R9ii_Illicit Drugs and the Environment _ a Review

  • Upload
    dmar5

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    1/15

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228060903

    Illicit drugs and the environment - A review

     ARTICLE  in  SCIENCE OF THE TOTAL ENVIRONMENT · JUNE 2012

    Impact Factor: 4.1 · DOI: 10.1016/j.scitotenv.2012.05.086 · Source: PubMed

    CITATIONS

    55

    READS

    56

    4 AUTHORS:

    Raktim Pal

    Tocklai Tea Research Institute, Tea Researc…

    45 PUBLICATIONS  585 CITATIONS 

    SEE PROFILE

    Megharaj Mallavarapu

    University of Newcastle

    333 PUBLICATIONS  4,706 CITATIONS 

    SEE PROFILE

    Paul Kirkbride

    Flinders University

    111 PUBLICATIONS  1,057 CITATIONS 

    SEE PROFILE

    Ravi Naidu

    University of South Australia

    622 PUBLICATIONS  11,998 CITATIONS 

    SEE PROFILE

    Available from: Raktim Pal

    Retrieved on: 11 March 2016

    https://www.researchgate.net/profile/Paul_Kirkbride2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_4https://www.researchgate.net/profile/Ravi_Naidu2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_4https://www.researchgate.net/profile/Raktim_Pal?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_7https://www.researchgate.net/institution/University_of_Newcastle?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_6https://www.researchgate.net/?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_1https://www.researchgate.net/profile/Ravi_Naidu2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_7https://www.researchgate.net/institution/University_of_South_Australia2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_6https://www.researchgate.net/profile/Ravi_Naidu2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_5https://www.researchgate.net/profile/Ravi_Naidu2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_4https://www.researchgate.net/profile/Paul_Kirkbride2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_7https://www.researchgate.net/institution/Flinders_University?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_6https://www.researchgate.net/profile/Paul_Kirkbride2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_5https://www.researchgate.net/profile/Paul_Kirkbride2?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_4https://www.researchgate.net/profile/Megharaj_Mallavarapu?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_7https://www.researchgate.net/institution/University_of_Newcastle?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_6https://www.researchgate.net/profile/Megharaj_Mallavarapu?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_5https://www.researchgate.net/profile/Megharaj_Mallavarapu?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_4https://www.researchgate.net/profile/Raktim_Pal?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_7https://www.researchgate.net/profile/Raktim_Pal?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_5https://www.researchgate.net/profile/Raktim_Pal?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_1https://www.researchgate.net/publication/228060903_Illicit_drugs_and_the_environment_-_A_review?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_3https://www.researchgate.net/publication/228060903_Illicit_drugs_and_the_environment_-_A_review?enrichId=rgreq-92f4b53d-5c23-4b30-9fdc-ab341bf0ddd9&enrichSource=Y292ZXJQYWdlOzIyODA2MDkwMztBUzoyNjk1MjI0OTgyMjQxMjhAMTQ0MTI3MDU3OTY2MQ%3D%3D&el=1_x_2

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    2/15

    Review

    Illicit drugs and the environment  — A review

    Raktim Pal   a,b, Mallavarapu Megharaj  a,b,⁎, K. Paul Kirkbride   c, Ravi Naidu   a,b,⁎a Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australiab CRC for Contamination Assessment and Remediation of the Environment, University of South Australia, Australiac  Australian Federal Police Forensic and Data Centres, Canberra, Australia

    a b s t r a c ta r t i c l e i n f o

     Article history:

    Received 15 March 2012

    Received in revised form 28 May 2012Accepted 28 May 2012

    Available online 21 June 2012

    Guest Editors: Ravi naidu, Ming Wong

    Keywords:

    Illicit drug

    Emerging contaminant

    Wastewater

    Surface water

    Groundwater

    Ecotoxicity

    Illicit drugs and their metabolites are the latest group of emerging pollutants. Determination of their concen-tration in environment (such as water bodies, soil, sediment, air) is an indirect tool to estimate the commu-

    nity level consumption of illicit drug and to evaluate potential ecotoxicological impacts from chronic lowlevel exposure. They enter the wastewater network as unaltered drugs and/or their active metabolites byhuman excretion after illegal consumption or by accidental or deliberate disposal from clandestine drug lab-

    oratories. This article critically reviews the occurrence and concentration levels of illicit drugs and their me-tabolites in different environmental compartments (e.g., wastewater, surface waters, groundwater, drinking

    water, and ambient air) and their potential impact on the ecosystem. There is limited published informationavailable on the presence of illicit drugs in the environment, reports are available mainly from European

    countries, UK, USA, and Canada but there is a lack of information from the remainder of the world. Althoughthe environmental concentrations are not very high, they can potentially impact the human health and eco-

    system functioning. Cocaine, morphine, amphetamine, and MDMA have potent pharmacological activitiesand their presence as complex mixtures in water may cause adverse effect on aquatic organisms and

    human health. However, there is no current regulation demanding the determination of occurrence of these emerging pollutants in treated wastewater, surface water, drinking water, or atmosphere. Thus, criticalinvestigation on distribution pattern of this new group of emerging contaminant and their potential harmful

    impact on our environment needs immediate attention.

    © 2012 Published by Elsevier B.V.

    Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10792. The potential for distribution of il licit drugs and metabolites in water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10803. Illicit drugs in environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081

    3.1. Wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081

    3.2. Surface water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10843.3. Groundwater and drinking water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10843.4. Sewage sludge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084

    3.5. Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10844. Ecotoxicity of illicit drugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087

    5. Methodology used to analyse illicit drugs in environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10886. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090

    Science of the Total Environment 463–464 (2013) 1079–1092

    ⁎   Corresponding authors at: Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia.

    Tel.: +61 8 83025041; fax: +61 883023057.

    E-mail addresses: [email protected] (M. Megharaj), [email protected] (R. Naidu).

    1080

    0048-9697/$ –  see front matter © 2012 Published by Elsevier B.V.

    doi:10.1016/j.scitotenv.2012.05.086

    Contents lists available at ScienceDirect

    Science of the Total Environment

     j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / s c i t o t e n v

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://dx.doi.org/10.1016/j.scitotenv.2012.05.086http://dx.doi.org/10.1016/j.scitotenv.2012.05.086http://dx.doi.org/10.1016/j.scitotenv.2012.05.086http://dx.doi.org/10.1016/j.scitotenv.2012.05.086http://dx.doi.org/10.1016/j.scitotenv.2012.05.086mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.scitotenv.2012.05.086http://www.sciencedirect.com/science/journal/00489697http://www.sciencedirect.com/science/journal/00489697http://dx.doi.org/10.1016/j.scitotenv.2012.05.086mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.scitotenv.2012.05.086http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    3/15

    1. Introduction

    Drug abuse is a global problem with signicant direct or indirectadverse impacts on human health and social welfare (Grif ths et al.,

    2008; Sloan, 2008; Rieckermann and Christakos, 2008; EMCDDA,2007). Illicit drugs are those for which nonmedical use is prohibitedby the national or international laws (Hall et al., 2008). Illicit drugs

    fall into the categories of opioids, cocaine, cannabis, amphetamine-

    type substances (ATSs), and ecstasy-group substances (Hall et al.,2008; UNODC, 2007). ATSs (largely amphetamine and methamphet-amine) and ecstasy (3,4-methylenedioxymethamphetamine (MDMA))

    currently demand the most attention by law enforcement agencies(Grif ths et al., 2008; EMCDDA, 2007; Logan, 2001). Globally, ATSs andecstasy are the second most commonly consumed illicit drugs after can-nabis, and they are attractive to clandestine laboratory operators due tothe easy availability of the precursor chemicals and their ease of 

    manufacturing (EMCDDA, 2008; UNODC, 2008a). Although some nota-ble exceptions have occurred in some critical areas, the global marketsfor almost every kind of illicit drug showed signs of overall stabilizationin 2005–2006, in terms of cultivation, production or consumption

    (UNODC, 2008b, 2007). However, the use of ATSs continued to exceedthat of heroin and cocaine combined (UNODC, 2008a), and millions of individuals are reported to be current users of ATS drugs. In fact,human use of these psychoactive substances is virtually universal(Grif ths et al., 2008).

    The methods of administration of illicit drugs are generally oral,intranasal (“snorting”  powder), by needle injection, or by inhalingsmoke (EMCDDA, 2008; NIDA, 2008). Our environment is the ulti-mate destination for all these compounds following their metabolism

    in the human body and/or accidental or deliberate disposal of illicitdrugs and associated compounds. In common with legal pharmaceu-ticals, a large proportion of the administered drug may be excreted asthe parent compound and/or metabolites, through human urine and

    faeces, and discharged directly into the sewage system (Castiglioniet al., 2007; Al-Rifai et al., 2007; Roberts and Thomas, 2006; Zuccatoet al., 2005; Daughton, 2001). Additionally, clandestine chemicals(e.g., drugs, their precursors, by-products, etc.) are also illegally bur-

    ied in soil, disposed of into sinks and toilets to   nd their way intosewerage systems and public wastewater treatment facilities, ordumped in public solid waste facilities ( Janusz et al., 2003; Scott et

    al., 2003). These chemicals undergo diverse processes after their re-lease into the environment, such as sorption, degradation, leaching,and transport in surface runoff, and interactions with soils, sediments,groundwater, surface water, with potential implications for humans

    and wildlife. Some of the illicit drugs are comparatively more polarthan the pollutants of historic concern and not readily sorbed tosub-soils, or other materials low in organic matter, and may enterthe surface or ground waters ( Jones-Lepp et al., 2004). Cannabinoids

    are highly hydrophobic and are found bound to sewage sludge solids(Díaz-Cruz et al., 2009). We reported the degradation pattern of cer-tain parent drugs, precursor, and manufacturing by-products in soil

    and their impact on soil microbiological properties (Pal et al., 2011,2012; Janusz et al., 2003; Scott et al., 2003). Methamphetamine wasfound to be relatively persistent with half-life values in soil up to502 days (Pal et al., 2011).

    The term  ‘emerging pollutants’ has been dened as substances that

    are not presently known to cause impairments in water systems buthave characteristics such as the ability to bioaccumulate, persistencein the environment, and toxicity that suggest that they could impactthe integrity of water (Boles and Wells, 2010). Illicit drugs (both plant

    derivedand synthetic drugs) are the latest group of emergingpollutantsidentied in the aquatic environment demanding attention (Boleda etal., 2009; Kasprzyk-Hordern et al., 2010). These compounds may havepotent pharmacological and biological activities and their presence in

    surface waters even at low concentrations, together with the residues

    of many therapeutic pharmaceuticals and other organic compounds,

    may lead to unexpected pharmacological interactions causing toxic ef-fects to aquatic organisms. In addition, they may cause a wide varietyof environmental and health problems (Zuccato et al., 2008;Castiglioniet al., 2007; Al-Rifaiet al., 2007; Pomati et al., 2006). Analysis

    of illicit drugs in wastewater and surface water by means of mass spec-trometry and the occurrence of these compounds in environmental wa-ters have been reviewed by Castiglioni et al. (2008) and Postigo et al.(2008a), respectively. However, the current state of knowledge on the

    concentrations, frequency, and geographic distribution patterns of illicitdrugs in the environment (especially water bodies and ambient air) asreported from various parts of the world has not yet been encapsulatedin a review article.

    Water bodies can be considered to be the most susceptible environ-mental matrices for contamination by illicit drugs and associated com-pounds, just as they are for legal pharmaceuticals and personal careproducts (PPCPs) after their ingestion and excretion, external applica-tion, or disposal (Daughton, 2001). Illicit drugs have also the potential

    to escape to the atmosphere, but their determination has not attractedattention. Illicit drugs are suspected to promote long term ill healtheffects even when present at low concentrations in the ambient air(Cecinato et al., 2010). Information on the worldwide prevalence of 

    illicit drugs is a prerequisite to identify and foster timely plans onsafe and appropriate control measures to prevent their spread inthe environment and to protect human and ecological health. Theaim of this review is to develop a critical overview of the occurrence

    and concentrations of the different groups of illicit drugs in aquaticsystems (waste and surface waters) and ambient air worldwideand their potential ecotoxicological impact on the environment.

    2. The potential for distribution of illicit drugs and metabolites in

     water 

    Illicit drugs and their metabolites are continuously discharged intowastewaters due to human excretion after legal or illegal consumptionor occasional direct disposal of clandestine laboratory wastes into sew-

    age systems (González-Mariño et al., 2012; Boles and Wells, 2010).After their consumption,drugs are excreted unaltered and/or as metab-

    olites in urine, faeces, saliva, and sweat and the process of excretionoc-curs consistently even when illicit drugs are administered via different

    methods   —   injecting, smoking, snorting, swallowing and so forth(Verster, 2010; Vazquez-Roig et al., 2010; Prichard et al., in press ). Theproportion of consumed drugs excreted unaltered and as their metabo-lites in urine and faeces can be summarized as follows: cocaine

    (unaltered (1–9%); benzoylecgonine (35–54%); ecgonine methyl ester(32–49%)); amphetamine (unaltered 30–40%), methamphetamine(unaltered 43–62%); MDMA (unaltered 65%); heroin (excreted as mor-phine 42.5%); and THC (unaltered 65–90% through faeces and 10–25%

    through urine) (van Nuijs et al., 2011a; Boles and Wells, 2010;Gheorghe et al., 2008; Bischoff, 2007).   Chiaia et al. (2008)  and  vanNuijs et al. (2009a,b) reported that in urine, a large proportion (80%)of cocaine can be accounted for in the form of benzoylecgonine and

    ecgonine methyl ester with both excreted at higher concentrationthan cocaine. Amphetamine group compounds are primarily excretedas the intact drug (Boles and Wells, 2010) but the excretion rate canchange with the pH of urine of that particular user, route of intake,

    and dose (van Nuijs et al., 2011a). Although amphetamine and meth-amphetamine are excreted mostly as unaltered drugs, metabolites of these drugs are also excreted and several additional metabolites mayform during sewage treatment processes (Boles and Wells, 2010).

    The residues of illicit drugs found in consumers' urine that enterthe sewage network with wastewater are only partially removed bySTPs (Zuccato and Castiglioni, 2009). In urine drugs are generallydetected in the ppm range, but in wastewater and surface waters

    their concentration is much lower   —  at ppb levels (Verster, 2010).The decrease in concentration of illicit drugs and their metabolites

    in sewage ef uents and surface waters depend on the technologies

    1080   R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    4/15

    used in various wastewater or sewage treatment plant processes(WWTP/STP), concentrations of drugs, and the nature of the particu-lar compound. For instance, the removal ef ciency of amphetamineand methamphetamine strongly depended on the wastewater treat-

    ment technology followed at two treatment plants in Cilfynydd andCoslech, as reported by   Boles and Wells (2010). The WWTP atCilfynydd used trickling   lter beds resulting in 70% removal of the

    drugs, while the WWTP at Coslech recorded greater removal ef cien-

    cy (more than 85%) which may be due to the activated sludge treat-ment.  Kasprzyk-Hordern et al. (2009)  also reported that activatedsludge treatment removed 100% of amphetamine, cocaine, and

    benzoylecgonine, while trickling  lter beds showed 95% removal of amphetamine, only 25% removal of cocaine, and no removal of benzoylecgonine. The removal ef ciency of wastewater treatmenttechnologies also depends on the concentration load and molecularnature of the drugs and their metabolites as reported by different re-

    search group, such as: cocaine (72–100%), benzoylecgonine (83–100%),norbenzoylecgonine (65%), amphetamine (52–99%), methamphetamine(44–99%), MDMA (44–57%), MDA (60%), morphine (72–98%), metha-done (9–22%), EDDP (8–27%) and THC-COOH (11–99%) (Zuccato and

    Castiglioni, 2009; Bijlsma et al., 2009; Loganathan et al., 2009; Huerta-Fontela et al., 2008a). In general,  Postigo et al. (2010)   reported thatthe removal ef ciency increased in the order of amphetamine likecompoundsbcannabinoidsbopioidsbcocainics. Thus, the potential forentering the receiving waters depends largely on the removal technolo-

    gies followed in the WWTP and the molecular nature of drugs and theirmetabolites.

    3. Illicit drugs in environment

     3.1. Wastewater 

    The prevalence of illicit drug compounds (parent drugs and theirmetabolites) in aquatic environments is of signicant interest to envi-ronmental scientists. The disposal or excretion of products of illicit

    drugs consumed in a given area is mainly into local wastewater andthen on to receiving surface water, soil, and sediments (Castiglioni

    et al., 2007; Zuccato et al., 2005). The detection of illicit drug residuesin wastewater is purported to provide evidence-based real-time in-

    formation on the nature and magnitude of community-wide illicitdrug use (Castiglioni et al., 2008; Bones et al., 2007). As with prescrip-tion pharmaceuticals, contamination by illicit drug residues at verylow concentrations appears to be widespread in populated areas,

    with potential risks for human health and the environment(Castiglioni et al., 2007; Zuccato et al., 2008). The environmentalmonitoring of illicit drugs in water bodies can be considered to bevery useful from two perspectives   —   epidemiologists can assess the

    nature and magnitude of drug abuse over time (Rieckermann andChristakos, 2008), information on changes in drug abuse trend(Terzic et al., 2010), and environmental scientists and policy makerscan implement control strategies to protect the environment from bi-

    ologically active substances.In contrast to legal pharmaceutical drugs, comprehensive informa-

    tion on thepresence of illicit drugs in theaquatic systemsis still very lim-ited. Recently, a number of reports have revealed the presence of illicit

    drugs in wastewaters from the United States ( Jones-Lepp et al., 2004;Chiaia et al., 2008; Loganathan et al., 2009; Bartelt-Hunt et al., 2009),Canada (Metcalfe et al., 2010), Italy (Castiglioni et al., 2006, 2007;Zuccato et al., 2005; Mari et al., 2009), Switzerland (Berset et al., 2010),

    Germany (Hummel et al., 2006), Ireland (Bones et al., 2007), UK(Kasprzyk-Hordern et al., 2008, 2009, 2010), Spain (Huerta-Fontela etal., 2008a, 2007; Boleda et al., 2007, 2009; Postigo et al., 2008b, 2010,2011; Bijlsma et al., 2009; González-Mariño et al., 2010, 2012; Bueno et

    al., 2011; Pedrouzo et al., 2011), Belgium (Gheorghe et al., 2008; vanNuijs et al., 2009a,b,c,d, 2011), France (Karolak et al., 2010), Croatia

    (Terzic et al., 2010), and Australia (Irvine et al., 2011; Lai et al., 2011).

    The common metabolites of cocaine present in wastewater includebenzoylecgonine, norbenzoylecgonine, norcocaine, cocaethylene, andecgonine methylester (vanNuijs et al., 2011a). The presence of ecgoninemethylester in wastewater wasrst reported by vanNuijs et al.(2009a).

    In this article we cover the cocainics (cocaine and its metabolites, suchas benzoylecgonine, norbenzoylecgonine, norcocaine, cocaethylene),opioids (morphine, 6-acetylmorphine, morphine-3β-D-glucuronide,methadone, and 2-ethylidine-1,5-dimethyl-3,3-diphenylpyrrolidine

    (EDDP)), cannabinoids (Δ9-tetrahydrocannabinol (THC)), amphetamineand ecstasy group compounds (amphetamine, methamphetamine, 3,4-methylenedioxy amphetamine (MDMA), 3,4-methylenedioxy amphet-amine (MDA), 3,4-methylenedioxy ethylamphetamine (MDEA)).

    The concentrations (in ng L −1) of the groups of illicit drugs inwastewaters, as reported from around the world, are compiled inTables 1 and 2. We present the data as two categories of illicit drugs  —

    cocainics, opioids, and cannabinoids (Table 1) and amphetamine andecstasy group compounds (Table 2). We provide the concentrations of these compounds both in the inuents and ef uents of wastewatertreatment plants (WWTPs) from several countries. The concentrationsin the inuents provide an indication on the likely drug use pattern in

    the local community, while that in ef uent reects the potential forthe contamination of the receiving water bodies. These compoundsare often only partially removed by the sewage treatment plants(STPs) and enter the receiving water bodies depending on the removal

    ef ciencies of the treatment plants (Huerta-Fontela et al., 2008a;Zuccato et al., 2008; Buchberger, 2007), through run-off during wetweather, landll seepage, aquifer recharge, and drainage from  eldsirrigated with ef uent (Boles and Wells, 2010; Jones-Lepp et al.,2004). They may also bind to sewage sludge (biosolids) which may

    then be applied to land in agricultural areas (Kaleta et al., 2006).In Table 1, most of the available data are from European countries

    (e.g., Italy, Switzerland, Spain, Belgium, UK, Ireland, and France) andfew from USA and Canada. Due to independent studies by the differ-

    ent research groups, we cannot make direct comparison on the spatialor temporal pattern of these compounds for any particular country,but the data provide snapshots on their occurrence. The reporteddata on cocaine and its major metabolite benzoylecgonine in the in-

    uents of WWTPs indicated higher concentrations in Spain, Italy,and Switzerland, while the lowest concentrations were recorded forFrance, USA, and Australia. The higher concentrations of the metabo-

    lite compared to the parent drug is in accordance with the knownmetabolism of cocaine in humans (Zuccato et al., 2005). The substan-tially lower concentrations of most of the compounds in ef uentsthan inuents (Table 1) are due to the degradation and/or sorption

    of those compounds during the wastewater treatment processes(Castiglioni et al., 2006). The concentrations in ef uents very fre-quently reported below the limit of quantication but signicantquantities of cocaine and benzoylecgonine were present in ef uents

    in Spain and UK. Morphine was reported at relatively high concentra-tions both in inuents and ef uents from Switzerland. The high mor-phine concentration in the STPs of Switzerland cannot be interpreted

    directly as heavy consumption of heroin, as the usage of opiate alka-loids in pain management treatments, over the counter analgesics,cough suppression preparations, and poppy seeds used in bakeryproducts might have been contributed (Berset et al., 2010).

    The available occurrence levels of amphetamine and ecstasy-group

    compounds in wastewaters are presented in Table 2. The prevalenceof methamphetamine and MDMA in the wastewater ef uents was ini-tially reported from the United States ( Jones-Lepp et al., 2004). In linewith cocainics and opioids, the higher concentrations of amphetamine

    in inuents were reported from UK and Spain, methamphetaminefrom USA, and MDMA from Spain. The concentrations in ef uentswere frequently below the LOQ. Bijlsma et al. (2009) reported the oc-currence of amphetamine, MDA, and MDMA from a WWTP in Castellon

    province in Spain at the level of 1400–15,380 ng L −1 (in inuent) and

    210–

    10,955 ng L −1

    (in ef uent). The average concentrations in inuent

    1081R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    5/15

     Table 1

    Concentration of cocainics, opioids, and cannabinoids in wastewater.

    Compound Country Study site Study period Concentration (ng L  −1) Reference

    no.aInuent Ef  uent

    Cocaine Italy Cagliari 2004 83 [1]

    Latina 76

    Cuneo 120

    Varese 42

    Milan Feb 2006 421.4   b0.99(LOQ b) [2]

    WWTPs at Florence Jul 2006– Jun 2007 50 [3]

    Switzerland Lugano Mar 2006 218.4 10.7 [2]

    STPs at Bern, Basel, Geneva, Lucern, Zurich Jul–Oct 2009 248   b15(LOQ) [4]

    Italy/Switzerland 200–1000c [5]Spain 42 different towns in NE-Spain Apr 2006– Jan 2007 4–4700c 1–100d [6]

    Catalonia in NE-Spain Apr–Sep 2006 79 17 [7]

    STPs located at east coast Jul 2007 592 57 [8]

    7 different STPs Oct 2007– Jul 2008 384d 16.8d [9]

    STP that gives service only to penal complex Jun 2008– Jan 2009 128 [10]

    WWTP in Castellón province Jun– Jul 2008 608 540 [11]

    5 STPs located in NW Spain 163 52 [26]

    STPs located in NW Spain Feb 2011 179 26.55 [27]

    STP at Almería May– Jun 2010 474 171 [28]

    Belgium WWTPs in Flanders Feb 2006–Sept 2007 205 [12]11 different WWTP Aug 2007– Jan 2008 126 [13]

    30 different WWTP 2007–2008 189 [14]

    37 different WWTP 2007–2008 153 [15]

    41 different WWTP 2007–2008 218 [16]WWTP in Brussel-Noord Feb 2008 346 [14]

    WWTP Brussels Mar 2009– Jan 2010 329 [29]

    UK Cilfynydd 526 149 [17]

    WWTP Cilfynydd 521 128 [18]

    WWTP Coslech 207   b1(LOQ) [18]

    Ireland Ringsend, Shanganagh, Leixlip, Navan Nov 2006 489 93.3 [19]

    France WWTP at different suburbs of Paris 4.8–282c 1.2–5.3c [20]

    Croatia WWTP at city of Zagreb Mar–Sep 2009 52d 25d [30]

    USA WWTPs around US 235 [21]Canada WWTPs serving three Canadian cities Oct 2008–Aug 2009 209–823c b20(LOQ)–530c [22]

    Benzoylecgonine Italy Cagliari 2004 640 [1]

    Latina 420 [1]

    Cuneo 750 [1]

    Varese 390 [1]

    Milan Feb 2006 1132.1   b0.92(LOQ) [2]

    WWTPs at Florence Jul 2006– Jun 2007 127 [3]

    Switzerland Lugano Mar 2006 547.4 100.3 [2]STPs at Bern, Basel, Geneva, Lucern, Zurich Jul–Oct 2009 604 96 [4]

    Italy/Switzerland 200–1000d [5]Spain 42 different towns in NE-Spain Apr 2006– Jan 2007 9–7500c 1–1500c [6]

    Catalonia in NE-Spain Apr–Sep 2006 810 216 [7]

    STPs located at east coast Jul 2007 2149 155 [8]7 different STPs Oct 2007– Jul 2008 1310d 115d [9]

    STP that gives service only to penal complex Jun 2008– Jan 2009 556 [10]

    WWTP in Castellón province Jun– Jul 2008 4750 3425 [11]

    5 STPs located in NW Spain 907 407 [26]

    STPs located in NW Spain Feb 2011 447 189 [27]

    STP at Almería May– Jun 2010 2541 1010 [28]

    STP in Vila-Seca Nov 2009 9–14 [31]

    Germany 12 German STPs Mar and Nov 2005 78 49 [23]

    Belgium WWTPs in Flanders Feb 2006–Sept 2007 753 [12]

    11 different WWTP Aug 2007– Jan 2008 375 [13]30 different WWTP 2007–2008 485 [14]

    37 different WWTP 2007–2008 510 [15]

    41 different WWTP 2007–2008 603 [16]

    WWTP in Brussel-Noord Feb 2008 831 [14]

    WWTP Brussels Mar 2009– Jan 2010 645 [29]

    UK Cilfynydd 1229 1597 [17]

    WWTP Cilfynydd 992 1091 [18]

    WWTP Coslech 1082 13 [18]

    Ireland Ringsend, Shanganagh Nov 2006 290 26.5 [19]

    France WWTP at different suburbs of Paris 64–849c 7.9–149c [20]Croatia WWTP at city of Zagreb Mar–Sep 2009 178d 79d [30]

    USA WWTPs around US 1131 [21]

    Canada WWTPs serving three Canadian cities Oct 2008–Aug 2009 287–2624c 62–775c [22]Australia Metropolitan WWTPs in So uth Australia Apr 2009–Oct 2009 52 [24]

    Ecgonine methyl ester Belgium 11 different WWTP Aug 2007– Jan 2008 89 [13]

    Norbenzoylecgonine Italy Milan Feb 2006 36.6   b0.56(LOQ) [2]

    Switzerland Lugano Mar 2006 18.8 7.5 [2]

    Italy/Switzerland 4–36.6c [5]

    1082   R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    6/15

     Table 1  (continued)

    Compound Country Study site Study period Concentration (ng L  −1) Reference

    no.aInuent Ef  uent

    Spain WWTP in Castellón province Jun– Jul 2008 290 90 [11]

    USA WWTPs around US 75.2 [21]

    Norcocaine Italy Milan Feb 2006 13.7   b1.92(LOQ) [2]

    Switzerland Lugano Mar 2006 4.3 0.7 [2]

    Italy/Switzerland 4–36.6c [5]

    USA WWTPs around US 19.5 [21]

    Cocaethylene Italy Milan Feb 2006 11.5   b0.95(LOQ) [2]Switzerland Lugano Mar 2006 5.9 0.2 [2]

    Italy/Switzerland 4–36.6c [5]Spain STPs located at east coast Jul 2007 78.3 3.6 [8]

    7 different STPs Oct 2007– Jul 2008 18.1d 1.5d [9]

    WWTP in Castellón province Jul 2008 150 80 [11]

    Morphine Italy Milan Feb 2006 83.3   b3.95(LOQ) [2]

    WWTPs at Florence Jul 2006– Jun 2007 12.3 [3]

    Switzerland Lugano Mar 2006 204.4 55.4 [2]

    STPs at Bern, Basel, Geneva, Lucern, Zurich Jul–Oct 2009 1007 929 [4]

    Italy/Switzerland 80–200c [5]

    Germany 12 German STPs Mar and Nov 2005 310d 40d [23]

    WWTP Mar– Jul 2007 300d 25d [33]

    Spain WWTPs in NE-Spain Mar–May 2007 54.1 51 [25]STPs located at east coast Jul 2007 91.8 20.5 [8]

    7 different STPs Oct 2007– Jul 2008 94.4d 46.4d [9]

    STP that gives service only to penal complex Jun 2008– Jan 2009 1346 [10]

    5 STPs located in NW Spain 137 102 [26]STPs located in NW Spain Feb 2011 21 [27]

    STP at Almería May– Jun 2010 152 73 [28]

    STP in Vila-Seca Nov 2009 5–45 [31]

    Catalonia in NE-Spain Apr–May 2007 25.5–278 12–81.1 [32]

    Ireland Swords, Navan Nov 2006 663 [19]

    Croatia WWTP at city of Zagreb Mar–Sep 2009 287d 53d [30]

    6-Acetylmorphine Italy Milan Feb 2006 11.8   b5.3(LOQ) [2]

    Switzerland Lugano Mar 2006 10.4   b5.3(LOQ) [2]

    STPs at Bern, Basel, Geneva, Lucern, Zurich Jul–Oct 2009 38   b5(LOQ) [4]Italy/Switzerland 5–10c [5]

    Spain 7 different STPs Oct 2007– Jul 2008 2.7d [9]

    STP that gives service only to penal complex Jun 2008– Jan 2009 63 [10]

    Belgium WWTP Brussels Mar 2009– Jan 2010 13 [29]

    Croatia WWTP at city of Zagreb Mar–Sep 2009 12d 1.8d [30]

    Morphine-3β-D-glucuronide Italy Milan Feb 2006 2.5   b0.63(LOQ) [2]

    Switzerland Lugano Mar 2006 18.1   b0.63(LOQ) [2]

    Methadone Italy Milan Feb 2006 11.6 9.1 [2]

    Switzerland Lugano Mar 2006 49.7 36.2 [2]

    STPs at Bern, Basel, Geneva, Lucern, Zurich Jul–Oct 2009 112 65 [4]Italy/Switzerland 10–90c [5]

    Germany WWTP Mar– Jul 2007 88d 87d [33]

    Spain WWTPs in NE-Spain Mar–May 2007 12.7 11.4 [25]

    STP that gives service only to penal complex Jun 2008– Jan 2009 4704 [10]

    Catalonia in NE-Spain Apr–May 2007 3.4–1531 3.4–732 [32]

    STP at Almería May– Jun 2010 45 18 [28]

    STPs located in NW Spain Feb 2011 28.7 17.6 [27]

    Belgium 11 different WWTP Aug 2007– Jan 2008 19.1 [13]

    WWTP Brussels Mar 2009– Jan 2010 54 [29]

    Croatia WWTP at city of Zagreb Mar–Sep 2009 55d 36d [30]USA WWTPs around US 33.7 [21]

    EDDP Italy Milan Feb 2006 19.8 22.6 [2]

    Switzerland Lugano Mar 2006 91.3 72.1 [2]STPs at Bern, Basel, Geneva, Lucern, Zurich Jul–Oct 2009 315 294 [4]

    Italy/Switzerland 10–90c [5]

    Spain WWTPs in NE-Spain Mar–May 2007 19.7 22.4 [25]STP that gives service only to penal complex Jun 2008– Jan 2009 9262 [10]

    Catalonia in NE-Spain Apr–May 2007 3.3–1029 2.7–1150 [32]

    STP at Almería May– Jun 2010 138 64 [28]

    STPs located in NW Spain Feb 2011 40.44 27.45 [27]

    Belgium 11 different WWTP Aug 2007– Jan 2008 36.8 [13]

    WWTP Brussels Mar 2009– Jan 2010 109 [29]

    Ireland Ringsend, Swords, Leixlip, Navan Nov 2006 82.5 [19]Croatia WWTP at city of Zagreb Mar–Sep 2009 136d 124d [30]

    Δ9-tetrahydrocannabinol Italy Milan Feb 2006 62.7   b1.75(LOQ) [2]

    Switzerland Lugano Mar 2006 91.2 7.2 [2]

    Italy/Switzerland 60–90c [5]

    Spain WWTPs in NE-Spain Mar–May 2007 63.8 39.2 [25]

    Catalonia in NE-Spain Apr–May 2007 11.3–127 4.2d [32]

    STPs located in NW Spain Feb 2011 126 32.2 [27]

    7 different STPs Oct 2007– Jul 2008 18.0d 7.9d [9]

    Norbenzoylecgonine

    1083R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    7/15

    were 1400, 1690, and 15,380 ng L −1 for amphetamine, MDA, andMDMA respectively, while the same in ef uent were 210, 680, and10,955 ng L −1. The high level of amphetamine and especially MDMAin this study was ascribed to the widespread consumption of these

    drugs at a special music event during thestudy period. At the CilfynyddWWTP in UK, amphetamine was recorded in inuents and ef uents atconcentrations of 5236 and 127 ng L −1 respectively, while in further

    studies the same were 4310 and 201 ng L −1 in Cilfynydd WWTP, and

    1196 and 2 ng L 

    −1

    in Coslech WWTP (Kasprzyk-Hordern et al., 2008,2009). The concentration of amphetamine in the inuent samplesfrom Cilfynydd is remarkably higher than the reports made from

    other European countries indicating the possibility of some direct dis-charge of thecompound into the sewage system by the localcommuni-ty served by this WWTP.

     3.2. Surface water 

    Illicit drugs like pharmaceuticals reach surface waters unaltered or

    slightly transformed via wastewater ef uents from WWTPs (Boledaet al., 2009, 2011). The illicit drugs and metabolites are generallyvery recalcitrant to elimination by physico-chemical and biologicaltreatment at conventional STPs, especially MDMA (Valcárcel et al.,

    2012). Wastewater treatment is only partially effective in removingpharmaceutically active compounds and therefore efforts have beenmade to improve sewage treatments with a tertiary step to ef cientlyremove all the organic contaminants by advanced oxidization pro-

    cess, ozonation, osmosis, etc. However, most STPs do not includethis treatment due to high cost, which means release of illicit drugsand metabolites into surface waters and even in drinking waters(Pedrouzo et al., 2011; Terzic et al., 2010; Valcárcel et al., 2012). The

    removal ef ciencies of STPs for the different compounds vary signi-cantly and more uniform pattern have been recorded over time foreasily degradable compounds; the removal ef ciency also variedwith season reecting the inuence of temperature on biotransfor-

    mation process in sewage treatment (Terzic et al., 2010). The levelof water contamination due to WWTP ef uent discharge and theirfate in aqueous environment depend on physico-chemical properties

    of pollutants, technology implemented in WWTPs, and climatic con-ditions such as dilution of wastewater ef uent, rainfall, temperatureand level of sun light (Kasprzyk-Hordern et al., 2009).

    Thus, illicit drugs and their metabolites are detected in the aquatic

    environment (e.g., rivers, lakes, and groundwater) due to their in-complete removal during wastewater treatment and/or by dischargeof manufacturing residues (Al-Rifai et al., 2007; Roberts andThomas, 2006; Heberer, 2002). A number of studies have been con-

    ducted in different parts of the world to measure concentration levelsof illicit drugs in surface waters, including: Italy (Zuccato et al., 2008,2005), Germany (Hummel et al., 2006), Ireland (Bones et al., 2007),UK (Kasprzyk-Hordern et al., 2008, 2009), and Spain (Huerta-

    Fontela et al., 2008b, 2007;  Boleda et al., 2007, 2009; Vazquez-Roiget al., 2010; Postigo et al., 2010; González-Mariño et al., 2010;

    Bueno et al., 2011; Valcárcel et al., 2012), Belgium (Gheorghe et al.,2008; van Nuijs et al., 2009c,d), Switzerland (Berset et al., 2010),

    and the USA (Bartelt-Hunt et al., 2009). We have presented the con-centration of cocainics, opioids, and cannabinoids in Table 3 and foramphetamine and ecstasy group compounds in Table 4. The presence

    of cocaine and benzoylecgonine in surface waters was reported at rel-atively higher concentrations from Spain, Belgium, and Italy. The con-centrations of amphetamine and MDMA were recorded higher in thesurface waters from Spain while methamphetamine was higher in

    USA. Although the concentrations of different drugs and their metab-olites in surface waters are in the few nanogram per litre range, theirpossible effects on wildlife and human health cannot be disregarded

    especially on vulnerable populations (Valcárcel et al., 2012). The con-

    centrations of some illicit drugs in natural waters occur at similarlevel to other emerging contaminants (e.g., psychiatric drug carba-mazepine and the anti-inammatory diclofenac) leading to their in-

    clusion in the list of priority substances of the European UnionWater Framework Directive (González-Mariño et al., 2010).

     3.3. Groundwater and drinking water 

    A major concern about the presence of illicit drugs and metabo-lites in the environment is that drinking water treatment plants(DWTPs) cannot adequately treat surface or groundwater before itis supplied as drinking water to the community (Boleda et al., 2009;

    Valcárcel et al., 2012). At present there is little information dealingwith the presence of illicit drugs and metabolites in drinking water;a few recent reports from Spain deal with this issue (Huerta-Fontelaet al., 2008b; Boleda et al., 2009, 2011; Valcárcel et al., 2012 ) andgroundwater ( Jurado et al., 2012) as presented in Table 5.

    The case study on Barcelona urban groundwater showed relativelyhigher frequencies of detection and concentrations for cocaine,MDMA, and methadone among different chemical classes of drugs

    and metabolites ( Jurado et al., 2012). The removal ef ciency in con-ventional drinking water treatment showed complete removal for al-most all the illicit drugs and metabolites with few exceptions forbenzoylecgonine, methadone, and EDDP (Huerta-Fontela et al.,

    2008b; Boleda et al., 2009). However, cocaine, benzoylecgonine,methadone and its metabolite EDDP were frequently detected in tapwater (Boleda et al., 2011; Valcárcel et al., 2012).

     3.4. Sewage sludge

    The illicit drugs in sewage sludge, bio-solids, and sediments havereceived little attention. First reports on the presence of amphet-

    amine (5–300 μ g kg−1) in sewage sludge of Austria were reportedby   Kaleta et al. (2006)   and methamphetamine (4 μ g kg−1 dryweight) in the bio-solids from Los Angeles, USA by   Jones-Lepp andStevens (2007).   Sorption of illicit drugs in sediments was   rst

    reported by   Wick et al. (2009), the sorption coef cients (Kd,L kg−1) of morphine and methadone were recorded at 12 and 76. Al-though there is no report on the occurrence of cannabinoids in sew-age sludge, they are likely to be found bound to sewage sludge due

    to their high human consumption rate and high hydrophobicity(Díaz-Cruz et al., 2009).

     3.5. Air 

    Illicitdrugs have the potential to escapeto the ambientairin powderform during consumption (e.g., cocaine) or handling and as smoke dur-

    ing consumption (e.g., cannabis, methylamphetamine or heroin)

    Note to Table 1:a Reference no.: [1] Zuccato et al. (2005), [2] Castiglioni et al. (2006), [3] Mari et al. (2009), [4] Berset et al. (2010), [5] Castiglioni et al. (2007), [6] Huerta-Fontela et al. (2008a),

    [7] Huerta-Fontelaet al. (2007),[8] Postigoet al.(2008b),[9] Postigoet al. –(2010), [10] Postigoet al. (2011), [11] Bijlsmaet al.(2009), [12] Gheorgheet al.(2008), [13] vanNuijs

    et al. (2009a), [14] van Nuijs et al. (2009d), [15] van Nuijs et al. (2009c), [16] van Nuijs et al. (2009b), [17] Kasprzyk-Hordern et al. (2008), [18] Kasprzyk-Hordern et al. (2009),

    [19] Bones et al. (2007), [20] Karolak et al. (2010), [21] Chiaia et al. (2008), [22] Metcalfe et al. (2010), [23] Hummel et al. (2006), [24] Irvine et al. (2011)), [25] Boleda et al.

    (2007), [26] González-Mariñoet al. (2010), [27] González-Mariño et al. (2012), [28] Bueno et al. (2011), [29] van Nuijs et al. (2011b), [30] Terzic et al. (2010), [31] Pedrouzo

    et al. (2011), [32] Boleda et al. (2009), [33] Wick et al. (2009).b Limit of quantication.c Range.d

    Median value.

    1084   R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    8/15

    (Daughton, 2011a; Viana et al., 2010). The illicit drugs and their metab-olites present in the atmosphere are primarily associated with particu-

    lates due to their physico-chemical properties (low vapour pressures,

    high to medium polarity, weak alkalinity, and molecular weight range

    between 135 and 360 g mol−1) and have been recognised as potential-ly useful matrix to investigate the illicit drug consumption pattern

    (Postigo et al., 2009; Viana et al., 2010). However, the atmospheric

    levels of illicit drugs may be more transient and variable than levels in

     Table 2

    Concentration of amphetamine and ecstasy group compounds in wastewater.

    Compound Country Study site Study period Concentration (ng L  −1) Reference

    no.aInuent Ef  uent

    Amphetamine Italy Milan Feb 2006 14.7   b2.8(LOQ b) [1]

    Spain Catalonia in NE-Spain Apr–Sep 2006 15   b1(LOQ) [2]

    42 different towns in NE-Spain Apr 2006– Jan 2007 3–688c 4–210c [3]

    STPs located at east coast Jul 2007 25.9 1.8 [4]

    7 different STPs Oct 2007– Jul 2008 148d 25.7d [5]

    STP that gives service only to penal complex Jun 2008– Jan 2009 97 [6]

    WWTP in Castellón province Jul 2008 1400 210 [7]

    STP at Almería May– Jun 2010 496 225 [19]

    STPs located in NW Spain Feb 2011 64.1 14.2 [20]UK Cilfynydd 5236 127 [8]

    WWTP Cilfynydd 4310 201 [9]

    WWTP Coslech 1196 2 [9]

    4 different WWTPs 85.9 [10]

    Belgium 11 different WWTP Aug 2007– Jan 2008 206 [11]

    WWTP Brussels Mar 2009– Jan 2010 59 [21]

    Croatia WWTP at city of Zagreb Mar–Sep 2009 7.3d 1.0d [22]

    USA WWTPs around US 206 [12]

    Canada WWTPs serving three Canadian cities Oct 2008–Aug 2009   b3(LOQ)–25c b1(LODe)–14c [13]

    Methamphetamine Italy Milan Feb 2006 16.2 3.5 [1]Spain 42 different towns in NE-Spain Apr 2006– Jan 2007 3–277c 3–90c [2]

    STPs located at east coast Jul 2007 8.2 3.1 [4]

    7 different STPs Oct 2007– Jul 2008 4.6d 1.3d [5]

    STP that gives service only to penal complex Jun 2008– Jan 2009 87 [6]STP at Almería May– Jun 2010 614 [19]

    Belgium 11 different WWTP Aug 2007– Jan 2008 3.5 [11]

    WWTP Brussels Mar 2009– Jan 2010 3.3 [21]

    USA Nevada June 2002–Feb 2003 1.05 [14]

    WWTPs around US 800 [12]

    Murray WWTP Aug–Dec 2006 18 [15]

    Omaha, NE Aug–Oct 2006 350 [16]

    Canada WWTPs serving three Canadian cities Oct 2008–Aug 2009   b7(LOQ)–65c b2(LOD)–95c [13]

    Australia Metropolitan WWTPs in South Australia Apr 2009–Oct 2009 587 [17]MDA Italy Milan Feb 2006 4.6 1.1 [1]

    Switzerland Lugano Mar 2006   b8.7(LOQ) 0.9 [1]

    Spain 42 different towns in NE-Spain Apr 2006– Jan 2007 3–266c 1–200c [2]

    WWTP in Castellón province Jul 2008 1690 680 [7]

    STP at Almería May– Jun 2010 266 [19]

    USA WWTPs around US 5.0 [12]

    MDMA Italy Milan Feb 2006 14.2 4.4 [1]

    Switzerland Lugano Mar 2006 13.6 5.1 [1]STPs at Bern, Basel, Geneva, Lucern, Zurich Jul–Oct 2009 26   b11(LOQ) [18]

    Spain Catalonia in NE-Spain Apr–Sept 2006 49 41 [2]42 different towns in NE-Spain Apr 2006– Jan 2007 2–598c 2–267c [3]

    STPs located at east coast Jul 2007 135 132 [4]

    7 different STPs Oct 2007– Jul 2008 20.4d 12.7d [5]STP that gives service only to penal complex Jun 2008– Jan 2009 61 [6]

    WWTP in Castellón province Jul 2008 15,380 10,955 [7]

    STPs located in NW Spain Feb 2011 25.6 [20]

    Belgium 11 different WWTP Aug 2007– Jan 2008 34.5 [11]

    WWTP Brussels Mar 2009– Jan 2010 10.5 [21]

    Croatia WWTP at city of Zagreb Mar–Sep 2009 3.4d 2.0d [22]

    UK 4 different WWTPs 6.4 6.7 [10]

    USA South Carolina July 2002 0.5 [14]

    WWTPs around US 23.2 [12]

    Canada WWTPs serving three Canadian cities Oct 2008–Aug 2009 9–35   b3(LOD)–32 [13]Australia Metropolitan WWTPs in South Australia Apr 2009–Oct 2009 187 [17]

    MDEA Italy Milan Feb 2006 1.5   b1.64(LOQ) [1]

    Spain Catalonia in NE-Spain Apr–Sep 2006 28   b2.1(LOQ) [2]

    42 different towns in NE-Spain Apr 2006– Jan 2007 6–114c 12 [3]

    a Referenceno.: [1] Castiglioniet al. (2006),[2] Huerta-Fontela et al. (2007),[3] Huerta-Fontela et al. (2008a),[4] Postigo etal. (2008b), [5] Postigo et al.(2010),[6] Postigo etal. (2011),

    [7] Bijlsmaet al.(2009), [8] Kasprzyk-Hordernet al. (2008),[9] Kasprzyk-Hordernet al. (2009), [10] Kasprzyk-Hordernet al. (2010), [11] vanNuijset al.(2009a), [12] Chiaia et al.(2008),

    [13] Metcalfe et al. (2010), [14] Jones-Lepp et al. (2004), [15] Loganathan et al. (2009), [16] Bartelt-Hunt et al. (2009), [17] Irvine et al. (2011), [18] Berset et al. (2010), [19] Bueno et al.

    (2011), [20] González-Mariño et al. (2012), [21] van Nuijs et al. (2011b), [22] Terzic et al. (2010).b Limit of quantication.c Range.d Median value.e Limit of detection.

    1085R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    9/15

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    10/15

    wastewater making it complex to use as a tool to detect drug abusepat-tern (Daughton, 2011a).

    The determination of illicit drugs and metabolites in the atmosphere

    has not received much attention and the data are extremely scarceworldwide. Reports are available in scientic literatures on the mea-surement of illicit drugs in ambient air only from the cities of Italy,Spain, Portugal, Chile, Brazil, Serbia, and Algeria. Initially, Hannigan et

    al. (1998) detected the presence of cocaine in outdoor air during a bio-assay directed chemical analysis of Los Angeles airborne particulatematter using a human cell mutagenicity assay. The available reports

    on the concentration of illicit drugs and metabolites have been pres-ented in   Table 6. The samples collected from Algiers, Algeria andPančevo, Serbia tested for cocaine were recorded below detection limit(Cecinato et al., 2009a). The concentrations of benzoylecgonine, heroin,

    6-acetylmorphine,   Δ9-tetrahydrocannabinol (THC), amphetamine,methamphetamine, and MDMA were generally recorded in lowpg m−3 range, but cocaine up to the low ng m−3 level was detected.The results indicated the maximum occurrence of cocaine in the ambient

    air followed by THC. The concentrations of synthetic illicit drugs in ambi-ent air are relatively low.

    The objective of air monitoring is mainly to detect illicit drugusage pattern rather than concern regarding public health impacts

    because the cumulative lifetime doses (e.g., cocaine≈0.3 mg), evenin contaminated areas, are much less than one drug dose ( Cecinato

    et al., 2010; Daughton, 2011a). However, possible health hazard de-rived from chronic exposure to such low ambient concentrations

    and potential effects of short or medium term exposures on specicrisk groups (children, elderly, and asthmatics) needs attention(Viana et al., 2011; Cecinato et al., 2011).

    4. Ecotoxicity of illicit drugs

    Illicit drugs are being continuously discharged into aquatic environ-ment due to their high production and consumption and thus continu-ous monitoring of sewage ef uents would minimize their undesirableeffects on environment (Valcárcel et al., 2012). Many reports are avail-

    able on theoccurrence level of illicit drugs in water worldwide, however,theecotoxicityof illicit drugs hasreceivedless attentioncomparedto licit

    pharmaceuticals especially with regard to low level mixed stressor

    exposure, potential harmful effect on non-target aquatic systems, ortheir bioconcentration in biota (Binelli et al., 2012; Daughton, 2011b).Wastewaters are a major source of pharmaceuticals in the aquatic envi-

    ronment and thus biota are exposed to the unknown chronic effects of these chemicals (Gagné et al., 2006). The presence of illicit drugs andtheir metabolites needs attention from an ecotoxicological perspectivebecause their possible negative effect on aquatic organisms, biota and

    the ecosystem might be comparable with therapeutic drugs (van Nuijset al., 2011b). Most illicit drugs (e.g.,amphetamines and opiates) are chi-ralcompounds andchirality of these compounds may be a major param-

    eter determining their potency and possible toxicity (Kasprzyk-Hordernet al., 2010).

    The information on ecotoxicity of illicit drugs in the scientic litera-ture is scant and not systematic. Only few reports are available until

    now on ecotoxicity of amphetamine, cocaine, and morphine on aquaticorganisms. The toxicity of amphetamine sulfate to freshly isolated rain-bow trout hepatocytes and  Daphnia  was reported and the results re-vealed relatively high toxicity among the 50 reference chemicals used

    by the Multicentre Evaluation of In vitro Cytotoxicity (Lilius et al.,1994). The behavioural screening of cocaine sensitivity in mutagenizedzebrash (Danio renio) showed defects resulting from mutation in dis-tinct genes that affect dopaminergic signalling in the retina and brain

    (Darland and Dowling, 2001). The study on cyto-genotoxic effect of co-caine on mollusk Zebra mussel (Dreissena polymorpha) showed signi-

    cant primary DNA damage, increase in micronucleated cells andmarked rise in apoptosis (Binelli et al., 2012). The immunotoxic effect

    of morphine on freshwater mussel (Elliptio complanata) showedreducedphagocytic and intracellular esterase activity, cell adherence, and lipidperoxidation (Gagné et al., 2006). The pharmacokinetics of morphineinto winter  ounder (Pseudopleuronectes americanus) and sea water ac-

    climated rainbow trout (Oncorhynchus mykiss) was reported by measur-ing the change in plasma morphine concentration for 100 h (Newby etal., 2006). This study showed signicant intra-specic variation between

    shes and the metabolism of morphine in  sh was approximately one

    order of magnitude slower than it is in mammals and the differencesmay be due to mass specic differences in cardiac output.

    The only available report on ecotoxicity of illicit drugs on soil micro-bial quality indicated mostly stimulatory effect of methamphetamine

    on dehydrogenase activity and insigni

    cant toxicity on potential

     Table 3  (continued)

    Compound Country Name of river Study site Study period Concentration

    (ng L −1)

    Reference no.a

    Arno Rignano, Limite, Castelfranco, Pisa 2006 4.8 [2]

    Spain Llobregat Intake of a Drinking water treatment plant Mar–May 2007 6.4 [15]

    Llobregat 2007 2.4 [19]

    Henares Located in the centre of Spain (Madrid) Jun 2010 7 [17]

    Tagus Jun 2010 2.58b [18]

    Switzerland 22 rivers or creek Mar 2010 1.7 [13]

    EDDP Italy Po Mezzana, Monticelli, Piacenza, Cremona 2006 1 [2]Olona Downstream of Varese STP 2006 18 [2]

    Lambro Near its entrance into River Po 2006 9.9 [2]

    Arno Rignano, Limite, Castelfranco, Pisa 2006 4.3 [2]Spain Llobregat Intake of a Drinking water treatment plant Mar–May 2007 12.3 [15]

    Llobregat 2007 6.0 [19]

    Henares Located in the centre of Spain (Madrid) Jun 2010 35 [17]

    Tagus Jun 2010 7.57b [18]

    Switzerland 22 rivers or creek Mar 2010 4.9 [13]

    Δ9-tetrahydrocannabinol Po Mezzana, Monticelli, Piacenza, Cremona 2006 0.3 [2]

    Lambro Near its entrance into River Po 2006 3.7 [2]

    Arno Rignano, Limite, Castelfranco, Pisa 2006 0.5 [2]

    Thames New bridge, Shillingford bridge, Chiswick bridge, Oct 2005 1 [2]

    House of Parliament, Tilbury of LondonSpain Llobregat Intake of a Drinking water treatment plant Mar–May 2007 24 [15]

    Ebro 15 different location along the river basin Oct 2007– Jul 2008 5.5b [6]

    a Reference no.: [1] Zuccato et al. (2005), [2] Zuccato et al. (2008), [3] Huerta-Fontela et al. (2008b), [4] Huerta-Fontela et al. (2007), [5] Vazquez-Roig et al. (2010), [6] Postigo et al.

    (2010), [7] Gheorghe et al. (2008), [8] van Nuijs et al. (2009d), [9] van Nuijs et al. (2009c), [10] Kasprzyk-Hordern et al. (2008), [11] Kasprzyk-Hordern et al. (2009), [12] Bones et al.(2007), [13] Bersetet al. (2010), [14] Hummelet al. (2006), [15] Boleda et al. (2007), [16] González-Mariño et al. (2010), [17] Bueno et al. (2011), [18] Valcárcel et al. (2012), [19] Boleda

    et al. (2009).b Median value.

    Methadone

    1087R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    11/15

    nitrication activity of two South Australian soils up to 1000 μ g g−1(Scott et al., 2003).

    Thus, it is reasonable to assume from the available reports that the

    stimulatory or inhibitory effects of illicit drugs depend on the chemi-cal and the test organism.

    5. Methodology used to analyse illicit drugs in environment

    Development in analytical technology has allowed trace level de-termination of different illicit drugs and metabolites from various en-

    vironmental matrices. This has aided in assessing the trend andpattern of illicit drug abuse (known as sewage epidemiology), theirdistribution pattern in waters, and potential impact on human healthand ecosystem. However, such assessment may be inuenced by the

    ef ciency of the analytical technology employed for their determina-tion. The screening of illicit drugs and metabolites in water has be-come widespread since the reports published on the presence of methamphetamine and MDMA in wastewaters from USA ( Jones-

    Lepp et al., 2004) and cocaine in Po River, Italy (Zuccato et al., 2005).The four basic factors that affect the quality of environmental data

    are sample collection, sample preservation, analysis, and recording;improper actions in any one area may result in poor data from which

    poor judgements might be drawn,for example with increasingaccuracyof chemical analytical techniques, inappropriate sampling increasinglyrepresents the major source of inaccuracy (Ort et al., 2010a). Thewidely applied techniques for water analysis involve grab sampling

    (Chiaia et al., 2008) and time integrated sampling ( Jones-Lepp et al.,2004) but Ort et al. (2010b) recommended ow proportional sampling

    as best practice.

    Both gas chromatography mass spectrometry (GC-MS) and liquidchromatography mass spectrometry (LC-MS) have been used to de-tect illicit drugs, but solid phase extraction SPE (SPE by mixed re-

    versed phase cation exchange cartridges using Oasis MCX, HLB orStrata-XCTM sorbent) for sample preparation followed by high pres-sure liquid chromatography tandem mass spectrometry (LC-MS/MS)has widely been accepted technique of choice for determination of il-

    licit drugs and metabolites from environmental matrices (Castiglioniet al., 2008). However, determination of illicit drugs and metabolitesin water by SPE, derivatisation and gas chromatography ion trap tan-

    dem mass spectrometry has also been proposed (González-Mariño etal., 2010). The application of SPE and LC-MS/MS for simultaneousanalysis of a wide variety of illicit drugs (e.g., amphetamines,cocainics, opioids, and cannabinoids) in wastewater was proposed

    by Castiglioni et al. (2006). All these methods commonly used off-line SPE; however, the limitations of this technique include low andvariable analyte recovery plus time and cost involved (Chiaia et al.,2008). The   rst fully automated method based on on-line SPE–LC-

    MS/MS for the multianalyte determination of most relevant illicitdrugs and their metabolites was developed by   Postigo et al.(2008b). Chiaia et al. (2008) and Berset et al. (2010) showed the pos-sibility of direct large volume injection eliminating the needfor off- or

    on-line SPEfor the analysis of a wide range of illicit drugs in wastewa-ter. A time-weighted polar organic chemical integrative sampler ap-plying microliquid chromatography electrospray ion trap massspectrometry was described to detect illicit drugs in treated sewage

    ef uents ( Jones-Lepp et al., 2004). An overview from published stud-ies on sample preparation and LC methods for analysis of illicit drugs

    and metabolites in waters has been reported (Castiglioni et al., 2008;

     Table 4

    Concentration of amphetamine and ecstasy group compounds in surface water.

    Compound Country Name of river Study site Study period Concentration

    (ng L −1)

    Reference no.a

    Amphetamine Spain Llobregat Intake of drinking water treatment plant locate d May 2006–Apr 2007 20 [1]

    in the Llobregat river basin

    Natural park of L'Albufera of Valencia Apr 2008 3.38   [2]

    Ebro 15 different locati on along the river bas in Oct 2007– Jul 2008 6.8b [3]

    Henares Located in the centre of Spain (Madrid) Jun 2010 309 [9]

    UK Taff Abcercynon, Pontypridd, Trefforest estate 4 [4]Taff Abcercynon and Pontypridd 5 [5]

    Ely Talbot green and Peterson-super-Ely 1 [5]

    Methamphetamine Italy Olona Downstream of Varese STP 2006 1.7 [6]Lambro Near its entrance into River Po 2006 2.1 [6]

    House of Parliament, Tilbury of London

    Spain Llobregat Intake of drinking water treatment plant located May 2006–Apr 2007 1.3 [1]

    in the Llobregat river basin

    Ebro 15 different locati on along the river basi n Oct 2007– Jul 2008 0.4b [3]

    Tagus Jun 2010 3.22b [10]

    USA Upstream and downstream of Loup, Big Blue, Aug–Oct 2006 16.6 [7]

    Wood river, and Salt creek

    MDA Italy Arno Rignano, Limite, Castelfranco, Pisa 2006 1.2 [6]

    Thames New bridge, Shillingford bridge, Chiswick bridge, Oct 2005 3 [6]House of Parliament, Tilbury of London

    Spain Llobregat Intake of drinking water treatment plant located May 2006–Apr 2007 9.2 [1]

    in the Llobregat river basin

    MDMA Italy Po Mezzana, Monticelli, Piacenza, Cremona 2006 0.2 [6]Olona Downstream of Varese STP 2006 1.7 [6]

    Lambro Near its entrance into River Po 2006 1.1 [6]

    Arno Rignano, Limite, Castelfranco, Pisa 2006 1.0 [6]

    Thames New bridge, Shillingford bridge, Chiswick bridge, Oct 2005 3.6 [6]

    House of Parliament, Tilbury of London

    Spain Llobregat Intake of drinking water treatment plant located May 2006–Apr 2007 14.1 [1]

    in the Llobregat river basin

    Llobregat Intake of a Drinking water treatment plant Sep 2006 3 [8]

    Natural park of L'Albufera of Valencia Apr 2008 0.9 [2]Ebro 15 different locati on along the river basi n Oct 2007– Jul 2008 1.0b [3]

    Tagus Jun 2010 2.07b [10]

    a Reference no.: [1] Huerta-Fontela et al. (2008b), [2] Vazquez-Roig et al. (2010), [3] Postigo et al. (2010), [4] Kasprzyk-Hordern et al. (2008), [5] Kasprzyk-Hordern et al. (2009),

    [6] Zuccato et al. (2008), [7] Bartelt-Hunt et al. (2009), [8] Huerta-Fontela et al. (2007), [9] Bueno et al. (2011), [10] Valcárcel et al. (2012).b Median value.

    1088   R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    12/15

     Table 5

    Concentration of illicit drugs and their metabolites in groundwater and tap water.

    Compound Country Study site Study period Concentration

    (ng L −1)

    Reference no.a

    (a) Groundwater 

    Cocaine Spain Barcelona May–Dec 2010 3.8 [1]

    Benzoylecgonine Spain Barcelona May–Dec 2010 1.5

    Cocaethylene Spain Barcelona May–Dec 2010 0.1

    Morphine Spain Barcelona May–Dec 2010 1.4

    Methadone Spain Barcelona May–Dec 2010 7.4EDDP Spain Barcelona May–Dec 2010 0.7

    MDMA Spain Barcelona May–Dec 2010 3.9

    (b) Tap water 

    Cocaine Spain Different 43 cities 2008–2009 0.4 [2]

    Cazalegas reservoir Jun 2010 2.11 [3]

    Europeb 0.1 [2]

    Latin Americac 0.6 [2]

    Benzoylecgonine Spain Different 43 cities 2008–2009 0.4 [2]

    Cazalegas reservoir Jun 2010 2.47 [3]

    Europeb 0.2 [2]

    Latin Americac 4.5 [2]

    Cocaethylene Spain Different 43 cities 2008–2009 0.2 [2]Methadone Spain Different 43 cities 2008–2009 0.2 [2]

    Cazalegas reservoir Jun 2010 0.47 [3]

    DWTP from Toledo City Jun 2010 0.99 [3]

    Europe

    b

    0.1 [2]Latin Americac 0.2 [2]

    EDDP Spain Different 43 cities 2008–2009 0.4 [2]

    Cazalegas reservoir Jun 2010 0.34 [3]

    Europeb 0.4 [2]

     Japan 0.1 [2]

    Latin Americac 0.4 [2]

    a Reference no.: [1] Jurado et al. (2012), [2]  Boleda et al. (2011), [3] Valcárcel et al. (2012).b Includes large cities in Austria, France, Germany, Iceland, Slovakia, Switzerland, and United Kingdom.c Cities in Argentina, Brazil, Chile, Colombia, Panama, Peru, and Uruguay.

     Table 6

    Concentration of illicit drugs and their metabolites in ambient air.

    Compound Country Study site Study period Concentration

    (pg m−3)

    Reference no.a

    Cocaine Italy Different urban and semiurban areas of Rome 2003–2006 10–98b

    [1]Rome, Bari, and Milan 2008 13–267b [4]

    Rome and Montelibretti Sep 2007 6–87b [5]

    Rome and other cities 2009 9–116b [6]

    Portugal Ermesinde, Oporto 2006–2007 148 [4]

    Chile Santiago Jun 2007 2800 [4]

    Brazil Sao Paulo, Piracicaba, Araraquara, Ouro Preto 2002–2003 47–590b [4]

    Spain Barcelona and Madrid Nov 2007– Jan 2008 305.61 [2]

    Barcelona and Madrid Sep 2007– Jan 2008 204–480b [7]

    Benzoylecgonine Spain Barcelona and Madrid Nov 2007– Jan 2008 23.5 [2]Barcelona and Madrid Sep 2007– Jan 2008 14–29 [7]

    Barcelona, Madrid, and Coruña 2008–2009   bDL(2.49)–29b [8]

    Heroin Spain Barcelona and Madrid Nov 2007– Jan 2008 83.7 [2]

    Barcelona and Madrid Sep 2007– Jan 2008   bDL –84.0b [7]

    6-Acetylmorphine Spain Barcelona and Madrid Nov 2007– Jan 2008 22.8 [2]

    Barcelona and Madrid Sep 2007– Jan 2008   bDL –22.8b [7]

    Barcelona, Madrid, and Coruña 2008–2009   bDL(7.36)–32b [8]

    Δ9-tetrahydrocannabinol Italy Rome Sep–

    Oct 2008 44–

    104

    b

    [3]Montelibretti Sep–Oct 2008 30–58b [3]

    Bari Mar 2007 39 [3]Spain Barcelona and Madrid Nov 2007– Jan 2008 33.2 [2]

    Barcelona and Madrid Sep 2007– Jan 2008 27–44b [7]

    Amphetamine Spain Barcelona and Madrid Nov 2007– Jan 2008 2.02 [2]Barcelona and Madrid Sep 2007– Jan 2008 1.4–2.3b [7]

    Barcelona, Madrid, and Coruña 2008–2009   bDL(1.05)–15b [8]

    Methamphetamine Spain Barcelona and Madrid Nov 2007– Jan 2008 3.49 [2]

    Barcelona and Madrid Sep 2007– Jan 2008 0.9–3.5b [7]

    Barcelona, Madrid, and Coruña 2008–2009   bDL(2.73)–10b [8]

    MDMA Spain Barcelona and Madrid Nov 2007– Jan 2008 2.90 [2]

    Barcelona and Madrid Sep 2007– Jan 2008   bDL –2.9b [7]

    Barcelona, Madrid, and Coruña 2008–2009   bDL(1.26)–5b [8]

    DL = Detection limit.a Reference no.: [1] Cecinato and Balducci (2007), [2] Postigo et al. (2009), [3] Balducci et al. (2009), [4]  Cecinato et al. (2009a), [5] Cecinato et al. (2009b), [6] Cecinato et al.

    (2010), [7] Viana et al. (2010), [8] Viana et al. (2011).b

    Range of mean concentrations of data either from different cities or seasons.

    1089R. Pal et al. / Science of the Total Environment 463–464 (2013) 1079–1092

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 R9ii_Illicit Drugs and the Environment _ a Review

    13/15

    Postigo et al., 2008a). The conrmation of the identity of compoundsdetected at the limit of quantication level is of great importance toavoid false positive interpretation; the most popular approach for

    conrmation is based on the careful examination of analyte massspectral information (Bijlsma et al., 2009).  Castiglioni et al. (2008)pointed out that the main dif culty in the analytical techniques isthe low concentration level of drugs plus complexity of the matrix.

    The analysis of illicit drugs and metabolites in ambient air has

    currently been recognised as an alternate tool to sewage epidemiologyfor estimation of drug abuse and their impact on human health. How-ever, as these airborne residues can arise from a variety of mechanismthey cannot be directly ascribed to consumption. Cocaine was   rst

    detected in the air of twoItaliancities and thedeterminationof cocainein carbonaceous aerosol samples was performed by solvent extractionfollowed by clean up through column chromatography and analysis inhigh resolution gas chromatography mass spectrometry (HRGC-MS)(Cecinato and Balducci, 2007). Postigo et al. (2009) developed the  rst

    analytical method for multianalyte determination of a group of illicitdrugs and metabolites in airborne particulates based on pressurizedliquid extraction of atmospheric particles collected by high volumesampler equipped with quartz microber   lter followed by their

    analysis in liquid chromatography tandem mass spectrometry (LC-MS/MS). The method simultaneously determined compounds from

    ve different chemical classes, such as cocainics, opioids, cannabinoids,amphetamines, and lysergic compounds.

    6. Conclusion

    Human excretion is one of the major sources of illicit drugs intothe environment. Large proportions of consumed parent drugs and/or their active metabolites are discharged into domestic wastewater

    through urine or faeces (Zuccato and Castiglioni, 2009). The litera-tures indicate that benzoylecgonine, ecgonine methyl ester, MDMA,methamphetamine, amphetamine and morphine are the most abun-dant residues in ef uents of WWTPs. In accordance with the concen-

    tration levels recorded in the ef uents of WWTPs, all six compoundsshowed more frequent occurrence in surface water than other com-pounds. Although the environmental concentrations of even themost abundant illicit drugs and their metabolites are low, compounds

    such as morphine, amphetamine, and MDMA have potent pharmaco-logical activities and their presence as complex mixtures in surfacewaters may be toxic to aquatic organisms and risks to human healthand the aquatic environment cannot be ignored (Zuccato and

    Castiglioni, 2009). As the affects of drug and metabolite residuesupon the environment are largely unknown no guideline values areavailable for the permissible concentrations of illicit drugs and theirmetabolites in surface water.

    Our review of the available literature revealed that data and infor-mation on illicit drugs in waste and river water are mostly availablefrom the European countries such as Italy, Switzerland, Spain, Belgium,Ireland, France, Germany, Craotia, and the UK and a few from the USA,

    Canada, and Australia. There is a lack of information regarding Asia, Af-rica, and also Oceania yet drug use is now recognised as a global prob-

    lem (Grif ths et al., 2008). ATS use stabilized in developed countries

    after 2001 but is still increasing in developing countries (UNODC,2008a). ATS manufacture has undergone signicant growth since2001 in several countries including China, the Philippines, Canada,Czech Republic, Australia, New Zealand, South Africa, Indonesia, Malay-sia, and Turkey (UNODC, 2008a). Methamphetamine is manufactured

    throughout East and South-East Asia, North America, and Oceania. Am-phetamine production remains concentrated largely in Europe (which

    accounted for 79% of amphetamine laboratories reported in 2006)

    while ecstasy is manufactured primarily in North America, Western Eu-rope, Oceania, East and South-East Asia (UNODC, 2008b; EMCDDA,2008). In Table 7, a worldwide pattern for main problem drugs has

    been compiled (UNODC, 2008c). The table shows that the opioids aremost popular in Asia and Europe, cannabis in Africa, cocaine in Northand South America, and amphetamine type stimulants in Asia, Oceania,North America, and Europe.In Europe, in the northern and central Euro-pean countries generally, the amphetamine group drugs are most pop-

    ular, while cocaine use predominated in the west and southern Europe(EMCDDA, 2008). The abovementioned evidence for the near universalmanufacture and consumption of illicit drugs also indicates the likeli-hood of widespread environmental contamination by these pollutants.

    However, there is a lack of information from a large part of the worldon occurrence patterns, fate, and their impact on different environmen-tal compartments. Considering the fact that the information on the en-vironmental contamination by illicit drugs are yet conned to a limitednumber of countries, more research is needed to establish their occur-

    rence in waste and surface waters in areas outside Europe and NorthAmerica. The results in Table 7 provide a starting point for the selectionof the drugs (and their metabolites) that should be researched in thewater bodies on each continent.

     Acknowledgements

    This work was supported by a N