

    delivering

    heat,

    radiant

    floor

    heating

    systems

    provide

    a

    better

    distributionofheat,idealforhumanbodies. Manysystemshavebeendevelopedutilizingbothpassive

    andactivemechanicsthattrapanddirectheatthroughthesystem. Moderntechnologiesemploylaying

    wireorpipeandencasingitwithinconcreteormortar,makinguseofelectricorheatedwatersupplies.

    Researchhasbeenreportedonthedynamicsandeffectsofradiantfloorheatingwithdensematerials

    suchasstone,concrete,tile,andmortarbutlesshasbeendonewithflooringsystemsinvolvingwooden

    products. Inseveralrespects,woodensystemswouldbepreferredoverheaviersystems. Woodhas

    lowerthermalconductivity,similartothatofinsulation,thanmanyotherconstructionmaterials,

    allowingforaslowertransferofheatthroughthematerial. Also,manyprojectsthatwouldmakeuseof

    radiantfloorheating,suchashomesandlowriseconstruction,usewoodastheirmainconstruction

    material. Findingmethodsofutilizingradiantfloorheatingwiththeuseofwoodenmaterialswouldnot

    requirelarger,heavierthermalmassingtobeusedinastructureandwouldmakeuseofthematerial

    alreadyinservice. Findingmethodsofincorporatingradiantheatingintoexistingandfuturewooden

    constructionprojectswouldcreateanadvantageforbothbuildingconstructionandqualityofhabitation

    fortheusersofthespace.

  • 8/21/2019 Radiant Floor With Phase Change

    2/29

    Withadvancementsinwoodcompositetechnologies,arangeofshapesandmaterialcombinationsare

    viable. Todate,mostofthesecompositesystemshavebeendevelopedtooptimizeengineering

    mechanicalproperties. Anotherpossibilityinradiantfloormethodsistoincorporatephasechange

    materialsintowoodcompositesasameanstomanipulatetheenergystorageanddynamicsofthe

    system. Researchisneededtoidentifynovelsystemconfigurationsandmaterialsthatwouldoptimize

    thermaldynamics

    for

    radiant

    floor

    heating.

    Objectives

    Theoverallgoalofthisstudyistoexplorenewwaystoincorporateradiantfloorheatingwithwood

    constructionmethodsfortwosituations:1)retrofittingtraditionallyframedwoodfloorsystemsand2)

    incorporatingwoodenmaterialsintonewradiantfloorheatingsystems(aswellasphasechange

    materials)withinnovativeassemblyconfigurations. Specificobjectivestoaccomplishthisgoalinclude:

    1. identifykeyperformancetargetsforproposedradiantfloorsystemsincludingheattransferandstorageproperties

    2. developconceptualdesignsofsystemsusingcurrentconstructionmethods3. conductparametricfiniteelementmodelstudiesofalternatesystemstodevelopdeeper

    understandingsofrelativeadvantagesanddisadvantages

    4. characterizethermaldynamicsofselectedsystemsandcontrastagainstothersystems5. Developrecommendationsofradiantfloorsystemsthatwarrantfurtherstudy

    Approach

    Publishedmathematicalandphysicalmodelswerereviewedtounderstandpreviouslyexploredmethods

    ofradiantfloorheatingandtogiveinsighttothefiniteelementmodelingforthisstudy. Understanding

    the

    advantages

    that

    different

    materials

    bring

    to

    a

    heating

    system

    is

    important

    in

    the

    pursuit

    of

    finding

    betterradiantfloorheatingdesigns. Byalsoidentifyingtheshortcomingsofthesystemsandmodeling

    methods,greateraccuracycanbeobtainedandencouragebetterresults.

    Toapproachfindingthemostbeneficialsystemlayouts,severalmeansofmeasuringperformancewere

    identified. Thecharacteristicsthatthefiniteelementmodeloutputsweremeasuredagainstincluded:

    1. Lengthoftimethatasystemtakestoreachoptimumheatingtemperature2. Uniformityoftemperatureacrossthesurfaceofthefloor3. Slopeoftemperaturegradientovertimeastheheatingsystemisdeactivated

    The

    length

    of

    time

    necessary

    to

    heat

    a

    system

    to

    an

    active

    heating

    temperature

    was

    studied

    because

    a

    rapidlyrespondingsystemcouldbebeneficialforsystemswithseverallocalizedzonesandsetback

    thermostatcontrols.Ontheotherhand,asystemwithmorethermalstoragewouldtakelongertoreach

    targettemperature,butcouldreducecyclingandtherebysavepeakenergyrequiredforstarting

    circulationpumps.

    Measuringtheuniformityoftemperatureacrossthesurfaceofthefloorisanimportantattributewith

    regardtooccupantcomfort. Hotspotscanoccurwhenthesurfaceareaoffloordirectlyabovean

  • 8/21/2019 Radiant Floor With Phase Change

    3/29

    embeddedpipereceivesheatdisproportionallycomparedtotheareathatisnotdirectlyabovethepipe.

    Findingsystemsthatencouragethoroughdistributionofheatoveritssurfaceduringitsheatingphase

    wereconsideredbeneficial,anditwasquantifiedasthedifferenceintemperaturefromthewarmestto

    thecoldestpointacrossthesurfaceofeachmodel.

    Asa

    flooring

    systems

    heat

    source

    is

    deactivated,

    the

    heat

    gained

    within

    the

    material

    will

    be

    extracted

    bytheoutsideeffectsonthesystem. Althoughitisdifficulttomodelsaideffects,somesystemsstore

    heatenergyandreleaseitslowerthanothersunderthesameloadingconditions.Thisisanissuefor

    energyefficiencybecausetheheatsourcewouldhavetoreheattheentireflooringsystemoncethe

    floorhasreleasedtheheat. Thesystemsthatretainheatbetterwouldrequirelessheatinginputfrom

    theheatingsourceandtighterparameterscanbesettoensuregreaterthermalcomfortwithless

    energyexpense. Thesystemsthathavelowerratesoftemperaturedegradationaftertheheatsource

    hasbeenturnedoffwouldrankhigherthanthosethatdonot.

    TraditionalRetrofit

    Retrofitof

    traditional

    wooden

    floor

    systems

    represents

    a

    huge

    potential

    market

    for

    radiant

    floor

    heating

    systems. Betterunderstandingthedynamicsofthissystemisimportanttohavesuccessful

    implementations. Manyhomesandlowriseconstructionprojectshaverealizedbenefitsfromthese

    systems. Therearevaryingdegreesofimpacttoaprojectdependingontheradiantfloorheating

    design,anditisimportanttoidentifyifspecificsystemshavethecreatelowerlevelsofimpact.

    Structuralsystemsdovaryfromprojecttoproject. Knowingifaparticularsystemcanaccommodatea

    radiantfloorheatingdesignduetoitsthermalandgravityloadingisimportanttoexploreandanalyze

    beforeinstallationoccurs. Engineeringanalysisandjudgmentwillhavetobemadetodetermineifthe

    structuralsysteminquestioncanaccommodatethepreferredheatingsystem. Someprojectsmaynot

    allowfor

    the

    installation

    of

    specific

    systems

    and

    it

    may

    be

    more

    advantageous

    to

    upgrade

    the

    structural

    systemalltogether.

    Asfarasfiniteelementmodelingisconcerned,manyofthethermalpropertiesareresearchedandthe

    propertiesarepublishedforconventionalbuildingmaterials.

    WoodComposites

    Compositematerialsofferawidevarietyofstructuralandthermaladvantagesinfloorcrosssections.

    Ratherthanbeinglimitedbyshapeduetotheresource,compositescanprovidenovelgeometriestofor

    thebenefitofthesystem. Thisstudywillhelpgiveguidancetofutureresearchtodevelopcrosssections

    toaccommodate

    radiant

    floor

    heating

    layouts

    and

    to

    utilize

    the

    advantages

    available

    to

    them.

    Finiteelementmodelingofcompositematerialscanbechallengingduetocomplexcrosssection

    geometriesandavailablepropertiesforsomematerials.

    PhaseChangeMaterials

  • 8/21/2019 Radiant Floor With Phase Change

    4/29

    ThecaseforphasechangematerialsisstrongbecauseSSPCMscandramaticallyincreasetheenergy

    storagecapabilitiesofthefloorsystemsbymakinguseofitslatentheatcapacityduringphasechange.

    Phasechangematerialswouldincreasethesystemsabilitydramaticallytoprovidewarmthtoaspace,

    butitspropertiesmustbecontrolledandunderstood. Modelingcangiveinsightsonappropriateways

    tointroduce

    phase

    change

    materials

    into

    a

    radiant

    floor

    heating

    system.

    LiteratureReview

    HealthandComfortConsiderations

    Currentinterestinradiantfloorheatingmethodscomesfromitspotentialhealthbenefitsaswellas

    bettermanagementofenergyandresourcestocreateabetterlivingenvironment. Radiantfloor

    heatingcanbemeasuredforthermalcomfortineverydaylivingenvironments(Song,2005). Beforethe

    layoutofwiringandpiping,atmosphericcontrolsandsensors,andmaterialpropertiesareeven

    considered;radiantfloorheatingpracticescanbeshowntoachieveindividualthermalcomfortbetter

    thanconventional

    heating

    systems

    (Woodson,

    1999).

    That

    alone

    could

    be

    the

    best

    reason

    for

    investigatingthemeansofimplementingsuchsystemsinfutureprojects.

    Thehealthbenefitsthatradiantfloorheatingprovidesarefoundfromtheidealheatingcurve(Figure1),

    whichisacharacterizationoftheidealtemperatureforthehumanbodybasedonspecifiedheightsfrom

    thefloor(Woodson,1999;Song,2005). Generally,becausethefeetareindirectcontactwiththe

    ground,theylosegreaterquantitiesofheatduetoconduction. Theheadhasthelargestamountof

    bloodvesselspersurfaceareaonthebodymakingitoneofthemoreheatedareasofthebody. These

    twoconditionscreateboundsforanidealdistributionofheattoprovidetothebodygivenaheightfrom

    thefloor. Byapplyingtheboundaryconditionstothestructureofthecurve,agreatertemperatureis

    needed

    closer

    to

    the

    ground

    and

    a

    lower

    temperature

    is

    needed

    furthest

    from

    the

    ground

    with

    a

    smoothtransitionbetweenthem.

    Figure1:RadiantFloorHeatingvs.IdealHeatingcurve Figure2:ForcedAirHeatingvs.IdealHeatingCurve

  • 8/21/2019 Radiant Floor With Phase Change

    5/29

    Theseboundsoftheidealheatingcurvearenotmetwithconventionalheatingsystems(Figure2). A

    naturalactiontoexpectfromheatedliquidsandgasesisthatthewarmedparticleswillrisecausingthe

    coolerparticlestofall. Bythisthermodynamicunderstandingofparticlebehavior,aheatedroomwould

    locatecoolerairnearthefeetandwarmerairnearthehead. Thisbehaviorproducestheinversetothe

    idealheatingcurvesrequirements. Manyconventionalsystems,suchasforcedairandbaseboard

    heating,are

    subject

    to

    produce

    the

    reverse

    ideal

    heating

    curve

    while

    radiant

    floor

    heating

    produces

    the

    idealcurvecloserthananysystem(Woodson,1999). Byheatingthefloorfirst,thefeetreceivetheheat

    firstandastheheatrises,itiscooledcausingtheupperregionsoftheroomtobecooleraspreferred. It

    isbythistransferofheatthatwegainunderstandingforradiantfloorheatingsusetodayandinthe

    past.

    ConstructionMethods

    Radiantfloorheatinghasbeenconstructedusingmanydifferentmediumsandmethodsthroughout

    humanhistory. Traditionally,methodshaveincludedguidinghotairunderneaththecrawlspaceofan

    elevatedroombetweenjoistsorbetweenthelayersofmasonrywalls(Song,2005;Song2008). With

    theintroductionofelectricalwiring,copperpiping,andcastinplacematerials,radiantfloorheating

    methodshavediversifiedandevolvedtoprovideefficientsolutionstoheatinglivingenvironments.

    OneofthemostpopularandmostexploredmethodsofradiantfloorheatingusedtodayistheOndol

    Systemwhichincorporateshydronicpipingcastwithinaconcreteormortarbed. ThenameOndol

    comesfromtheoriginalKoreanpronunciationGudeul(guundol)meaningheatedstone.The

    pronunciationovertimehastransformedintoOndol. Thismethodofheatinghasbeenknownforover

    2000years(Song,2005).

    Periodically,waterisheatedandpumpedthroughthenetworkandconvectivelytransfersheattothe

    surroundingmaterials

    (Cho,

    2003).

    Electric

    wiring

    systems

    are

    also

    used

    as

    heating

    elements.

    Rather

    thanconvectivetransference,electricalresistanceisusedtogeneratethermalenergyatthesource.

    Bothpopularsolutionshaveadvantagesandsuitdifferentscenarios,butthemainfocusinthisstudywill

    behydronicsystems.

    Modeling

    Thepotentialbenefitsofradiantfloorheatinghavecultivatedtheinterestofresearchtodiscoverbetter

    methodsofdeliveringheatandwithbetterenergyefficiency. Arangeofmodelingmethodsareuseful

    toolsinthisregard. Therearetwovantagepointsthatallowresearcherstodevelopenergyefficient

    designs;macroandmicroscalemodeling. Macroscalemodelinghelpsresearcherstounderstandhow

    thebuiltenvironmentasawholewillperformwithallthesystemschosentomaintainthecomfortof

    thespace. Bymodelingcharacteristicssuchasthebuildingenvelope,orientation,materials,daylighting,

    naturalandHVACventilation,exteriorclimate,andoccupantloading;softwareprogramssuchas

    EnergyPlusandDOE2,tonameafew,canaccuratelyevaluateoptionsofhowtobesttodesignaspace

    (Crawley,2005).

  • 8/21/2019 Radiant Floor With Phase Change

    6/29

    Microscalemodelingcanbeasusefulintandemwithmacroscalemodeling. Microscalemodelingis

    usedtoevaluateindividualsystemsandtheabilitiesofspecificcomponentsofthosesystemstofurther

    theefficiencyofthewhole. Strictlyfromamathematicalstandpoint,systemsandcomponentsmaybe

    modeledtoinvolvethemostefficientlayoutandmaterialtypegivenspecifiedboundaryconditionsto

    helpguidethedevelopmentofafiniteelementmodel(ZaheerUddin,1997). Macroscalemodelingcan

    playan

    important

    role

    by

    eliminating

    characteristics

    of

    the

    heating

    system

    that

    cause

    little

    effect

    despite

    modificationandbyisolatingwhichattributesaffectthesystemsperformancegreatly. Ifahydronic

    systemisselected,severalimportantattributestosimulateincludethicknesscovering,coveringmaterial

    properties,andfrequencyofpipingloopsalongthelengthofthespace. Whilethereareothermaterial

    andsystempropertiesthatcharacterizeasystemandgaugeitsefficiency,theseareamongthemost

    importanttoconsiderwhendevelopingamacroscalemodel(Sattari,2006).

    Methodsofimprovingtheaccuracyandperformanceofradiantfloorheatingsystemsinvolveincreasing

    sensorsandcontrolscapabilitiesoftheheatingsystem(Cho,2003;Cho,1999;Song,2008). Inmost

    traditionalheatingsystems,theconventionalonoffthermostatistheextentofthesystemssensory

    ability.Methods

    to

    increase

    the

    sensory

    capabilities

    include

    using

    the

    conventional

    thermostat

    in

    tandemwiththermostatswithinthefloorsystem. Workingthroughanalgorithmestablishedwithinthe

    heatingsystem,iftheairorslabtemperaturedropsbeloworexceedsthethermalboundaries,the

    systemisrespondstopreventneedlesslossandrechargeofheatintheheatingelements(Cho,1999).

    Othermethodsofincreasingtheefficiencyofradiantfloorheatingsystemsbymeansofsensory

    capabilitiesincludepredictableactionsbymeansofmeteorologicaldata. Recommendedcyclesof

    heatingareencouraged,characterizedbylengthandduringsettimeswithina24hourperiod,basedon

    thetimeofyearandthehighandlowoutsidetemperaturesforthelocationthesystemisoperatingin

    thatday. Bypredictingthehighandlowtemperaturesforthecoming24hourperiod,theheating

    system

    can

    accurately

    shift

    its

    heating

    cycles

    duration

    and

    activation

    time

    to

    accommodate

    the

    weather

    (Cho,2003).

    EnergyEfficiency

    Radiantfloorheatingsystemsgenerate,store,andsupplyheatbetterthanconventionalsystemsand

    withtheintroductionofmaterialwithbetterthermalstoragecapabilitieswouldamplifythebeneficial

    effects. Materialsabsorbandtransferthermalenergyatdifferentrates. Thosethatdischargethermal

    energyatslowerratesenablethespacetostayheatedwhilerequiringlessoftheheatingsystemto

    chargethespaceitself. Astateofmatterthattransfersheatwell,whilemaintainingaconstant

    temperature,isduringthephasechangeofthatmaterial. Introductionofphasechangematerialsto

    radiantfloor

    heating

    systems

    could

    enhance

    thermal

    storage

    of

    heat

    extend

    beyond

    the

    floor

    and

    can

    beapartofthewallsandceilingscapabilitiesaswell(Neeper,2000;Khudhair,2004). Byincreasingthe

    thermalstoragecapabilitiesofthespace,peakheatingdemandscanbereduced,withoverallenergy

    savings. Manymethodshelpradiantfloorheatingsystemsperformefficientlyandreliably.

    Incorporatingabalancedmixtureofmethodswillproduceperformanceresultsformanydifferent

    projectsanddesigns.

  • 8/21/2019 Radiant Floor With Phase Change

    7/29

    ModelDevelopment

    ThefiniteelementmodelingprogramusedinthisresearchwasADINA. Thefloorcrosssectionsthat

    weremodeledincludedexistingconventionalradiantfloorheatinglayoutsandretrofitinstallation

    designs(Sattari,2006;Ho,1995;Zhang,2006;Woodson,1999). Atraditional100mmconcreteslabon

    gradewas

    determined

    as

    the

    base

    line

    flooring

    system

    to

    compare

    the

    wooden

    flooring

    systems

    to.

    Othersystemsincludeslabongradewithinsulationunderlayment,conventionalwoodenjoistsand

    sheathingtoppedwithavarietyoffinishmaterialsincludinghardwoodboards,tile,andShapeStabilized

    PhaseChangeMaterial(SSPCM)overlaidwithsubfloorsheathing.

    Forsimplicityofconstructionandefficientuseofcomputerdatastorage,finiteelementmodelswere

    developedfora0.5meterlengthsectionforthefloorsystemscrosssection. Thislengthwaschosen

    because:

    1. Itallowsforaconventionalwoodenjoistfloorsystemtoberepresented2. Itallowedforavarietyoflateralspacingdistributionsofpipe(100mm,150mm,200mm)3. Symmetrycanbeutilizedtoextenttheheatingresultsalongtheexpanseofafloor

    Severallateraldistributionsofpipingweremodeledinpreviousstudies(Song,2005;S.Sattari,2006)that

    rangedfrom50to300millimeters. Spacinglengthsbetween100to200mmwereabletoshowthebest

    uniformityofheat.

    Verticaldistributionswerealsovariedintheslabongradesystemstomonitoritseffectonthesystem.

    Heightsvariedfrom37.5to75mmfromthetopoftheslab. Allotherfloorsystemsdidnotvarythe

    verticaldistributionbecausetheencapsulationlayerwasreducedinsizetopreventexcessweighton

    theexistingstructuralsystem,leavinglittleroomtoexperimentwiththeheightofthepipingwithinthe

    layer.

    Oneretrofitsolutioninvolvedutilizingtheradiationemittedfromtheheatedpipingasthemainsource

    ofheat(Woodson,1999). Thissolutionisoflowerimpacttoanexistingprojectbecauseitdoesnotrely

    onintroducingheavierthermalmassing. Thesolutioninvolvesrunninganaluminumtroughhungfrom

    thejoiststoincreasetheamountofthermalradiationabsorbedbythesheathing. Duetocomplexities

    thatwouldariseinthemodelingprocess,theheatexchangebetweenthepipingnetworkandthe

    surfacessurroundingthepipeswerecalculatedasaheatfluxratherthanaradiationbody. The

    assumptionsthatledtothevaluesusedaresummarizedinTableA1.

    AninnovativesolutioninvolvestheuseofSSPCMplatesbelowthesubflooringtostoreextraheatduring

    itsphase

    change

    in

    the

    form

    of

    latent

    heat.

    Modeling

    a

    material

    that

    went

    through

    phase

    change

    and

    incorporatingitslatentheatcapacityinADINAmeantcreatingamaterialwithatemperaturedependent

    heatcapacity. Theamountofenergythataunitvolumeofthematerialwouldgainorloseduringphase

    changewassplicedinduringoneunitdegreeoftemperaturechangeatthemeltingpoint. Althoughnot

    entirelyaccuratethatamaterialwouldcontinuetochangetemperatureduringphasechange,the

    amountofenergyisstillaccountedformathematically(EquationA1).

  • 8/21/2019 Radiant Floor With Phase Change

    8/29

    Theremainderofthematerialschosenintheresearchpossessedconstantconductionandheatcapacity

    coefficientsandwouldnotvaryovertimeortemperature.

    Theinitialconditionsofthefloorsystemsweresetto10Cunderthescenarioofasystemwakingup

    withnopreviousactivation. Thistemperatureiscommoninafloorsystemthathasundergonecooling

    overthe

    night.

    The

    optimum

    temperature

    that

    will

    be

    targeted

    to

    reach

    will

    be

    ideal

    for

    active

    heating

    andforhumancomfort. Therangeofacceptabletemperaturesis24C 32C(Song,2005;Woodson,

    1999).

    Introducingloadingscenariostothemodelsinvolvedsettingboundaryconditionsonthetopofthe

    flooringsystemtosimulateaircurrentswhiletheheatwasbeingintroducedtothesystemsthroughthe

    pipingnetwork. Bothweresimulatedasconvectivecurrents. Theheatingconditionswithinthepipes

    weresetatatemperatureof50C(Sattari,2006;Song,2005)whileactiveandwereappliedinpulsesof

    heatedwaterfor15minutes,releasedfor5minutes,andthenthecyclerepeats. Thispulsingcondition

    wasusedtobettertesteachflooringdesignforhowmuchtimewasnecessarytobringthedesignto

    optimumtemperatureandtogaugeitsreactionduringvariedheatfluxes.

    Theheatedwaterwasgivenatimedependentconvectivecoefficientthatwouldsimulatethepulsesof

    thepumpingactionduringthe15minuteintervalofitsactivation. Afterthe15minutepulsewas

    ended,theconvectivepropertywaseffectivelyreducedtozerotoindicatethatthewaterwasstill.

    Afterthe5minuterechargeperiod,theconvectivecoefficientregaineditsoriginalintensity. These

    cycleswouldrepeatthreetimesforthelengthof1hourandthenacooldownperiodofanextrahour

    withtheheatingdeactivated.

    Thefreestandingairconvectionwasconsideredconstantandwouldnotvaryovertime. Thethermal

    interactiononthesurfaceofthefloorhadtobegeneralizedduetothenatureoftheunpredictabilityof

    surfacesconditions.

    Air

    currents,

    interior

    and

    exterior

    walls,

    furniture,

    human

    activity,

    natural

    and

    artificiallighting,andapplianceactivitycanallaffectthetransferofheatfromtheheatingsysteminto

    thespace. Theexternalinteractionswerechosentorepresentalowermeansofinfluencebyonly

    simulatingconvectionduetofreestandingair. Itwasnotedthatthisisaliberalassumptionandareal

    scenariowouldbepredictedtoextractmoreheatfromthefloorsystem. Theteststhattheflooring

    systemswouldbecompareduponinthisstudywouldbemostlyindependentofexternalinteractions

    andwouldratherbeajudgmentoftheinternalthermalinteractionwithinthecrosssection.

    Determininghowuniformlyheatwasdistributedacrossthesurfacewasgaugedbycomparingthe

    temperatureoftwoparticularnodesonthesurfaceofthecrosssection. Thenodesonthesurface

    directly

    above

    the

    pipe

    (the

    top

    point)

    and

    at

    the

    midpoint

    between

    pipes

    (the

    midpoint)

    were

    comparedfordifferenceintemperature. Thelowerthedifferencebetweenthenodaltemperatures

    wouldrankadesignforhowwellitwoulddistributeheatalongthesurface,creatingbetteruniform

    heatingandpreventinghotspots. Thiswillalsomeasureasystemseffectivenessatheatingaspaceand

    usinglessenergybymeansofusingatandemthermostatsensorysystemtomeasurethetemperature

    intheslabaswellastheairinthespace(Cho,1999).

  • 8/21/2019 Radiant Floor With Phase Change

    9/29

    Fournodequadrilateralswerethemeshingofchoiceforthesolidmaterialsduetotheirrelative

    accuracyfortheamountofnodesrequired(Ho,1995). Meshingwasgivenageneraldensityof0.5

    millimetersbutreducedsignificantlysurroundingthepipeopeningsinthecrosssectionforaccuracy.

    Twonodeboundaryelementswereusedfortheconvectionelementsonboththesurfaceofthefloor

    andthepipeopenings.

    ThemethodsoffloorconstructionthatweremodeledinthisstudyaresummarizedinFigures3ae.

    Figure3a:TraditionalSlabonGrade(Somesectionsmodeledwithoutinsulation)

    Figure3b:SheathingandJoistswithAluminumTrough

    Figure3c:SheathingandJoistswithMortarBedandTile

  • 8/21/2019 Radiant Floor With Phase Change

    10/29

    Figure3d:SheathingandJoistswithMortarBedandHardwoodFinishfloor

    Figure3e:SheathingandJoistswithMortarBed,SSPCM,andFinishfloorsupportedbywoodenlathe

    ThefollowingpropertiesinTable1weregiventothematerials:

    Table1MaterialProperties

    HeatConduction,k=(W/mK) HeatCapacity,c=J/((m^3)K) LatentHeatCapacity,L=J/m^3

    Concrete 1.7 1,950,000

    Wood 0.15 222,600

    SSPCM 0.25 1,715,000 156,000,000

    Insulation 0.04 325,000

    Tile 2.5 2,250,000

  • 8/21/2019 Radiant Floor With Phase Change

    11/29

    FIGURE4:FiniteElementModelofSSPCMdesign

    Results

    Themodelresultsrevealedseveralpatternsthatwerecomparedusingthetemperaturedatafromthe

    twosurfacenodes. Theserelationshipswere:

    1. Thedifferenceintemperaturebetweenthetoppoint(TP)andthemidpoint(MP)2. Thetimethatthemeantemperature(averageofTPandMP)reachedtheoptimalheatingrange3. Therateofcoolingatfloorsurface(Startingatt=4500sec)

    DifferenceinTemperature

    ByevaluatingthetemperaturepredictionsattheTPandMP,arelationshipwasmadebetweenthe

    verticaldistributionsofthepipenetworkintheslabtothelocalizedsurfacetemperatures. Asthe

    networkwasplacedfurthertowardsthebottomoftheslab,thesurfacetemperaturedifferencesfrom

    thespanofthetwopointswasreduced,diminishingthehotspoteffect. Thecloserthenetworkwas

    placedtothesurfaceofthefloor,thegreaterthedifference.

    Anotherfactorthatplayedaneffectonthedifferenceofsurfacetemperaturewasthehorizontal

    spacingof

    the

    piping.

    Although

    the

    pattern

    of

    temperature

    difference

    remained

    the

    same

    for

    those

    modelsofthesimilarconstruction,thevalueofthetemperaturedifferencewasamplified. Howeverthe

    amountoftimenecessarytoachieveapproximatetemperatureuniformitywasaboutthesame(Figure5

    through7).

    Alongwiththetemperaturedifferencebetweensystems,arelativepatternformedduetothetypeof

    materialsthatwereusedwithineachmodel. Inthecaseofmaterialswithahigherthermalconduction

  • 8/21/2019 Radiant Floor With Phase Change

    12/29

    factor,suchastheconcreteandtile,thetemperaturedegradationaftertheheatingsupplywas

    removedweremuchsteeper(Figure8). However,thesesystemsdiddeliveredheatveryquicklytothe

    surfaceenvironment. Theothermodelsthatinvolvedwood,SSPCM,orinsulationhadmuchshallower

    temperaturedegradationaftertheheatedwaterwasshutoff,causingtheheattotransferslowertothe

    surfaceenvironment(Figure9through11).

    Similarpatternsappearedonthejoistandwoodensheathingmodels. Itwasapparentwheretheheat

    hadbeenturnedoffhoweverthetemperaturespikeswerelessexaggerated,indicatingamoreuniform

    heatingdistributionacrossthecrosssection. Thisisexplainedbythewoodhavingasmallerthermal

    conductioncoefficient. Thisslowstheheattransferalongtheinterfacebetweentheconcreteandwood

    andcausesthetemperaturecontourstoflattenastheyreachthesurface.

    ThefloorconstructionwiththemostnoteworthyperformancepredictionsisthedesignwiththeSSPCM

    plates. Thisistheonlyscenariowherethetemperaturedifferencecontinuestoriseaftertheheating

    hasbeenshutoff. ThiscanbeexplainedbytheSSPCMasitreleasesitslatentenergyastheinternal

    systemcools. Thiseffectcreatesathermalbuffertoprotectthesurfacefromunregulatedandsudden

    heatloss.

    FIGURE5:Differencebetweentoppoint(TP)andmidpoint(MP)offloorcrosssection.SOG1st

    numberrepresentshorizontalspacingofpipe

    inmm,2nd

    denotesverticalspacingofpipefromsurfaceinmm,_iindicatesifinsulationisplacedalongunderside.

    FIGURE6:Differencebetweentoppoint(TP)andmidpoint(MP)offloorcrosssection.SOG1st

    numberrepresentshorizontalspacingofpipe

    inmm,2nd

    denotesverticalspacingofpipefromsurfaceinmm,_iindicatesifinsulationisplacedalongunderside.

    0

    1

    2

    3

    4

    5

    6

    Temperature(C)

    Time(seconds)

    100_37.5

    100_50

    100_75

    100_37.5_i

    100_50_i

    100_75_i

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Temperature(C)

    Time(seconds)

    150_37.5

    150_50

    150_75

    150_37.5_i

    150_50_i

    150_75_i

  • 8/21/2019 Radiant Floor With Phase Change

    13/29

    FIGURE7:Differencebetweentoppoint(TP)andmidpoint(MP)offloorcrosssection.SOG1st

    numberrepresentshorizontalspacingofpipe

    inmm,2nd

    denotesverticalspacingofpipefromsurfaceinmm,_iindicatesifinsulationisplacedalongunderside.

    FIGURE8:Differencebetweentoppoint(TP)andmidpoint(MP)offloorcrosssection.TypicalJoistConstructionJrepresentsjoist

    construction,tiledenotessurfacematerial,andnumberindicateshorizontalspacingofpipeinmm.

    FIGURE9:Differencebetweentoppoint(TP)andmidpoint(MP)offloorcrosssection.TypicalJoistConstructionJrepresentsjoist

    constructionandnumberindicateshorizontalspacingofpipeinmm.

    0

    2

    4

    6

    8

    10

    12

    Tem

    perature(C)

    Time(seconds)

    200_37.5

    200_50

    200_75

    200_37.5_i

    200_50_i

    200_75_i

    0

    2

    4

    6

    8

    10

    12

    14

    Temperature(C)

    Time(seconds)

    J_tile_100

    J_tile_150

    J_tile_200

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Temperature(C)

    Time(seconds)

    J_100

    J_150

    J_200

  • 8/21/2019 Radiant Floor With Phase Change

    14/29

    FIGURE10:Differencebetweentoppoint(TP)andmidpoint(MP)offloorcrosssection.TypicalJoistConstructionwithaluminumtrough

    betweenjoistsradrepresentsradiationasmeansofheatflux,numberindicatesamountofpipesaccountedforwithineachtrough.

    FIGURE11:Differencebetweentoppoint(TP)andmidpoint(MP)offloorcrosssection.TypicalJoistConstructionwithPCMunderfinishfloor

    Jrepresentsjoistconstruction,PCMdenotesPCMisusedunderfinishfloor,numberindicateshorizontalspacingofpipeinmm.

    Asexpected,insulationplayslittleeffectindecreasingtheeffectsofhotspotsinatraditionalslabon

    gradeassembly. Thisisbecausetheheattransfersupwardsfromthepipeuniformlywhetherornot

    thereisinsulationalongthebottom. Insulationplaysagreateffectonincreasingtheoverall

    temperaturebybufferingtheslabfromtheground. Iftheaimistoreducethehotspoteffectthena

    closerandlowerspacingofpipewithintheslabisencouraged. Awoodencoveringperformswellto

    insulateandleveltheheatingcontoursoutacrossthesurfaceastheoptimumtemperaturereachesthe

    surface.The

    SSPCM

    design

    further

    extends

    the

    contour

    leveling

    action.

    TargetHeatingTime

    Eachsystemrequiredadifferentamountoftimeforthesurfacetoreachthetargetheating

    temperature. Thosesystemswithmaterialsthatpossessalargerheatconductioncoefficientwereable

    totransferheattothesurfacequickerthanthosesystemswithmaterialshavinglowerheatconduction

    coefficients. Itwasfoundthatseveralsystemsdidnotrequireallthreecyclesofheatingbecausethe

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Tem

    perature(C)

    Time(seconds)

    1_pipe_rad

    2_pipe_rad

    3_pipe_rad

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Temperature(C)

    Time(seconds)

    J_PCM_100

    J_PCM_150

    J_PCM_200

  • 8/21/2019 Radiant Floor With Phase Change

    15/29

    meantemperaturehadalreadyreachedthecomfortboundaries. Ideally,theheatingsystemwouldbe

    shutoffatthatmomentandwouldnotactivateagainuntiltheslabtemperaturedippedbelowthe

    optimumheatingtemperature.

    Severalsystemsdidnotreachthetargetheatingtemperature. Somesystems,suchasthealuminum

    troughdesign,

    did

    not

    produce

    the

    amount

    of

    heat

    necessary

    to

    heat

    the

    material

    to

    the

    preferred

    level.

    Theothersystems,notablytheSSPCMdesign,internalizedmoreenergythanitreleased. Despitethe

    factthateachsystemreceivedthesameamountofenergyastheothersystems,theSSPCMsstorage

    capacityforenergywassignificantlylargerthantheothersystems. Ratherthantheappliedthermal

    energydiffusingtothesurfaceforheatinguse,theenergywasstoredforlateruse. Althoughthis

    propertyprovidesgreatadvantagefortheSSPCMdesign,itfallsshortititsabilitytoquicklytransfer

    heattothesurfaceasreadilyastheotherdesigns. Ideally,aSSPCMshouldhavelargelatentheat

    capacitywithhighthermalconductance,yettheSSPCMmodeled(paraffin)hasarelativelylowthermal

    conductance.

    ThefollowingTable2liststhesystemandthetimenecessaryittooktoreachthemeantargetheating

    temperature(28C(81F))ifitwasreachedatallduringthecyclingheatingprocess. Thedesignswere

    rankedbythespeedinwhichthemeansurfacetemperaturereachedoptimumheatinglevels. Those

    thatdidnotmakethedesiredleveldonothaveatimevalue.

    Table2:TimenecessarytoreachOptimumHeatingTemperatureforsystems(seefigures511fornamerepresentation)

    Type #ofPipe

    Horz.Spac.

    (mm)

    Vert.Spac.

    (mm) Insulation? Name

    Time

    (sec)

    MaxTemp

    (degC) Rank

    SOG 100 37.5 no 100_375 1000 39.922 2

    SOG 100 37.5 yes 100_375_i 1000 39.8195 2

    SOG

    100

    50

    no

    100_50

    1840

    37.045

    6

    SOG 100 50 yes 100_50_i 1840 36.861 6

    SOG 100 75 no 100_75 3300 31.583 16

    SOG 100 75 yes 100_75_i 3340 32.168 17

    SOG 150 37.5 no 150_375 1940 32.6765 8

    SOG 150 37.5 yes 150_375_i 1940 32.583 8

    SOG 150 50 no 150_50 2970 29.9205 12

    SOG 150 50 yes 150_50_i 2990 29.733 13

    SOG 150 75 no 150_75 26.1665 20

    SOG 150 75 yes 150_75_i 26.0565 21

    SOG

    200

    37.5

    no

    200_375

    3040

    28.3535

    14

    SOG 200 37.5 yes 200_375_i 3060 28.28 15

    SOG 200 50 no 200_50 23.1925 24

    SOG 200 50 yes 200_50_i 23.079 25

    SOG 200 75 no 200_75 22.6915 26

    SOG 200 75 yes 200_75_i 22.613 27

    Trough 1 no RAD_1_pipe 12.0805 30

    Trough 2 no RAD_2_pipe 14.6065 29

  • 8/21/2019 Radiant Floor With Phase Change

    16/29

    Trough 3 no RAD_3_pipe 16.989 23

    Sheathing no J_100 2840 32.2065 11

    Sheathing no J_150 2140 30.983 10

    Sheathing no J_200 26.895 19

    Tile no J_tile_100 610 44.248 1

    Tile no J_tile_150 1360 37.353 4

    Tile no J_tile_200 1800 32.261 5

    PCM no J_PCM_100 3440 30.929 18

    PCM no J_PCM_150 25.8905 22

    PCM no J_PCM_200 21.673 28

    Fromthemodelresults,patternsshowthatdesignswithacloserpipespacing(100mm)allreachedthe

    benchmarkforthedesiredheatinglevelunderthesameloadingscenario. Largerspacingofpiping(150

    mm,200mm)aswellassystemspossessingmaterialswithlowerthermalconductivitiesandhigh

    storagecapacities

    did

    not

    all

    reach

    the

    desired

    temperature

    level.

    Designsthatusemorematerialswithlowerthermalconductivitywouldrequiretheuseofapredictive

    activationsystemforitsusetobeofgreaterbenefit. Ifasystemcouldbeactivatedearlierbeforeits

    initialusebytheoccupant,thenthesystemwouldreachtheoptimumheatinglevelatthetimethatthe

    userwillbeginuseofthespace.

    HeatDissipationoverTime

    Asthesystemsareremovedfromthesupplyheat,theenergystoredinthematerialscomesintoplay.

    Themorethermalenergythatcanbestored,thelesscyclingofthesupplysourceisneeded.

    Twoparticulartemperaturesatsettimesweregatheredfromeachmodeltogeneralizethedecayof

    temperaturegradientovertimefromasystemafterthesystemwasdeactivated. Everysystem

    displayedanearlinearchangeoftemperaturestartingat4500secandcontinuedtotheendofthe

    analysis. Thesetrendlineswerecalculatedandsuperimposedoverthegraphofthemeantemperature

    readingsfromtime4500to7200sec. Thetimedurationof2700secwassetasaunitlengthoftimeto

    deciphertheslopeofeachofthetrendlines. Byfindingaunitslopeforeachsystem,everysystem

    couldbecomparedtooneanotherduringthesameperiodofitsheatingcycletoshowwhichsystems

    couldretainandtransferheatbetter. ThesecomparisonscanbeseeninFigures12and13.

    Somesystemsdidnotholdheatwell,dischargedquickly,andrequiredmorefrequentinterventionfrom

    thesupply

    heat.

    These

    systems

    were

    found

    to

    be

    the

    systems

    with

    materials

    with

    large

    conduction

    coefficients. Aswellasthematerialproperties,theverticalspacingbetweentheheatsupplyandthe

    floorsurfaceinfluencestherateofheatloss. Thecloseraheatsupplyistothefreesurface,theless

    materialbetweenthesurfacestocontainheat. Thisscenariowasnoticedinseveralslabongrade

    designsaswellasthetiledesign. Thefurthertheheatingsupplyisfromthesurfaceallowsforagreater

    massofmaterialtostoreenergyheatistransferredoffofthetopsurface. Thisscenariowaswitnessed

  • 8/21/2019 Radiant Floor With Phase Change

    17/29

  • 8/21/2019 Radiant Floor With Phase Change

    18/29

    Anysystemthatinvolvedsomesortofinsulatingmaterialnearthetopsurfaceofthecrosssectiondid

    betterbycomparisonthanothersystemswithout. Thejoistsystemswithalayerofsubflooringor

    sheathingasthetopsurfaceactedwellatretainingheatandslowingitsretreatoutofthesystemwhile

    betterretainingapreferabletemperature. ThedesignsthatincludedSSPCM,alongwithalayerof

    woodenflooringonthesurfacedidwelltofacilitatetheentrapmentofheatandtocontinuetosupply

    heateven

    when

    the

    supply

    has

    been

    deactivated.

    Discussion

    Byanalyzingthedifferentconstructiontypesundertheseparatetestspresentedabove,several

    conclusionscanbeinferredabouteachtype.

    RadiationTrough

    Theradiationdesignworkswellforconstructionpurposes. Thesystemcanbeinstalledwithoutadding

    excessiveextraweighttoanexistingsystem,allowingittobeoneofthemoreversatiledesigns. Forits

    easeof

    installation

    however

    the

    performance

    does

    not

    measure

    up.

    After

    given

    a

    full

    heating

    supply

    cycle,noneofthevariantsofthedesignmadeittotheoptimalheatingtemperature,nordiditretain

    whatheatitgained. Thevarianceoftemperatureperformancealongitssurfacewasaveragecompared

    totheothersystemsbutwithoutbeingabletoreachoptimumheatingtemperature,thevarianceof

    temperaturedidlittletoaddheattothespaceinareasonabletimeframe. Theradiationmethodisa

    wisemeansofcapturingotherwiselostheat,butasamainsourceofheatforaflooringsystem,itfalls

    shortoftheothersystemsinitsabilitytobringtheheatingsystemuptotemperaturewithinthe

    timeframeoftheothersystems.

    TileFinish

    Thejoist

    and

    tile

    finish

    designs

    best

    attribute

    is

    its

    ability

    to

    respond

    quickly

    to

    user

    input.

    The

    amount

    oftimenecessaryforthesystemtoheatupwasunmatchedaslittleasonly10minutes. Thiscomes

    withthedisadvantagesofrequiringheatmoreoftenfromtheheatsupplyanditsinabilitytodistribute

    heatevenlyoverthesurfaceofthefloorcausingseverehotspots. Ifasystemlikethisweretobe

    installed,closerpipespacingwouldberequiredduetothisdesignsinabilitytodistributeheatuniformly

    overitssurface. Thiswouldrequiremorepipingmaterialaswellasenergytosupplythepipingwith

    heatandtopumpthefluid.

    SlabonGrade

    The

    slab

    on

    grade

    was

    the

    most

    widely

    researched

    design

    in

    this

    study.

    With

    many

    different

    layouts,

    it

    becameclearwhichlayoutsperformedmostadvantageously. Slabongradedesignsaresimilartothe

    tiledesigninregardstoitsabilitytotransferheattothesurface. However,theopportunitygainedwith

    theslabongradedesignistheabilitytoplacetheheatingsupplypipesatvariouslocations,therefore

    placedtooptimizethemagnitudeofpositiveeffects. Thehotspotandthermalvariabilityissuecanbe

    resolvedbyplacingthepipingnetworklowerintheslabtogiveagreatervolumefortheheatto

    dispersethroughbeforeitreachesthesurfaceofthefloor. Reactiontimetoreachtheoptimal

  • 8/21/2019 Radiant Floor With Phase Change

    19/29

    temperaturecanbeaccountedforbylayingpipeclosertogetherhorizontallyandclosertothesurface

    vertically. Itcouldevenbedevisedthatthenetworkofpipecouldvaryandstaggerlocation,oreven

    twonetworkscouldbeinterlaidtocombinethepositiveeffects. Thiswouldhavetobeexploredin

    futureresearch. Insulationisawiseintroductiontoaslabongradedesignbecausetheheatdistribution

    ismoreuniformthelowerthepipingnetworkisplacedintheslab. Themaineffectsoftheinsulation

    areseen

    from

    the

    ability

    to

    keep

    the

    slab

    protected

    from

    the

    cooler

    effects

    of

    the

    ground,

    and

    raising

    theoveralltemperaturewhilehavinglittleeffectonthesurfacetemperaturevariance.

    Disadvantagesintroducedincludethestructuralrequirementsthedesignhasonanexistingprojectand

    itsinabilitytomaintainanoptimumsurfaceheatingtemperature. Theamountofthermalmassing

    requiredtomaintainthetargetlevelofheatingquicklyaddsuptomorethanasimpleretrofitsolution.

    Thissystemcontributesconsiderabledeadweighttoastructuraldesignandmanyhomescannot

    accommodatethissystemotherthanonthegroundfloor. Ifthesystemistobeappliedtosuspended

    levels,athinnerslabwillberequiredtomeetstructuralcapabilitiesofanexistingfloortherebylosing

    theadvantageofpositioningpipinginoptimalheightswithintheslabheight.

    Likeothersystemswithlowerconductioncoefficients,theheattransfersoutofthesystemrather

    quicklyandthereforerequiringagreaterheatsupplytochargethesystem. Thischaracteristicofslab

    ongradedesignisshownbythedecreaseoftemperatureaftertheheatingsystemhasbeenshutoff

    (Figure12).

    Woodenfinish

    Thesesystemsperformedwellinseveralregards. Althoughthesurfacetemperaturedidnotreachthe

    optimalheatingtemperatureasquicklyasothersystems,theconstructionofwoodenfinishand

    subfloorsheathingsandwichingtheencapsulatedpipelayerprovidedthermalbufferingandhelped

    regulateheat

    loss.

    The

    thermal

    buffering

    created

    a

    more

    uniform

    distribution

    of

    heat

    on

    the

    surface

    of

    thefloor. Hotspotsandsurfacedifferentiationwerereducedduringtheheatdispersionthroughthe

    woodprovidingamoreuniformsurfacetemperature. Systemswiththeseconstructionattributesalso

    showedalowerrateofheatlossafterthesystemhadbeendeactivatedofferingopportunitiesfora

    lowerrechargedemand.

    Thissystemalsoworkswellforretrofitsolutionsaswell. Theloadingontheexistingstructuralsystemis

    lessthanthatofatilefinishoptionanditretainsheatlonger,reducingenergycostsbyrequiringless

    heatingrecharge. Althoughthesystemwillrespondslowertoheatingdemands,anintegrated

    activationsystemwillbeabletochargethesystemtobringthesystemuptotemperaturebeforethe

    use

    of

    the

    space.

    PhaseChangeMaterialbufferlayer

    TheSSPCMsystemprovidedsomeofthemostinterestingresults. Itwasoneoftheslowersystemsto

    chargeduetothenatureofprovidingadequateenergytotheSSPCMtofullymeltthematerial. Someof

    thedesignsofthesystemdidnotreachthetargetheatingtemperatureshowingthatasignificantinput

  • 8/21/2019 Radiant Floor With Phase Change

    20/29

    ofheatisnecessarytobringthesystemuptotherequiredlevel. Butassoonasthelevelofheathad

    beenobtained,thebenefitsthesystemprovidesbecomeapparent.

    Auniformandstablesurfacetemperatureisprovidedbythesystemwithsmallersurfacedifferences

    thantheothersystems. Thehotspoteffectisreducedsignificantlyincontrastwiththeothersystems,in

    somecases

    by

    a

    factor

    of

    2

    during

    the

    greatest

    difference

    in

    temperature

    with

    similar

    pipe

    space

    (Figure

    8&Figure11). Aftertheheatingsystemhasbeendeactivated,theheatgainedbythelatentheat

    capacityoftheSSPCMbecomesanewsourceofheatandreleasestheenergygainedtothesurfaceof

    thefloorsystemasitcools. Thisaddstothebuffereffectbecauseeventhoughthereisafluxofenergy

    fromphasechange,thesurroundingtemperatureremainsstablewithsmalldeviation(Figure13).

    FutureRecommendations

    Woodenmaterialscancontributeapowerfulmeansofbufferingheatwithinathermalmassduringthe

    heatingprocess. Ifawoodencompositematerialcouldbemanufacturedtosandwichthermalmassing,

    orevenbethethermalmassingitselfprovideditcanallowfortheheatedpipetorunthroughit,the

    gentletransfer

    of

    heat

    through

    the

    floor

    system

    would

    be

    employed.

    Adisadvantageofwoodenmaterialsistherelativelylowthermalstoragecapacity.Acombinationof

    materialscouldovercomethisdeficiency,wherethethermalmassingmaterial(concreteormortar)

    wouldstoretheheatandthewoodwouldallowforitsslowreleaseoutofthesystem. Tilewouldnotbe

    awisefinishmaterialunlessalayerofwoodorinsulatingmaterialwastobuffertheheatreleasefrom

    thethermalmassingconcreteormortarbecausethetilewouldallowtheheattoescapetooquickly.

    ShapeStabilizedPhaseChangeMaterialswouldbeanexcellentadditiontoaradiantfloorheating

    systemforgreatlyincreasingtheamountofthermalstorageinasystemwithoutaddingexcessive

    weight.

    Placing

    a

    layer

    of

    SSPCM

    before

    the

    surface

    layer

    would

    act

    as

    a

    thermal

    buffer

    to

    allow

    heat

    transferatrelativelyconstanttemperaturegradient. TheinternaltemperaturesbelowtheSSPCMmay

    havegreaterrangethanthoseabove,buttheSSPCMwillactasthedistributionandsupplyheatforthe

    surfaceratherthanthepipingnetworkdirectly. Thisgreatlyincreasesuniformityandcomfort. A

    monitoringsystemwillbenecessarywithintheslabtoindicatewhentheheatsupplyneedstoreactive.

    Thisisduetothefactthatifthemonitoringsystemwerecompletelyexternaltothesystem,bythetime

    themonitoristrippedtoinitiateheating,theamountoftimenecessarytoreheatthesystemwillcause

    anuncomfortableenvironmentandunnecessaryenergyinefficiency. Havingmultiplestagesofsensors

    atdifferentlayersoftheslabwillprovevaluabletotheperformanceofthesystemsenergyefficiency.

    SelectingthebestSSPCMforthedesignwillinvolvefindingaSSPCMthatpossessesamelttemperature

    closeorwithintheboundsoftheoptimumheatingrange. Havingknowntheboundariesunderideal

    conditions(24C 32C),itwillbeimportanttofindthetemperatureforactualconditions.

    Materialsthattransferandstoreheatwellwillproveimportanttodevelopingadesigntosuitthermal

    needsbutstructuralpropertiesneedtobeconsideredaswell. Asthesystemheatsandexpands,itwill

    experiencenonuniformstressalongthecrosssection. Fromtheaestheticsperspective,iftheradiant

    floorheatingsystemisdirectlyexposedtothesurfaceofthespaceanditundergoescrackingdueto

  • 8/21/2019 Radiant Floor With Phase Change

    21/29

    heatexpansion,itwillhavefailed. Findingaheatrangeformaterialaestheticswillbeimportantwhen

    selectingmaterialsandhowtoincorporatethemintothedesign.

    SummaryandConclusions

    Radiantfloorheatinghasshowntobeaneffectivemeansofdeliveringheattoanenvironmentthat

    promoteshealthbenefitsandenergyefficiency. Fromthesimulations,itwasfoundthat

    1. Designsthatfeaturedsurfacematerialswithlargerheatconductioncoefficientswarmedthefloorsurfacemuchquickerthanthosesystemswithsmallercoefficients. Thiscameatapriceby

    havinglesssurfacetemperatureuniformityandquickerheatlossaftersystemdeactivation.

    2. Designsfeaturingsurfacematerialswithlowerheatconductivecoefficientsrequiredlongerlengthsoftimewiththeheatingsystemontoreachthetargetheatingrange. However,when

    theheatingsystemwasdeactivated,thesurfacetemperatureremainedstableforlonger. Heat

    varianceswereminimizedwhencontrastedtotheotherheatingdesigns.

    3. ThedesignwithSSPCMincludedwasfoundtosupportthebestreductionofsurfacetemperature

    variance

    and

    after

    the

    heating

    system

    was

    deactivated,

    the

    design

    possessed

    the

    slowestdegradationofsurfacetemperature. Althoughitdidrequiremoretimetoreachthe

    targettemperature,thesurfacetemperatureswerethemostuniformofanyofthesystems

    modeled.

    Thevalueofusingmodelingasatooltodiscoverinnovativedesignswasdemonstrated. Byrunning

    simulationsofcurrentandfutureradiantfloorheatingdesigns,crosssectionscanbeoptimizedfor

    heatinguniformityandenergystorage. Currentwoodenmaterialshaveimportantattributesthatcan

    benefitradiantfloorheatingsystems. Combiningwoodwithamaterialwithahigherheatcapacity,such

    asconcreteormortar,cansignificantlyincreasethefloorsabilitytowarmaspacebycontrollingthe

    releaseof

    the

    generated

    heat.

    ByintroducingaSSPCMintothefloordesign,theeffectsofintroducingwoodenmaterialsisaddedupon

    andtheoverallheatingstorageamplifies. Thisstudydemonstratedpossibilitiesforintroducingthermal

    storagecapacitiesintoabuiltenvironmentthatdonotnecessaryrequireheavythermalmassingwhich

    increasestheoverallstructuraldemand. Opportunitiesareavailablethatprovidethenecessarycomfort

    appeartobetechnicallyfeasible.

  • 8/21/2019 Radiant Floor With Phase Change

    22/29

    References

    S.Sattari,(2006),Aparametricstudyonradiantfloorheatingsystemperformance,RenewableEnergy,

    V.31pg.16171626

    N.A.Neeper,(2000),ThermalDynamicsofWallboardwithLatentHeatStorage,SolarEnergy,V.68

    pg.393403

    S.Y.Ho,(1995),Simulationofthedynamicbehaviorofahydronicfloorheatingsystem,HeatRecovery

    Systems&CHP,V.15,pg505519

    A.Khudhair,(2004),Areviewonenergyconservationinbuildingapplicationswiththermalstorageby

    latentheatusingphasechangematerials,EnergyConservationandManagement,V.45,pg268275

    M.Farid,(2004),Areviewonphasechangeenergystorage:materialsandapplications,Energy

    ConservationandManagement,V.45,pg15971615

    Y.P.Zhang,

    (2006),

    Preparation,

    thermal

    performance

    and

    application

    of

    shape

    stabilized

    phase

    change

    materialsinenergyefficientbuildings,EnergyandBuildings,V.38,pg12621269

    G.Song,(2005),ButtockresponsestocontactwithfinishingmaterialsovertheONDOLfloorheating

    systeminKorea,EnergyandBuildings,V.37,6575

    S.H.Cho,(1999),AnexperimentalStudyofMultipleParameterSwitchingControlforRadiantFloor

    HeatingSystems,Energy,V.24,433444

    M.ZaheerUddin,(1997),OptimalOperationofanEmbeddedPipingFloorHeatingSystemwithControl

    InputConstraints,EnergyConservationManagement,V.38,713725

    D.Song,(2008),PerformanceEvaluationofaRadiantFloorCoolingSystemIntegratedwithDehumidified

    Ventilation,AppliedThermalEngineering,V.28,12991311

    S.H.Cho,(2003),PredictiveControlofIntermittentlyOperatedRadiantFloorHeatingSystems,Energy

    ConservationandManagement,V.44,13331342

    R.D.Woodson,(1999),CompleteConstruction,RadiantFloorHeating,McGrawHillPublishing,ISBN0

    071347860

    D.B.Crawley,(2005),ContrastingtheCapabilitiesofBuildingEnergyPerformanceSimulationPrograms,

    Buildingand

    Environment,

    V.43,

    661

    673

  • 8/21/2019 Radiant Floor With Phase Change

    23/29

    AppendixA(Calculations)

    EquationA1:LatentHeatAccommodationinADINA

    HeatCapacity=

    =

    LatentHeat=

    =

    =

    HeatCapacity+LatentHeatper1degree=

    TableA1:RadiationCalculationswithuseofExcel

    This

    is

    the

    general

    equation

    for

    finding

    the

    amount

    of

    energy

    is

    emitted

    by

    a

    heated

    body.

    For

    the

    purposesofmodelingtheheatemittedintheADINAmodels,thesetableswerecreated. Itassumes

    that:

    1. Halfoftheenergyemittedinitiallygoestothewoodandhalfgoestothetrough2. Allenergyiseitherabsorbedbythematerialorreflectedbacktowardtheothersurface3. Theairdoesnotgainanyheatwithinthetrough

    Itisimportanttonotethatthetableneededtoberuntwice:oncefortheheatedpiperadiationatfull

    temperature(323K)andonceheatedpiperadiationatnormaltemperature(298K). Thesetwo

    calculationsneededtobedonesothemodelwouldaccuratelyportraytheeffectswhenthesystemwas

    shutoff.

    It

    is

    important

    to

    note

    that

    the

    material

    surrounding

    the

    trough

    would

    increase

    in

    temperature

    overtimebecauseitwasabsorbingmoreenergy,causingtheheatfluxtodiminish. Thiswasneglected

    forthesimplicityofthemodelandtoshowthateventhoughaliberalassumptionthatextraheatwas

    gained,themodelstilldidnotheathashopedtoreachtheoptimumtemperaturerange. Thesefluxes

    wereappliedusingthesametimefunctionthatrepresentedtheconvectioncoefficientsforthewater.

    3pipepertroughexample(323K):

    Emissivity

    (Cu)

    Stefan

    Boltzmann T(body)

    T

    (surroundings) Area #ofpipe Heatflux 1/2ofheat

    0.87 5.67E08 323 283 0.0628 3 41.54723354 20.77361677

    Energy

    Available Absorbtivity

    Energy

    Absorbed

    Energy

    Reflected

    Energy

    Available Absorbtivity

    Energy

    Absorbed

    Energy

    Reflected

    20.77361677 0.65 13.5028509 7.27076587 28.04438264 0.09 2.523994438 25.5203882

    25.5203882 0.65 16.58825233 8.932135871 8.932135871 0.09 0.803892228 8.128243643

    8.128243643 0.65 5.283358368 2.844885275 2.844885275 0.09 0.256039675 2.5888456

    2.5888456 0.65 1.68274964 0.90609596 0.90609596 0.09 0.081548636 0.824547324

    0.824547324 0.65 0.53595576 0.288591563 0.288591563 0.09 0.025973241 0.262618323

    0.262618323 0.65 0.17070191 0.091916413 0.091916413 0.09 0.008272477 0.083643936

  • 8/21/2019 Radiant Floor With Phase Change

    24/29

    0.083643936 0.65 0.054368558 0.029275378 0.029275378 0.09 0.002634784 0.026640594

    0.026640594 0.65 0.017316386 0.009324208 0.009324208 0.09 0.000839179 0.008485029

    0.008485029 0.65 0.005515269 0.00296976 0.00296976 0.09 0.000267278 0.002702482

    0.002702482 0.65 0.001756613 0.000945869 0.000945869 0.09 8.51282E05 0.00086074

    0.00086074 0.65 0.000559481 0.000301259 0.000301259 0.09 2.71133E05 0.000274146

    0.000274146 0.65 0.000178195 9.5951E05 9.5951E05 0.09 8.63559E06 8.73154E05

    8.73154E05 0.65 5.6755E05 3.05604E05 3.05604E05 0.09 2.75044E06 2.781E05

    2.781E05 0.65 1.80765E05 9.73349E06 9.73349E06 0.09 8.76014E07 8.85748E06

    8.85748E06 0.65 5.75736E06 3.10012E06 3.10012E06 0.09 2.7901E07 2.82111E06

    2.82111E06 0.65 1.83372E06 9.87387E07 9.87387E07 0.09 8.88648E08 8.98522E07

    8.98522E07 0.65 5.84039E07 3.14483E07 3.14483E07 0.09 2.83035E08 2.86179E07

    2.86179E07 0.65 1.86017E07 1.00163E07 1.00163E07 0.09 9.01465E09 9.11481E08

    9.11481E08 0.65 5.92463E08 3.19018E08 3.19018E08 0.09 2.87117E09 2.90307E08

    TotalEnergy/secAbsorbedbywood: TotalEnergy/secAbsorbedbytrough:

    37.84364667 3.703586848

    AreaoverHeatapplied 0.36 m^2 AreaoverHeatapplied 0.36 m^2

    HeatFluxonArea 105.1212407 HeatFluxonArea 10.28774124

    3pipepertroughexample(298K):

    Emissivity

    (Cu)

    Stefan

    Boltzmann T(body)

    T

    (surroundings) Area #ofpipe Heatflux 1/2ofheat

    0.87 5.67E08 298 283 0.0628 3 13.67997266 6.839986329

    Energy

    Available Absorbtivity

    Energy

    Absorbed

    Energy

    Reflected

    Energy

    Available Absorbtivity

    Energy

    Absorbed

    Energy

    Reflected

    6.839986329 0.65 4.445991114 2.393995215 9.233981544 0.09 0.831058339 8.402923205

    8.402923205 0.65 5.461900083 2.941023122 2.941023122 0.09 0.264692081 2.676331041

    2.676331041 0.65 1.739615177 0.936715864 0.936715864 0.09 0.084304428 0.852411437

    0.852411437

    0.65

    0.554067434

    0.298344003

    0.298344003

    0.09

    0.02685096

    0.271493043

    0.271493043 0.65 0.176470478 0.095022565 0.095022565 0.09 0.008552031 0.086470534

    0.086470534 0.65 0.056205847 0.030264687 0.030264687 0.09 0.002723822 0.027540865

    0.027540865 0.65 0.017901562 0.009639303 0.009639303 0.09 0.000867537 0.008771766

    0.008771766 0.65 0.005701648 0.003070118 0.003070118 0.09 0.000276311 0.002793807

    0.002793807 0.65 0.001815975 0.000977833 0.000977833 0.09 8.80049E05 0.000889828

    0.000889828 0.65 0.000578388 0.00031144 0.00031144 0.09 2.80296E05 0.00028341

    0.00028341 0.65 0.000184217 9.91935E05 9.91935E05 0.09 8.92742E06 9.02661E05

    9.02661E05 0.65 5.8673E05 3.15931E05 3.15931E05 0.09 2.84338E06 2.87498E05

    2.87498E05 0.65 1.86873E05 1.00624E05 1.00624E05 0.09 9.05617E07 9.1568E06

    9.1568E06 0.65 5.95192E06 3.20488E06 3.20488E06 0.09 2.88439E07 2.91644E06

    2.91644E06 0.65 1.89569E06 1.02075E06 1.02075E06 0.09 9.18679E08 9.28886E07

    9.28886E07 0.65 6.03776E07 3.2511E07 3.2511E07 0.09 2.92599E08 2.9585E07

    2.9585E07 0.65 1.92303E07 1.03548E07 1.03548E07 0.09 9.31928E09 9.42283E08

    9.42283E08

    0.65

    6.12484E

    08

    3.29799E

    08

    3.29799E

    08

    0.09

    2.96819E

    09

    3.00117E

    08

    3.00117E08 0.65 1.95076E08 1.05041E08 1.05041E08 0.09 9.45369E10 9.55873E09

    TotalEnergy/secAbsorbedbywood: TotalEnergy/secAbsorbedbytrough:

    12.46051801 1.219454642

    AreaoverHeatapplied 0.36 m^2 AreaoverHeatapplied 0.36 m^2

    HeatFluxonArea 34.61255002 HeatFluxonArea 3.387374006

  • 8/21/2019 Radiant Floor With Phase Change

    25/29

    AppendixB ReferenceSummary

    S.Sattari,(2006),Aparametricstudyonradiantfloorheatingsystemperformance,RenewableEnergy,

    V.31pg.16171626

    Anotherwayoftestingradiantfloorheatingsabilitytotransferheatisbydevelopingafiniteelement

    model. Modelingatwodimensionalradiantfloorheatingsystemistheaimofthestudy. Thisreference

    willbeofgreathelpbecauseitoutlinesveryspecificallythematerials,initialaswellasboundary

    conditions,andthenecessarymathematicalequationsthatareinvolvedinthemodelwhichwillbe

    comparedwithinthisstudy. However,thedifferencewiththismodelisthatthereisnophasechange

    materialsintroducedandthesystemisinitiatedfromstart(t=0)insteadofadiurnalanalysis,which

    fluctuatesasthedayprogresses.

    Thisstudydoesprovehelpfulbecauseitconductedmanytrialsandvariedcertainconditions,suchas

    thepipediameter,material,thicknessofthefloormaterialabovethepipingnetwork,thefloortype,and

    thefrequencyofpipesalongtheflooringsystem. Thestudyreportswhichattributescreatedthe

    greatestchange

    in

    heat

    transfer

    and

    will

    be

    helpful

    to

    eliminate

    potentially

    limiting

    designs

    and

    guide

    developingefficientmodelswithacombinationofadvantageousattributes.

    N.A.Neeper,(2000),ThermalDynamicsofWallboardwithLatentHeatStorage,SolarEnergy,V.68

    pg.393403

    Understandingthenecessaryphysicalandengineeringconstructsofheattransferisimportanttothe

    studyofradiantfloorheating. Thisstudyexploresthemathematicalmodelingofwallboardwithinfused

    phasechangematerials. Specifically,thestudyexplainsthestepsindevelopingtimelageffectsofheat

    gainand

    exchange

    with

    other

    materials

    and

    the

    room.

    By

    developing

    a

    mathematical

    modeling

    system,

    severaltrialswereconductedproducingresultsfordifferenteffects. Bycomparingthemodelswiththe

    phasechangematerialinfusedwallboardtothemodelswithout,adirectcorrelationcanbemade

    betweenthemodels,outliningthebenefitsofthermalstabilitybyinstallingthewallboard.

    S.Y.Ho,(1995),Simulationofthedynamicbehaviorofahydronicfloorheatingsystem,HeatRecovery

    Systems&CHP,V.15,pg505519

    Developingafiniteelementmodelwillbeacarefulprocedureandthisstudygoestodescribethe

    changesthat

    were

    made

    in

    the

    defining

    of

    elemental

    meshing

    in

    the

    model

    instead

    of

    varying

    the

    radiantfloorheatingsystemsnetworkforpotentialbenefits. Themodelwaschosenasatypical

    residentialconstructionscheme,boundaryconditionsaswellasinitialconditions,andmaterialselection

    arediscussed. Aswellashowthetemperaturevariesthroughthesystem.

  • 8/21/2019 Radiant Floor With Phase Change

    26/29

    A.Khudhair,(2004),Areviewonenergyconservationinbuildingapplicationswiththermalstorageby

    latentheatusingphasechangematerials,EnergyConservationandManagement,V.45,pg268275

    Applyingphasechangematerialsintotheradiantfloorheatingsystemwillrequireacompleteinquiry

    intowhatconstructionmaterialshavebeenusedalreadyandtheireffectsoftransferringandstoring

    latentheat.

    Although

    this

    study

    is

    more

    of

    a

    general

    review

    of

    the

    benefits

    of

    radiant

    floor

    heating

    and

    phasechangematerialapplications,ithasastronglistingofreferencesthathaveallcompleted

    thoroughinvestigationsofaparticularapplicationoflatentheatstoragesystems.

    M.Farid,(2004),Areviewonphasechangeenergystorage:materialsandapplications,Energy

    ConservationandManagement,V.45,pg15971615

    Thisstudyhasacompletelistingofphasechangematerialsthatcanbeusedforcommonpracticeas

    wellastablesoftechnicaldataforthesematerials. Withinthedatathedifferentcompoundsofphase

    changematerials

    are

    separated

    by

    inorganic,

    organic,

    and

    commercial

    paraffin

    wax.

    Their

    properties

    canbeevaluatedsidebysideandcompoundscanbechosenfortheirlatentheatpotentialandmelting

    pointsdependingontheapplicationofthematerials. Iffurtherresearchisconductedordiscovered,

    perhapsanenvironmentalfocusonthedifferentcompoundscouldbediscoveredanddocumented.

    Aswellasprovidingageneralintroductionofbuildingapplicationsforphasechangematerials,the

    processofimpregnatingthematerialintocommonbuildingmaterialsisalsodiscussed.

    Y.P.Zhang,(2006),Preparation,thermalperformanceandapplicationofshapestabilizedphasechange

    materialsin

    energy

    efficient

    buildings,

    Energy

    and

    Buildings,

    V.38,

    pg

    1262

    1269

    Aphysicalexperimentalroomwasconstructedforthisstudyusingstrategicallyplacedphasechange

    materialencapsulatedinplatesbeneaththeflooringsystemtoprovideacomfortableheatingscenario.

    Theyareclearintheirconstructiontype,method,andresultsfordifferentexternaltemperaturesaswell

    aswiththeabsenceandpresenceofthephasechangematerialplates. Severalotherdiscoverieswere

    madeaboutthemostefficientwaytotransferheattotheplatesandhowtoincreasetheefficiencyof

    deliveringthatheattotheneededlivingspaceoveradiurnaltimeperiod. Suchcharacteristicsinclude

    platethickness,airgappresence,flooringmaterial,andthepreferredconductivityofthephasechange

    materials.

    G.Song,(2005),ButtockresponsestocontactwithfinishingmaterialsovertheONDOLfloorheating

    systeminKorea,EnergyandBuildings,V.37,6575

    Understandingtheeffectsonthehumanbodybyradiantfloorheatingwillbeimportantbecausethe

    systemthatisderivedmustbeabletosatisfytheclientofthesysteminallaspectsofwhatitcan

  • 8/21/2019 Radiant Floor With Phase Change

    27/29

    provide. Thestudybuiltanexperimentalroomwitharadiantfloorheatingsystemandbroughtpeople

    tobesubjectstotestthefloorsabilitytowarmthem. Subjectvariedinamultitudeofcharacteristicsto

    developabroadrangeofresultsandconclusions. Bychangingtheflooringcoverandinput

    temperature,thesubjectswereaskedtorespondtotheircomfortlevel. Fromthesubjectremarkson

    thecombinationofcharacteristics,thebettercombinationswererevealed.

    S.H.Cho,(1999),AnexperimentalStudyofMultipleParameterSwitchingControlforRadiantFloor

    HeatingSystems,Energy,V.24,433444

    Comparedtoconventionalheatingsystems,radiantfloorheatingmethodshaveshowntoreliably

    deliverabetterdistributionofheatingtoaspace. Studieshavegonefurthertomakeradiantfloor

    heatingsystemsevenmoreefficient. Thisstudyworksonthesensoryequipmentthatinformsthe

    systemtoactivateandbyhowmuch. Mostsystemsrelyonthetemperaturegagewithintheroom,

    whilethisstudyaddsasensorintheslabitselftochecktheslabtemperature. Thehypothesiswasto

    discoverif

    by

    increasing

    the

    systems

    sensory

    with

    a

    switching

    algorithm

    would

    decrease

    the

    amount

    of

    energyusedtoheataspace. Thealgorithmwouldcheckforanacceptablerangeforairtemperatureas

    wellasslabtemperature. Ifanyparametersfelloutsideofthedesignatedlimits,thesystemwouldreact

    tocorrectthesituation.

    Itwasfoundthatthetwoparameterswitchingcontrolallowedforabettermanagementofenergyand

    reducedtheamountoftimeandenergythesystemneededtoregainthedesignatedparameters.

    M.ZaheerUddin,(1997),OptimalOperationofanEmbeddedPipingFloorHeatingSystemwithControl

    InputConstraints,

    Energy

    Conservation

    Management,

    V.38,

    713

    725

    UsingatraditionalONDOLradiantflooringsystemandaconventionalboilersupply,everyaspectofthe

    systemwasmathematicallymodeled. Givencertainexpectedboundaryconditionssuchasoutdoorand

    indoorairtemperature,theoptimalcharacteristicsofadesignlayoutcouldbedetermined. Such

    characteristicsincludelengthofpipe,loopsofpiping,distancefromboilertoroom,watertemperature,

    andtimeheatingwouldremainactive. Althoughthemathematicalmodelingallowedforseveral

    assumptions,themodelwasextremelythoroughandcouldbeusedtomodelanyothersystemthat

    wouldbedeveloped.

    D.Song,(2008),PerformanceEvaluationofaRadiantFloorCoolingSystemIntegratedwithDehumidified

    Ventilation,AppliedThermalEngineering,V.28,12991311

    Traditionally,radiantfloorsystemshavebeenusedtoheatoccupiedspacesbutthisstudyinvestigated

    theabilityofthesamesystemtocoolaspace. Foreseeingtheissueofcondensationduetohumidity

    uponthecooledsurfaces,adehumidifiersystemisproposedtoreducethecondensationandthe

  • 8/21/2019 Radiant Floor With Phase Change

    28/29

    damageitcouldcausetosurfacecoverings. Theexperimentsconductedcomparedthecoolingsystem

    withandwithoutthehumidificationsystem. Itwasfoundthatthedehumidificationsystemhelpedtwo

    foldbyeliminatingcondensationbyloweringthedewpointandbycirculatingtheairintheroom

    infiltratingareaswithcoolair.

    S.H.Cho,(2003),PredictiveControlofIntermittentlyOperatedRadiantFloorHeatingSystems,Energy

    ConservationandManagement,V.44,13331342

    Indeterminingbetterwaystomakeradiantfloorheatingmoreefficient,thisstudyinvestigatesthe

    timingofheatingcyclesandtofindmoreeffectivewaysofschedulingheatingcycles. Traditionally,

    whenoutdoortemperaturesreachcertainlevel,theheatingsystemisencouragedtoturnonfor

    specifiedlengthsoftimeduringstrategictimesofthedayspecifiedbypeoplesactivity. Althoughthe

    conventionalheatingcyclesareeffective,theycanbemoreefficientgiventheconditionsoftheday.

    Thestudyproposesamathematicalmodelfortimingtheheatingcycleslengthandpositionintheday

    determinedby

    the

    high

    and

    low

    temperatures

    and

    their

    occurrences

    during

    the

    day.

    By

    downloading

    theinformationfrommetrologicaldatafromyearspastandcurrentdata,theinvestigationputthe

    modeltothetestandwasabletoreduceenergyconsumptionupto20%fromtheconventionalheating

    cycles.

    R.D.Woodson,(1999),CompleteConstruction,RadiantFloorHeating,McGrawHillPublishing,ISBN0

    071347860

    Fortheeyesandmindsofthecontractor,thisbookfeaturesindepthconstructionmethodsanddetails

    thathelp

    the

    novice

    understand

    the

    working

    of

    radiant

    floor

    heating

    and

    how

    to

    construct

    it

    properly.

    Manyofthedesignsoffloorswerefoundandconfirmedfromthisliterature. Potentialhealthbenefits

    andcostsavingswerealsodiscussedandcomparedwithotherconventionalheatingsystemsused

    already. Potentialpitfallsanderrorstobeavoidedwereshownandwereabletoguidethe

    developmentofthemodels.

    D.B.Crawley,(2005),ContrastingtheCapabilitiesofBuildingEnergyPerformanceSimulationPrograms,

    BuildingandEnvironment,V.43,661673

    Thisstudy

    is

    a

    thorough

    investigation

    into

    energy

    performance

    software.

    By

    setting

    specific

    objectives

    thatadesignerofabuildingorspacewouldwanttomodel,eachsoftwarepackageisanalyzedforits

    capabilityandaccuracyonaparticulartopic. Eachsystemisgivenanoverviewandgeneralperformance

    recommendationsareincluded.

  • 8/21/2019 Radiant Floor With Phase Change

    29/29

    AppendixCModelTitleGuide

    Name

    Horizontal

    Spacingof

    Pipe

    Vertical

    Spacingof

    Pipe

    Pipesper

    trough Insulation?

    Surface

    Material SSPCM?

    100_375 100mm 37.5mm no SOG no

    100_375_i 100mm 37.5mm yes SOG no

    100_50 100mm 50mm no SOG no

    100_50_i 100mm 50mm yes SOG no

    100_75 100mm 75mm no SOG no

    100_75_i 100mm 75mm yes SOG no

    150_375 150mm 37.5mm no SOG no

    150_375_i 150mm 37.5mm yes SOG no

    150_50 150mm 50mm no SOG no

    150_50_i 150mm 50mm yes SOG no

    150_75 150mm 75mm no SOG no

    150_75_i 150mm 75mm yes SOG no

    200_375 200mm 37.5mm no SOG no

    200_375_i 200mm 37.5mm yes SOG no

    200_50 200mm 50mm no SOG no

    200_50_i 200mm 50mm yes SOG no

    200_75 200mm 75mm no SOG no

    200_75_i 200mm 75mm yes SOG no

    1_pipe_rad 1 no plywood no

    2_pipe_rad 2 no plywood no

    3_pipe_rad 3 no plywood no

    J_100

    100mm

    centroid

    no

    plywood

    no

    J_150 150mm centroid no plywood no

    J_200 200mm centroid no plywood no

    J_tile_100 100mm centroid no tile no

    J_tile_150 150mm centroid no tile no

    J_tile_200 200mm centroid no tile no

    J_SSPCM_100 100mm centroid no plywood yes

    J_SSPCM_150 150mm centroid no plywood yes

    J_SSPCM_200 200mm centroid no plywood yes