4
Rabi cycle From Wikipedia, the free encyclopedia A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of twolevel quantum mechanical systems. In this case, one of the effects is represented by the oscillations between the two energy levels, as for example, electron neutrino ν e − muon neutrino ν μ flavour neutrino oscillations. In physics, the Rabi cycle is the cyclic behaviour of a twostate quantum system in the presence of an oscillatory driving field. A twostate system has two possible states, and if they are not degenerate (i.e. equal energy), the system can become "excited" when it absorbs a quantum of energy. The effect is important in quantum optics, nuclear magnetic resonance and quantum computing. The term is named in honour of Isidor Isaac Rabi. When an atom (or some other twolevel system) is illuminated by a coherent beam of photons, it will cyclically absorb photons and reemit them by stimulated emission. One such cycle is called a Rabi cycle and the inverse of its duration the Rabi frequency of the photon beam. This mechanism is fundamental to quantum optics. It can be modeled using the JaynesCummings model and the Bloch vector formalism. For example, for a twostate atom (an atom in which an electron can either be in the excited or ground state) in an electromagnetic field with frequency tuned to the excitation energy, the probability of finding the atom in the excited state is found from the Bloch equations to be: , where is the Rabi frequency. More generally, one can consider a system where the two levels under consideration are not energy eigenstates. Therefore if the system is initialized in one of these levels, time evolution will make the population of each of the levels oscillate with some characteristic frequency, whose angular frequency [1] is also known as the Rabi frequency. The state of a twostate quantum system can be represented as vectors of a twodimensional complex Hilbert space, which means every state vector is represented by two complex coordinates. where and are the coordinates. [2] If the vectors are normalized, and are related by . The basis vectors will be represented as and All observable physical quantities associated with this systems are 2 2 Hermitian matrices, which means the Hamiltonian of the system is also a similar matrix. Contents 1 How to prepare an oscillation experiment in a quantum system 2 Derivation of Rabi Formula in an Nonperturbative Procedure by means of the Pauli matrices 3 Rabi oscillation in Quantum computing 4 Rabi oscillation in Ammonia maser 5 See also 6 References 7 External links How to prepare an oscillation experiment in a quantum system One can construct an oscillation experiment consisting of following steps: [3] (1)Prepare the system in a fixed state say (2)Let the state evolve freely, under a Hamiltonian H for time t (3)Find the probability P(t), that the state is in If was an eigenstate of H, P(t)=1 and there are no oscillations. Also if two states are degenerate, every state including is an eigenstate of H. As a result there are no oscillations. So if H has no degenerate eigenstates, neither of which is , then there will be oscillations. These probabilities of oscillations are given by Rabi Formula. Oscillations between two levels are called Rabi oscillation. The most general form of the Hamiltonian of a twostate system is given here, and are real numbers. This matrix can be decomposed as, The matrix is the 2 2 identity matrix and the matrices are the Pauli matrices. This decomposition simplifies the analysis of the system especially in the timeindependent case where the values of and are constants. Consider the case of a spin1/2 particle in a magnetic field . The interaction Hamiltonian for this system is .Where

Rabi cycle - Wikipedia, the free encyclopedia.pdf

Embed Size (px)

DESCRIPTION

quantum

Citation preview

  • 07/05/2015 RabicycleWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Rabi_cycle 1/4

    RabicycleFromWikipedia,thefreeencyclopedia

    Agreatvarietyofphysicalprocessesbelongingtotheareasofquantumcomputing,condensedmatter,atomicandmolecularphysics,andnuclearandparticlephysicscanbeconvenientlystudiedintermsoftwolevelquantummechanicalsystems.Inthiscase,oneoftheeffectsisrepresentedbytheoscillationsbetweenthetwoenergylevels,asforexample,electronneutrinoemuonneutrinoflavourneutrinooscillations.Inphysics,theRabicycleisthecyclicbehaviourofatwostatequantumsysteminthepresenceofanoscillatorydrivingfield.Atwostatesystemhastwopossiblestates,andiftheyarenotdegenerate(i.e.equalenergy),thesystemcanbecome"excited"whenitabsorbsaquantumofenergy.

    Theeffectisimportantinquantumoptics,nuclearmagneticresonanceandquantumcomputing.ThetermisnamedinhonourofIsidorIsaacRabi.

    Whenanatom(orsomeothertwolevelsystem)isilluminatedbyacoherentbeamofphotons,itwillcyclicallyabsorbphotonsandreemitthembystimulatedemission.OnesuchcycleiscalledaRabicycleandtheinverseofitsdurationtheRabifrequencyofthephotonbeam.

    Thismechanismisfundamentaltoquantumoptics.ItcanbemodeledusingtheJaynesCummingsmodelandtheBlochvectorformalism.

    Forexample,foratwostateatom(anatominwhichanelectroncaneitherbeintheexcitedorgroundstate)inanelectromagneticfieldwithfrequencytunedtotheexcitationenergy,theprobabilityoffindingtheatomintheexcitedstateisfoundfromtheBlochequationstobe:

    ,

    where istheRabifrequency.

    Moregenerally,onecanconsiderasystemwherethetwolevelsunderconsiderationarenotenergyeigenstates.Thereforeifthesystemisinitializedinoneoftheselevels,timeevolutionwillmakethepopulationofeachofthelevelsoscillatewithsomecharacteristicfrequency,whoseangularfrequency[1]isalsoknownastheRabifrequency.ThestateofatwostatequantumsystemcanberepresentedasvectorsofatwodimensionalcomplexHilbertspace,whichmeanseverystatevector isrepresentedbytwocomplexcoordinates.

    where and arethecoordinates.[2]

    Ifthevectorsarenormalized, and arerelatedby .Thebasisvectorswillberepresentedas and

    Allobservablephysicalquantitiesassociatedwiththissystemsare2 2Hermitianmatrices,whichmeanstheHamiltonianofthesystemisalsoasimilarmatrix.

    Contents

    1Howtoprepareanoscillationexperimentinaquantumsystem2DerivationofRabiFormulainanNonperturbativeProcedurebymeansofthePaulimatrices3RabioscillationinQuantumcomputing4RabioscillationinAmmoniamaser5Seealso6References7Externallinks

    Howtoprepareanoscillationexperimentinaquantumsystem

    Onecanconstructanoscillationexperimentconsistingoffollowingsteps:[3]

    (1)Preparethesysteminafixedstatesay

    (2)Letthestateevolvefreely,underaHamiltonianHfortimet

    (3)FindtheprobabilityP(t),thatthestateisin

    If wasaneigenstateofH,P(t)=1andtherearenooscillations.Alsoiftwostatesaredegenerate,everystateincluding isaneigenstateofH.Asaresulttherearenooscillations.SoifHhasnodegenerateeigenstates,neitherofwhichis ,thentherewillbeoscillations.TheseprobabilitiesofoscillationsaregivenbyRabiFormula.OscillationsbetweentwolevelsarecalledRabioscillation.ThemostgeneralformoftheHamiltonianofatwostatesystemisgiven

    here, and arerealnumbers.Thismatrixcanbedecomposedas,

    Thematrix isthe2 2identitymatrixandthematrices arethePaulimatrices.Thisdecompositionsimplifiestheanalysisofthesystemespeciallyinthetimeindependentcasewherethevaluesof and areconstants.Considerthecaseofaspin1/2particleinamagneticfield .TheinteractionHamiltonianforthissystemis

    .Where

  • 07/05/2015 RabicycleWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Rabi_cycle 2/4

    where isthemagnitudeoftheparticle'smagneticmoment, isGyromagneticratioand isthevectorofPaulimatrices.HereeigenstatesofHamiltonianareeigenstatesof thatis and .Theprobabilitythatasysteminthestate willbefoundtobeinthearbitrarystate isgivenby .Letsystem

    initially isinstate thatiseigenstateof , .Thatis .HereHamiltonianistimeindependent.

    SobysolvingtimeindependentSchrdingerequation,wegetstateaftertimetisgivenby ,whereEisthetotalenergyofsystem.Sothestate

    aftertimetisgivenby .Nowsupposespinismeasuredinthexdirectionattimet,theprobabilityoffindingspinupis

    givenby where isacharacteristicangularfrequencygivenby

    whereithasbeenassumedthat .[4]SointhiscaseprobabilityoffindingspinupstateinXdirectionisoscillatoryintimetwhen

    systemisinitiallyinZdirection.SimilarlyifwemeasurespininZdirectionthenprobabilityoffinding ofthesystemis .Inthecase ,thatiswhenthe

    Hamiltonianisdegeneratethereisnooscillation.SowecanconcludethatiftheeigenstateofanabovegivenHamiltonianrepresentsthestateofasystem,thenprobabilityofthesystembeingthatstateisnotoscillatory,butifwefindprobabilityoffindingthesysteminotherstate,itisoscillatory.Thisistrueforeventime

    dependentHamiltonian.Forexample ,theprobabilitythatameasurementofsysteminYdirectionattimetresultsin is

    ,whereinitialstateisin .[5]

    ExampleofRabiOscillationbetweentwostatesinionizedhydrogenmolecule.Ionizedhydrogenmoleculeiscomposedoftwoproton and andoneelectron.Thetwoprotonsbecauseoftheirlargemassescanbeconsideredtobefixed.LetuscallRbethedistancebetweenthemand and thestateswheretheelectronislocalisedaround or

    .Assume,atacertaintime,theelectronislocalisedaboutproton .AccordingtotheresultsofprevioussectionweknowitwilloscillatebetweenthetwoprotonswithafrequencyequaltotheBohrfrequencyassociatedwithtwostationarystate and ofmolecule.

    Thisoscillationoftheelectronbetweenthetwostatescorrespondstoanoscillationofthemeanvalueoftheelectricdipolemomentofthemolecule.Thuswhenthemoleculeisnotinastationarystate,anoscillatingelectricdipolemomentcanappear.Suchanoscillatingdipolemomentcanexchangeenergywithanelectromagneticwaveofsamefrequency.Consequently,thisfrequencymustappearintheabsorptionandemissionspectrumofIonizedhydrogenmolecule.

    DerivationofRabiFormulainanNonperturbativeProcedurebymeansofthePaulimatrices

    LetusconsideraHamiltonianintheform .

    Theeigenvaluesofthismatrixaregivenby and

    .Where and .sowecantake

    .

    Noweigenvectorfor canbefoundfromequation: .

    So .

    Usingnormalisationconditionofeigenvector,

    .So .

    Let and .so .

    Soweget .Thatis .Takingarbitraryphaseangle ,wecanwrite .Similarly

    .

    Soeigenvectorfor eigenvalueisgivenby .

    Asoverallphaseisimmaterialsowecanwrite .

    Similarlywecanfindeigenvectorfor valueandweget .

    Fromthesetwoequations,wecanwrite and .

  • 07/05/2015 RabicycleWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Rabi_cycle 3/4

    Letattimet=0,systembein ThatIs .

    Stateofsystemaftertimetisgivenby .

    Nowasystemisinoneoftheeigenstates or ,itwillremainthesamestate,howeverinageneralstateasshownabovethetimeevolutionisnontrivial.

    Theprobabilityamplitudeoffindingthesystemattimetinthestate isgivenby .

    Nowtheprobabilitythatasysteminthestate willbefoundtobeinthearbitrarystate isgivenby

    Bysimplifying .........(1).

    Thisshowsthatthereisafiniteprobabilityoffindingthesysteminstate whenthesystemisoriginallyinthestate .Theprobabilityisoscillatorywithangular

    frequency ,whichissimplyuniqueBohrfrequencyofthesystemandalsocalledRabifrequency.Theformula(1)isknownas

    Rabiformula.Nowaftertimettheprobabilitythatthesysteminstate isgivenby ,whichisalso

    oscillatory.ThistypeofoscillationsbetweentwolevelsarecalledRabioscillationandseeninmanyproblemssuchasNeutrinooscillation,ionizedHydrogenmolecule,Quantumcomputing,Ammoniamaseretc.

    RabioscillationinQuantumcomputing

    Anytwostatesystemiscalledqubit.LetaSpinhalfsystembeplacedinaclassicalmagneticfieldwithperiodiccomponentsuchas.TheHamiltonianofsystem(proton)ofmagneticmoment infield isgiven

    ,where andb , isgyromagneticratioofproton.Onecanfind

    eigenvalueandeigenvectoroftheHamiltonianbyabovementionedprocedure.Letattimet=0thequbitisinthestate ,attimetitwillhaveaprobability

    ofbeingfoundinstate givenby where .ThisisthephenomenonofRabioscillation.Theoscilltion

    betweenthelevels and hasmaximumamplitudefor thatisatresonance.So .Togofromstate tostate itissufficientto

    adjustthetimetduringwhichtherotatingfieldactssuchas or .Thisiscalleda pulse.Ifatimeintermediatebetween0and ischosen,we

    obtainasuperpositionof and .Inparticular ,wehavea pulse: .Thisoperationhascrucialimportanceinquantumcomputing.

    Theequationsareessentiallyidenticalinthecaseofatwolevelatominthefieldofalaserwhenthegenerallywellsatisfiedrotatingwaveapproximationismade.Thenistheenergydifferencebetweenthetwoatomiclevels, isthefrequencyoflaserwaveandRabifrequency isproportionaltotheproductofthetransition

    electricdipolemomentofatom andelectricfield ofthelaserwavethatis .Insummary,Rabioscillationsarethebasicprocessusedtomanipulate

    qubits.Theseoscillationsareobtainedbyexposingqubitstoperiodicelectricormagneticfieldsduringsuitablyadjustedtimeintervals.[6]

    RabioscillationinAmmoniamaser

    Inmolecularphysics,awellknownexampleofatwostatesystemisanitrogenatominthedoublewellpotentialofanammoniamolecule.ThetunnelsplittingoftheammoniaNH3moleculefindsapplicationintheammoniaMASER,anacronymforMicrowaveAmplificationofStimulatedEmissionofRadiation,similarlyasLASERisanacronymforLightAmplification.WhilemagneticinteractionsoftheNH3moleculesarenegligible,themoleculesdipolemomentsareverysensitivetoexternalelectricfields.Aprominentcauseforthesplittingofenergylevelsisthetunneleffect.AsanexampleweregardtheammoniamoleculeNH3.Ifwesqueezethenitrogenatomalongthezaxisthroughtheequilateraltriangleformedbythehydrogenatoms,thentheNatomseesadoublewellpotentialV(z).TheNatomcanbeoneithersideoftheplaneoftheHatoms.HencetheNH3moleculeformsatwostatesystemwithtwobasisstatesorspatialeigenstates and withthenitrogenatomononesideortheotheroftheplaneofhydrogenatoms,anditsenergygroundandfirstexcitedstates and arethesymmetricandantisymmetricquantumsuperpositionsofthespatialeigenstates(ignoringrotationalandvibrationalstates).ThesystemcanchangefromLtoRandbackbecausethereisacertainprobabilityamplitudeAthatthenitrogenatomtunnelsthroughthecentralpotentialbarriertotheotherwell.Theammoniamaserisbaseduponthetransitionbetweentheenergyeigenstates,whichmayalsobedescribedastheRabioscillationbetweenthespatialeigenstates.However,theinversiontransitionisseenonlyatlowgaspressure.Asthegaspressureisincreased,thetransitionbroadens,shiftstolowerfrequencyandthenquenches(thefrequencygoestozero).Theammoniamoleculeappearstoundergospatiallocalisationasaresultofinteractionwiththeenvironment.Thiswouldbeofimmensetheoreticalinterest.Inchemistryandintheclassicalworldgenerally,enantiomorphicmoleculeswithdistinguishablespatialeigenstates and arealwaysfoundintheirspatialeigenstates(classicalbehaviour)ratherthantheirenergygroundstates(quantumbehaviour).Whilstammoniaisnotenantiomorphic,itdoesappeartoshowbothbehaviours,quantumatlowpressureandclassicalathighpressure,ifthequenchingisconsideredtobeadirectobservationoflocalisationorcollapseofthewavefunctionintoaspatialeigenstate.Withinthecontextofthedecoherenceprogramme,ithasbeentreatedquantitativelyinthatway.Thebroadening,shiftandquenchingoftheRabioscillationaresimplyconsequencesofimpactsandmaybedescribedwithintheframeworkofanoscillatorsubjecttowhitenoisefromtheenvironment.Thereisnoevidenceforlocalisationontospatialeigenstates.[7]

    SeealsoAtomiccoherenceBlochsphereLaserpumpingOpticalpumpingRabiproblemVacuumRabioscillationNeutralparticleoscillation

    References

  • 07/05/2015 RabicycleWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Rabi_cycle 4/4

    1. EncyclopediaofLaserPhysicsandTechnologyRabioscillations,Rabifrequency,stimulatedemission(http://www.rpphotonics.com/rabi_oscillations.html)2. Griffiths,David(2005).IntroductiontoQuantumMechanics(2nded.).p.353.3. SourenduGupta(27August2013)."Thephysicsof2statesystems"(http://theory.tifr.res.in/~sgupta/courses/qm2013/hand5.pdf)(PDF).TataInstituteofFundamentalResearch.4. Griffiths,David(2012).IntroductiontoQuantumMechanics(2nded.)p.191.5. Griffiths,David(2012).IntroductiontoQuantumMechanics(2nded.)p.196ISBN97881775823076. AShortIntroductiontoQuantumInformationandQuantumComputationbyMichelLeBellac,ISBN97805218605677. "au:Herbauts_Iin:quantphSciRateSearch"(https://scirate.com/search?q=au:Herbauts_I+in:quantph).SciRate.

    QuantumMechanicsVolume1byC.CohenTannoudji,BernardDiu,FrankLaloe,ISBN9780471164333AShortIntroductiontoQuantumInformationandQuantumComputationbyMichelLeBellac,ISBN9780521860567TheFeynmanLecturesonPhysicsVol3byRichardP.Feynman&R.B.Leighton,ISBN9788185015842ModernApproachToQuantumMechanicsbyJohnSTownsend,ISBN9788130913148

    Externallinks

    AJavaappletthatvisualizesRabiCyclesoftwostatesystems(laserdriven)(http://www.itp.tuberlin.de/menue/lehre/owl/quantenmechanik/zweiniveau/parameter/en/)extendedversionoftheapplet.Includeselectronphononinteraction(http://www.itp.tuberlin.de/menue/lehre/owl/quantenmechanik/elektronphononwechselwirkung/parameter/en/)

    Retrievedfrom"http://en.wikipedia.org/w/index.php?title=Rabi_cycle&oldid=657244005"

    Categories: Quantumoptics Atomicphysics

    Thispagewaslastmodifiedon19April2015,at22:20.TextisavailableundertheCreativeCommonsAttributionShareAlikeLicenseadditionaltermsmayapply.Byusingthissite,youagreetotheTermsofUseandPrivacyPolicy.WikipediaisaregisteredtrademarkoftheWikimediaFoundation,Inc.,anonprofitorganization.