128
https://ntrs.nasa.gov/search.jsp?R=19900006568 2018-05-19T18:35:20+00:00Z

?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

  • Upload
    vuthu

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

https://ntrs.nasa.gov/search.jsp?R=19900006568 2018-05-19T18:35:20+00:00Z

Page 2: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf
Page 3: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

NASA Technical Memorandum 4155

An Experimental Investigation of

Thrust Vectoring Two-Dimensional

Covergent-Divergent Nozzles

Installed in a Twin-Engine Fighter

Model at High Angles of Attack

Francis J. Capone, Mary L. Mason,and Laurence D. Leavitt

Langley Research Center

Hampton, Virginia

National Aeronautics andSpace Administration

Office of Management

Scientific and TechnicalInformation Division

1990

Page 4: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf
Page 5: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Summary

This paper presents results from an investigation

to determine the thrust vectoring capability of sub-

scale, two-dimensional convergent-divergent exhaust

nozzles installed on a twin-engine general research

fighter model at angles of attack from -2 ° to 35 °.

Pitch thrust vectoring was accomplished by down-

ward rotation of nozzle upper and lower flaps. Theeffects of nozzle sidewall cutback were studied for

both unvectored and pitch-vectored nozzles. A single

cutback sidewall was employed for yaw thrust vector-

ing. This investigation was conducted in the Langley

16-Foot Transonic Tunnel at Mach numbers ranging

from 0 to 1.20. High-pressure air was used to sinl-

ulate the jet exhaust and provide values of nozzle

pressure ratio up to 9.Nozzle sidewall cutback caused little or no effect

on peak static nozzle performance for both unvec-

tored and pitch-vectored nozzles. Thrust-minus-drag

performance for the unvectored nozzle configurations

varied less than 1 percent at subsonic speeds, thus

showing the relative insensitivity of installed perfor-mance to nozzle sidewall cutback. At static condi-

tions, resultant pitch vector angle was always greater

than the geometric pitch vector angle for the three

configurations tested. The increment in either the

force or moment coefficient that resulted from pitch

or yaw vectoring remained essentially constant over

the entire angle-of-attack range for all Mach numbers

tested. Longitudinal control power was a function of

nozzle pressure ratio and Mach number. Powered

controls were very effective at low Mach numbers,but their effectiveness decreased as Mach number in-

creased because of a reduction in thrust. Longitudi-

nal control power from thrust vectoring was greaterthan that provided by aerodynamic controls at low

speeds. Negative yaw vector angles were generated at

underexpanded nozzle operating conditions, but pos-

itive yaw vector angles were found at overexpanded

nozzle operating conditions for a nozzle using a single

cutback sidewall to produce yaw thrust vectoring.

Introduction

The next generation of fighter aircraft will bea versatile class of vehicles designed for operation

over a wide range of flight and combat conditions.

Future fighter aircraft requirements will probably

include transonic and supersonic cruise capability,

short takeoff and landing (STOL) features, high turn

rates, and maneuvering at both conventional and

high angles of attack. Studies have shown that signif-

icant advantages in air combat are gained with the

ability to perform transient maneuvers at high an-

gles of attack including brief excursions into post-

stall conditions. (See refs. 1 to 5.) Current fighters

are somewhat limited in their angle-of-attack enve-

lope because inadequate aerodynamic control power

exists at high angles of attack.

Augmenting existing aircraft control systems with

multiaxis thrust vectoring could greatly enhance the

effectiveness of fighter aircraft and allow them to ex-

ploit a much-expanded angle-of-attack envelope. If

current flight capabilities are sufficient, augmenting

existing fighter aircraft control systems could allow

the designer the option of reducing empennage size,

thus reducing total airframe drag. In either case, im-

proved low-speed, high-angle-of-attack performance

and STOL capability are likely benefits of the use of

thrust vectoring (refs. 6 to 8).

A number of investigations conducted at both

static (wind-off) and forward speeds have verified the

effectiveness of multifunction nozzles for pitch thrust

vectoring. (For example, see refs. 9 to 14.) Morerecent studies have evaluated static and wind-on

effects of lateral or yaw thrust vectoring on installed

nozzle performance (refs. 9, 10, and 14 to 16).

This paper presents results from an investigation

to determine the thrust vectoring capability of sub-

scale, two-dimensional convergent-divergent exhaust

nozzles installed on a twin-engine general research

fighter model at angles of attack from -2 ° to 35 ° .

Pitch thrust vectoring was accomplished by down-

ward rotation of nozzle upper and lower flaps. Theeffects of nozzle sidewall cutback were studied for

both unvectored and pitch-vectored nozzles. A singlecutback sidewall was employed for yaw thrust vector-

ing. This investigation was conducted in the Langley

16-Foot Transonic Tunnel at Mach numbers ranging

from 0 to 1.20. High-pressure air was used to sim-

ulate the jet exhaust and provide values of nozzle

pressure ratio up to 9.

Symbols

All model longitudinal forces and moments are

referred to the stability axis system, and all lateralforces and moments are referred to the body axis

system. The model moment reference center waslocated 1.75 in. above the model centerline at fuselage

station 36.06 in. (FS 36.06) which corresponds to0.25_. A discussion of the data reduction procedure

and definitions of the aerodynamic force and moment

terms and the propulsion relationships are presented

in the appendix. Further details of the data reduction

and calibration procedures used herein can be found

in references 7 and 18. The symbols used in the

computer-generated tables are given in parentheses.

Page 6: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Ae

Anlax

Arab,1

Arab,2

Aseal, 1

Aseal,2

At

AR

b

bn

CD

C D,aft

CD,n

CD-F

CL

CL,aft

CL,n

CL,t

(CD)

(CDAFT)

(CDN)

(C(D-F))

(CL)

(CLAFT)

(CLN)

(CLT)

(CROLL)

nozzle exit area, in 2

maximum model cross-

sectional area, in 2

model cross-sectionalarea at FS 44.75 and48.25, in 2

model cross-sectional area

at FS 66.25, in2

cross-sectional area enclosed

by seal strip at FS 44.75and 48.25, in2

cross-sectional area enclosed

by seal strip at FS 66.25,in2

nozzle throat area, in 2

nozzle aspect ratio, ratioof nozzle throat width to

height

wing span, 40.00 in.

maximum nozzle width, in.

total aft-end drag coeffi-cient, CD =- CD-F atNPR = 1.0 (jet off)

afterbody drag coefficient

nozzle drag coefficient

drag-minus-thrust coeffi-

cient, Drag - Thrustq_c S

total aft-end aerodynamic

lift coefficient, CL -- CL,t at

NPR = 1.0 (jet off)

afterbody lift coefficient

nozzle lift coefficient

total aft-end lift coefficient,including thrust component,Lift

lift effectiveness due to

thrust vectoring, per degree

total aft-end rolling-moment

coefficient, C/ = C/, t atNPR - 1.0 (jet off)

el,t

Cm

era,aft

6771, Tl

Cm,t

CT-n

Gin8 v

Vn

T_t

%

cr

cr, t

D

DI

F

FA

F A ,Mbal

(CROLLT)

(CM)

(CMAFT)

(CMN)

(CMT)

(CN)

(CNT)

(CY)

(CYT)

total aft-end rolling-momentcoefficient including thrustcomponent, Rolling moment

qoc Sb

total aft-end aerodynamicpitching-moment coeffi-cient, Cm = Cm,t atNPR = 1.0 (jet off)

afterbody pitching-momentcoefficient

nozzle pitching-momentcoefficient

total aft-end pitching-moment coefficient in-

cluding thrust component,Pitching moment

qcc 8"5

longitudinal control power,per degree

longitudinal control powerdue to pitch vectoring, perdegree

total aft-end yawing mo-ment, Cn = Cn,t atNPR = 1.0 (jet off)

total aft-end yawing mo-ment including thrust eom-ponent_ Yawing moment

qoc Sb

pressure coefficient,(P - Poc)/qoc

total aft-end side-force

coefficient, Cy =- Cy, t atNPR = 1.0 (jet off)

total aft-end side-force

coefficient including thrustcoefficient, Side force

wing mean geometric chord,17.42 in.

drag, lbf

friction drag, lbf

thrust along stability axis,lbf

total aft-end axial force, lbf

axial force measured bymain balance, lbf

Page 7: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

A _mom

FA,Sbal

/Waft

Fc

tq

FN

Fs

g

L

Lj

Lt

M

NPR

(NPR)des

P

pa

Pes,1

(MACH)

(NPR)

momentum tare axial force

due to bellows, lbf

axial force measured byafterbody shell balance, lbf

afterbody axial force, lb

resultant gross thrust,

v/F/+ F 2 + F 2, lbf

ideal isentropicgross thrust,

[1_Wp _ 9,2 _-1

(N_) ("/-1)/3'] } 1/2 , lbf

measured thrust along bodyaxis, lbf

measured jet normal force,lbf

measured jet side force, lbf

gravitational constant,

32.174 ft/sec 2

length from nozzle attach-ment station (FS 66.30) tonozzle exit, used in coordi-nate system of figure 6(a)

length from moment ref-erence center to nozzle

throat, in.

length from moment refer-ence center to quarter-chordof horizontal tail mean

geometric chord, in.

length from nozzle throatto nozzle exit, used incoordinate system offigure 6(b), in.

free-stream Math number

nozzle pressure ratio,

Pt,j/P_c or Pt,j/Pa

nozzle pressure ratio re-quired for fully expandedflow

local static pressure, psi

ambient pressure, psi

average static pressure atexternal seal at FS 44.75,psi

Pes,2

Pes 3

Pt,j

BOC

q_C,

R

S

St

Tt,j

V

wi

Wp

X

x

Y

average static pressure atexternal seal at FS 48.25,

psi

average static pressure atexternal seal at FS 66.25,psi

average internal staticpressure, psi

average jet total pressure,psi

free-stream static pressure,psi

free-stream dynamic pres-sure, psi

gas constant, 1716 ft2/see2-°R

wing reference area,664.4 in 2

horizontal tail area, in 2

average jet total tempera-ture, °R

volume coefficient (see theappendix)

ideal weight-flow rate,

lbf/sec

measured weight-flow rate,lbf/sec

axial distance measuredfrom nozzle attachment sta-

tion (FS 66.30), positivedownstream, used in coor-dinate system of figure 6(a),in.

axial distance measured

from nozzle throat, positivedownstream, used in coor-dinate system of figure 6(b),in.

lateral distance measured

from model centerline,

positive to left (outboard)looking downstream, usedin coordinate system offigure 6(a), in.

3

Page 8: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Y

c_

_p

(ALPHA)

Abbreviations:

A/B

BL

C-D

FS

STOL

WL

2-D

lateral distance measured

from nozzle centerline,

positive to left (outboard)looking downstream, used

in coordinate system of

figure 6(b), in.

angle of attack, deg

ratio of specific heats,1.3997 for air

resultant pitch vector angle,

tan -1 -_j, deg

geometric pitch vector

angle measured from nozzle

centerline, positive for

downward deflection angles,deg

resultant yaw vector angle,

t an- 1 _._, deg

afterburning

butt line, in.

convergent-divergent

fuselage station (axial

location described bydistance in inches from

model nose)

short takeoff and landing

waterline, in.

two-dimensional

Apparatus and Procedure

Wind Tunnel

This investigation was conducted in the Lang-

ley 16-Foot Transonic Tunnel, a single-return atmo-

spheric wind tunnel with a slotted octagonal test

section and continuous air exchange. The wind tun-

nel has variable airspeeds up to a Mach number of

1.30. Test-section plenum suction is used for speeds

above a Mach number of 1.05. A complete descrip-

tion of this facility and operating characteristics canbe found in reference 17.

Model and Support System

Details of the general research twin-engine fighter

model and wingtip-mounted support system used in

4

this investigation are presented in figure 1. A pho-

tograph of the model and support system installed

in the Langley 16-Foot Transonic Tunnel is shown in

figure 2. A sketch of the wing planform geometry is

presented in figure 3.

The wingtip model support system shown in

figure 1 consisted of three major portions: the

twin support booms, the forebody (nose), and the

wing/centerbody. These pieces made up the non-

metric portion (that portion of the model not

mounted on force balance) of the twin-engine fighter

model. The fuselage centerbody was essentially rect-angular in cross section and had a constant width

and height of 10.00 in. and 5.00 in., respectively.The four corners were rounded by a radius of 1.00 in.

The maximum cross-sectional area of the centerbody(fuselage) was 49.14 in 2. The support system fore-

body (or nose) was typical of a powered model in that

the inlets were faired over. The wings were mounted

above the model centerline in a high position that

is typical of many current fighter designs. The wing

had a 45 ° leading-edge sweep, a taper ratio of 0.5,

an aspect ratio of 2.4, and a cranked trailing edge(fig. 3). The NACA 64-series airfoil had an airfoil

thickness ratio of 0.067 near the wing root. From BL

11.00 to the support booms, however, wing thicknessratio increased from 0.077 to 0.10 to provide ade-

quate structural support for the model and to permit

the transfer of compressed air from the booms to the

model propulsion system.

The wingtip support system has the unique fea-

ture of being able to rotate the wing with respect tothe support booms. This allows testing of models to

high angles of attack while keeping the model near

the tunnel centerline. A detailed description of the

wingtip support system is given in reference 17.

The metric portion of the model aft of FS 44.75,

supported by the main force balance, consisted of

the internal propulsion system, afterbody, tails, and

nozzles. The afterbody lines were chosen to provide a

length of constant cross section aft of the nonmetric

centerbody and to enclose the force balance and

jet simulation system while fairing smoothly down-

stream into the closely spaced nozzles. The afterbodyshell from FS 48.25 to 66.25 was attached to an af-

terbody force balance that was attached to the main

force balance (fig. 1). The main force balance in turn

was grounded to the nonmetric wing/centerbody sec-

tion. The nozzles were attached directly to themain force balance through the propulsion system

piping. Three clearance gaps (metric breaks) wereprovided between the nonmetric and individual met-

ric portions (afterbody and nozzles) of the model at

FS 44.75, 48.25, and 66.25 to prevent fouling of the

components upon each other. A flexible plastic strip

Page 9: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

insertedinto circumferentiallymachinedgroovesineachcomponentimpededflowinto or out of the in-ternalmodelcavity(fig.1).

In this report, that sectionof the modelaft ofFS48.25is referredto asthe total aft end(whichincludesafterbodyand nozzles). That sectionofthe modelfromFS 48.25to 66.25is referredto asthe afterbody,and that sectionaft of FS 66.25isconsideredthe nozzles.An adjustmentto the dragresultsof themainbalancewasmadefor thesectionof the model from FS 44.75to 48.25. (Seetheappendix.)

Twin-Jet Propulsion Simulation System

The twin-jet propulsion simulation system is

shown in figure 1. An external high-pressure air sys-

tem provided a continuous flow of clean, dry air at a

controlled temperature of about 70°F at the nozzles.

This high-pressure air was brought into the wind-

tunnel main support strut where it was divided into

two separate flows and passed through remotely op-erated flow-control valves. These valves were used to

balance the total pressure in each nozzle.

The divided compressed airflows were piped

through the wingtip support booms, through the

wings, and into the flow-transfer (bellows) assem-

blies (fig. 1). A sketch of a single flow-transfer bel-

lows assembly is shown in figure 4. The air in each

supply pipe was discharged perpendicularly to the

model axis through six sonic nozzles equally spacedaround the supply pipe. This method was designed

to minimize any transfer of axial momentum as the

air passed from the nonmetric portion to the met-

ric portion of the model. Two flexible metal bel-lows were used as seals and served to compensate for

the axial forces caused by pressurization. The cav-

ity between the supply pipe and bellows was vented

to model internal pressure. The airflow then passed

through the tail pipes into the transition sections,

through choke plates (30 percent of the tail pipe open

area), to the instrumentation or charging sections,and then to the exhaust nozzles. (See fig. 1.)

Exhaust Nozzles

The two-dimensional convergent-divergent (2-D

C-D) nozzle is a nonaxisymmetric exhaust system inwhich a symmetric contraction and expansion pro-

cess takes place internally in the vertical plane. Basic

nozzle components consist of upper and lower flaps

to regulate the contraction and expansion processand flat nozzle sidewalls to contain the flow laterally.

The flap inner-surface geometry (on full-scale hard-

ware) can be varied or altered by actuators so that

(1) the engine power setting can be changed by vary-ing the throat height and (2) the expansion surface

angle (the flat surface downstream of the throat) can

be varied for optimum expansion of the exhaust flow

(ref. 19). The 2-D C-D nozzle can be designed to vec-tor the exhaust flow up or down (in the pitch plane)

by rotating the upper and lower flaps independently.

The subscale 2-D C-D nozzle models tested during

this investigation are shown in figure 5. These noz-

zles are fixed-geometry representations of a variable-

geometry nozzle at dry power and partial afterburn-

ing (A/B) power settings. The nozzle models were

sized to the twin-engine wingtip-supported propul-sion simulator by selecting values of the ratio of to-

tal nozzle throat area to maximum fuselage cross-

sectional area (2At/Amax) that were representative

of current twin-engine high-performance aircraft in-stallations. The values of nozzle internal expansion

ratio selected for testing were based on typical cur-

rent, full-scale, mixed-flow turbofan cycles. A sum-

mary of important geometric parameters is given in

the following table:

Power

setting At, in. Ae/At 2At/Amax

Dry 2.69 1.16 0.11

A/B 3.92 1.24 .16

AR (NPR)des3.45 3.46

2.39 4.17

Various combinations of nozzle flap and sidewall ge-

ometry were examined as seen in figure 5. Three ba-

sic upper and lower flap arrangements were tested:unvectored flaps, pitch-vectored A/B flaps, and un-

vectored dry power flaps. The pitch vectoring wasproduced by a simple 15 ° downward rotation of the

unvectored A/B nozzle divergent flaps. The sidewall

geometry variations used with each of the upper and

lower flap arrangements are indicated in figure 5(b).

The A/B sidewalls were designed to fair smoothlywith the external lines of the A/B flaps. When paired

with the dry power flaps, the A/B sidewalls provide

small external flow fences. Conversely, the dry power

sidewall (designed to fair with the dry power flaps)allows some internal flow ventilation when combined

with the A/B flaps.

The effects of sidewall cutback were investigated

on both the unvectored and pitch-vectored A/B flaps

as seen in figure 5(b). The baseline or 100-percent

A/B sidewall provided full exhaust flow containmentover the entire divergent flap of the unvectored noz-

zle. The 50- and 25-percent sidewall cutbacks pro-

vided one-half and one-quarter containment, respec-

tively, of the unvectored A/B divergent flap length.

5

Page 10: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Becausesidewallbaseareaswere held constant,sidewallboattailanglevariedwith sidewallcutbackasshownin theviewlabeled"Topview."

Thesidewallvariationsdiscussedin thepreviousparagraphsreferonly to the outboardsidewallofeachnozzle.For the closelyspacedtwin-nozzlear-rangementofthepresentinvestigation,acommonin-boardsidewall(splitterplate)ismorepracticalthanindividualsidewalls.Thesplitterplategeometrywasconstantthroughoutthe entireinvestigation.ThissplitterplaterepresentedtwobaselineA/B sidewalls(with100-percentcontainment)locatedbacktoback.Thesplitter plateis identifiedin the sketchof fig-ure5(a)andthephotographof figure5(c).

Yawvectoringwasprovidedby an asymmetriccombinationof sidewalllengthson the A/B nozzleflaps.A 100-percentA/B sidewallwaslocatedout-boardontheleft nozzle,anda 25-percentA/B side-wallwaslocatedoutboardon theright nozzle.Thiscombinationof sidewallcutbackrepresenteda yaw-vectoringconceptcalledthetranslatingsidewallcon-cept. In a full-scaleapplication,a singlesidewallwouldtranslate,whereasthe oppositesidewallre-mainedin the full containmentposition. This lat-eral asymmetrywouldproducea yaw vectoran-gle whosemagnitudecanbevariedby varyingtheamountof sidewalltranslation.A moredetaileddis-cussionof thisyaw-vectoringconceptiscontainedinreference14.

Instrumentation

Forces and moments oil the metric portions of themodel were measured by two six-component strain

gauge balances. The main balance measured forces

and moments resulting from nozzle gross thrust and

the external flow field over that portion of the model

aft of FS 44.75. The afterbody balance measured

forces and moments resulting from the external flow

field over the afterbody from FS 48.25 to 66.25. This

twin balance arrangement permits the separation of

model component forces for data analysis.

External static pressures were measured at eight

points in the seal gap at the first metric break

(FS 44.75). All orifices were located on the non-

metric centerbody and spaced symmetrically aboutthe model perimeter. An additional five orifices

positioned about the right side of the model mea-sured seal gap pressures at the second metric break

(FS 48.25). The third and final set of seal pressures

was measured by two pairs of surface taps, each an

equal distance fore and aft of the third metric break

(FS 66.25).

In addition to these external pressures, two in-ternal pressures were measured at each metric seal.

These pressure measurements were then used to cor-

rect measured axial force and pitching moment for

pressure area tares as discussed in the appendix.Chamber pressure measurements made in each

supply pipe, upstream of the six sonic nozzles (fig. 4),were used to compute mass-flow rates for each noz-

zle and were also used to compute tare forces. In-

strumentation in each charging section consisted of

a stagnation-temperature probe and a total-pressure

rake. Each rake contained four total-pressure probes.(See fig. 5.) Nozzle total pressure was determinedfrom these measurements.

External and internal static pressures were mea-

sured on the two A/B power nozzles. The orifice lo-

cations are shown in figure 6. External pressures were

measured on the right nozzle (looking upstream).The external orifices were arranged in three rows

along the top surface of the convergent and diver-

gent flaps of the nozzle. Internal static pressures were

measured on the left nozzle (looking upstream). Theinternal orifices were located only along the divergent

flap, starting at the nozzle throat. A single row of ori-

fices was placed along the centerline of the top flap,

and three rows of orifices were placed along the sur-face of the bottom flap. All pressures were measured

with individual pressure transducers. Data obtained

during each tunnel run were recorded on magnetic

tape. Typically, for each data point, 50 frames of

data were taken over a period of 5 sec and the aver-

age was used for computational purposes.

Tests

This investigation was conducted in the Langley16-Foot Transonic Tunnel at Mach numbers of 0,

0.15, 0.60, 0.90, and 1.20 and at angles of attack from

-2 ° to 35 ° . The nozzle pressure ratio varied from

1.0 (jet off) to 9.0 depending upon Mach number.

Most model configurations were tested at angles of

attack from -2 ° to 18 ° . Selected configurations were

subsequently tested over an angle-of-attack range

from about 16.6 ° to 35 ° . This was accomplishedby presetting wing incidence through rotation of the

wings with respect to the wing support booms. Basic

data were obtained by varying nozzle pressure ratio

at an angle of attack of 0° and by varying angle

of attack at jet off and at a fixed (different for

each Mach number) nozzle pressure ratio. The fixednozzle pressure ratio tested at each Mach number

represented a typical operating pressure ratio for a

turbofan engine at that Mach number. The Reynoldsnumber based on the wing mean aerodynamic chordvaried from 4.4 x 106 to 5.28 × 106.

All tests were conducted with 0.10-in-wide

boundary-layer transition strips consisting of No. 120silicon carbide grit sparsely distributed in a thin film

Page 11: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

of lacquer.A singlestrip waslocated1.00in. fromthe tip of the forebodynose.Additional transitionstripswereplacedonbothupperandlowersurfacesof thewingsat 5percentof theroot chordto 10per-centof thetip chord.

Presentation of Results

The results of this investigation are presented

in both tabular and plotted form. Table 1 is anindex to the results contained in tables 2 to 13.

The computer symbols appearing in these tables are

defined in the Symbols section of the paper with theircorresponding mathematical symbols. Only data for

the A/B powered nozzle are presented in plotted formin this report. However, all data are tabulated.

Discussion

Pitch Thrust Vectoring

Static performance. The effect of cutback side-

walls on nozzle static performance for the afterburner

power nozzles with geometric pitch vector angles

of 0 ° and 15 ° is presented in figures 7 and 8, re-spectively. Static nozzle performance is presented

as internal thrust ratio F/Fi, internal gross thrust

ratio FG/Fi, resultant pitch vector angle @, and

nozzle discharge coefficient Wp/Wi. Both cutback

sidewall nozzle configurations at 6v,p = 0° had higherthrust performance than the full sidewall configura-

tion at overexpanded conditions (NPR less than de-

sign NPR). Similar effects were found for the dry

power nozzle (ref. 20).

Peak nozzle performance occurred between nozzle

pressure ratios of 4 and 5. Typically, the peak nozzle

performance is obtained at the jet nozzle pressure

ratio required for fully expanded flow (the design

pressure ratio), which for the current nozzles is 4.17.There is no effect of sidewall cutback on internal gross

thrust ratio at peak nozzle performance conditions

(fig. 7). Thus, there is no indication that cutbacksidewalls caused a decrease in the effective expansion

ratio of the nozzle that would have resulted in peak

performance occurring at a lower nozzle pressure

ratio. Earlier investigations showed that a reductionin effective nozzle expansion ratio would be expected

with cutback sidewalls (refs. 12 and 20),The effect of cutback sidewalls on nozzle per-

formance for the nozzle with a pitch vector an-

gle of 15 ° is presented in figure 8. As was the

case for the unvectored nozzle, both cutback side-

wall nozzle configurations had a higher thrust per-formance than the nozzle with full sidewalls at over-

expanded conditions. Differences in peak nozzle

performance were less than 1 percent of the internal

gross thrust ratio. A comparison between the unvec-

tored and vectored nozzles shows similar gross thrust

ratios indicating little or no losses due to flow turn-

ing. The pitch-vectoring concept was very effective

in that resultant pitch vector angles were produced

that were greater than the geometric pitch angle of

15 ° at all nozzle pressure ratios tested. Such large

pitch vector angles, typical of pitch vectoring by dif-

ferential flap deflection (refs. 9 to 13), are caused in

part by local overexpansion at the nozzle throat onthe lower flaps of the nozzle. This very localized re-

gion of overexpanded flow forms immediately down-stream of the throat and forces the exhaust flow to

overturn before expanding onto the lower flap.

Basic aeropropulsive performance. The effect

of cutback sidewalls on basic aeropropulsive per-

formance with the nozzle at zero pitch vector an-

gle is presented in figure 9. The variation of the

aeropropulsive parameter (F - D)/F i and total aft-

end drag coefficient with nozzle pressure ratio is

presented for Mach numbers from 0.60 to 1.20.

As expected, because of increased drag, the nero-

propulsive performance of all configurations de-

creased with increasing Mach number. Consistenttrends with a cutback sidewall are not evident at

subsonic Mach numbers (fig. 9(a)). However, dif-ferences in aeropropulsive performance of less than 1

percent occurred at typical operational pressure ra-

tios. At M = 1.20, the nozzle configuration with the

100-percent sidewalls had the highest aeropropulsive

performance over the entire NPR range tested.

At subsonic speeds, there are no consistent trends

in aft-end drag as the nozzle sidewall is cut back

(fig. 9(b)). However, the configuration with the 100-percent sidewalls had the lowest jet-off drag coeffi-

cient at all Mach numbers tested, and the configu-

ration with the 25-percent sidewalls had the highest

drag. This probably results from the cutback side-

walls having a steeper boattail angle than that of the

full sidewall (fig. 5(b)).

Pitch vectoring at forward speeds. The effect

of cutback sidewalls on total longitudinal character-

istics for the nozzles with geometric pitch vector an-

gles of 0 ° and 15 ° at a = 0° is presented in figures 10

and 11, respectively. Generally, the effect of cut-

back sidewalls was small. Similar results (not shown

in the figure) were found at c_ = 20 ° between the

100-percent and 25-percent sidewalls at M = 0.15

and 0.60. (See tables 2 and 4.)

The increment in C L or Cm between 6v,p = 0°

(fig. 10) and 6v,p = 15 ° (fig. 11) at jet-off conditions(NPR = 1.0) results from the aerodynamic flap effect

7

Page 12: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

of the deflectednozzledivergentflaps. (Seefig. 5.)As nozzlepressureratio increases,C L increases andCm becomes more negative for the pitch-vectored

configuration. The increase in lift coefficient with

increasing NPR is due primarily to the jet lift compo-

nent of the nozzle gross thrust and some jet-inducedlift. Jet-induced lift can be determined from the to-

tal aft-end aerodynamic lift coefficient CL presented

in tables 7 to 9. For this configuration with the

100-percent sidewalls, jet-induced lift varied from

about 20 to 30 percent of the total aft-end aero-

dynamic lift coefficient C L at Mach numbers from0.60 to 1.20. Similar results were obtained inreference 13.

The drag-minus-thrust coefficient varies nearly

linearly with nozzle pressure ratio regardless of pitch

thrust vector angle. The differences between CD_ F

for _v,p = 0° and CD_ F for _v,p = 15 ° result both

from thrust losses caused by turning the exhaust vec-

tor away from the axial direction and from generally

higher drag on the 5v,p = 15 ° configuration. (Seetable 7.) Increasing the magnitude of negative num-

bers for CD-F indicates improved performance from

either higher thrust or lower drag.

The effect of angle of attack on the total aft-

end longitudinal aerodynamic characteristics for thenozzle with 100-percent and 25-percent sidewalls is

presented in figures 12 and 13, respectively. Theincrement in lift or pitching-moment coefficient that

results from changing the nozzle pitch vector angle

from 0 ° to 15 °, at either jet-off or jet-on conditions,

remains essentially constant over the entire angle-

of-attack range for all Mach numbers tested. Thus,

there is also no effect of pitch thrust vectoring on lift-

curve slope and longitudinal stability characteristics.Similar results are reported in references 9 and 10.

Longitudinal control power. Longitudinal control

power and lift effectiveness due to thrust vectoring

are presented in figure 14. These parameters at a

constant Mach number are only a function of nozzle

pressure ratio because the aerodynamic increments

that resulted from thrust vectoring were independent

of angle of attack. The decrease in control power thatoccurs as Mach number increases is the result of a

decrease in thrust (at constant NPR). The decrease

in thrust is caused primarily by the decrease in free-

stream static pressure as Mach number increases and,

to a lesser extent, by free-stream dynamic pressureeffects.

A comparison of longitudinal control power Cm_from powered and aerodynamic controls is presentedin figure 15 as a function of Mach number at _ =

0 °. Longitudinal control power from pitch vectoringwas obtained for each Mach number shown at a

typical operating pressure ratio. These operating

pressure ratios are indicated in the keys of figure 12.

Longitudinal control power from pitch vectoring 2-D

C-D nozzles on an F-18 aircraft model (ref. 13)

and a supersonic cruise fighter (ref. 10) is shownin figure 15. Longitudinal control power generated

by the horizontal tail for the current configuration

(ref. 21), for the F-18 aircraft model (ref. 13), and by

a canard (ref. 10) is also presented in this figure. Note

that symbols are used to distinguish longitudinal

control power from pitch vectoring and that lines areused to denote aerodynamic controls.

At low speed, pitch vectoring provided a signif-icant increase in longitudinal control power when

compared with the horizontal tail (fig. 15). Simi-lar results for the other configurations are presented

in reference 9. The decrease in value of the pow-

ered controls with increasing Mach number is caused

by the decrease in thrust discussed previously. Be-

cause aerodynamic controls are usually sized for low

speed, they are generally more effective than is re-

quired at high speeds. Thus, thrust vectoring could

be used to augment the control power provided by

aerodynamic controls, particularly at low speeds. For

an aircraft design utilizing pitch thrust vectoring to

augment aircraft control, the size of the aerodynamicsurfaces could be reduced, and this reduction would

likely reduce the drag.

Yaw Thrust Vectoring

Static performance. The effect of yaw thrust vec-

toring utilizing asymmetric sidewall cutback (trans-

lating sidewall concept) at static conditions is pre-sented in figure 16. This yaw-vectoring concept

produced rather small (less than 3 ° ) values of re-

sultant yaw vector angles. At overexpanded nozzle

operating conditions (NPR < (NPR)des), the mea-sured yaw vector angles were positive; at under-

expanded nozzle operating conditions (NPR > 4.2),the yaw vector angles were negative. This effect of

thrust direction varying with pressure ratio is com-

mon in nonaxisymmetric nozzles whenever one flapis longer than the other relative to the exhaust flow

centerline. It occurs for both unvectored and vec-

tored single-expansion-ramp nozzles (see, for exam-

ple, refs. 13 and 22) and some vectored 2-D C-D noz-

zles where rotation of the individual flaps takes place

about axes near the throat. This type of nozzle ge-

ometry presents expansion surfaces of unequal lengthfor the flow to work against; thus, one side of the

exhaust flow is contained longer by a flap (in this in-vestigation, by the inboard sidewall) while the other

side of the exhaust flow is unbounded. The change

in the direction of the resultant yaw vector angles

as nozzle operation changes from overexpanded to

Page 13: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

underexpandedindicatesthat the translatingside-wall conceptmay not be feasiblein generatingdirectionalcontrolat transientengineoperatingcon-ditions.This trendin yawvectoranglewith increas-ing NPRwasreportedasa resultof anearlierstaticstudy (ref. 15). However,the magnitudeof the re-sultantyawanglesis sosmall(seefig. 16)that littleusefuldirectionalcontrolcouldbeprovidedovertherangeof NPR'stested.Largeryawvectoranglesathighernozzlepressureratioswouldresultfromtrans-latingthesidewallupto orpastthenozzlethroat,butsuchsidewalltranslationwouldprobablydecreaseFG/F i. (See ref. 15.)

Yaw vectoring at forward speeds. The effect

of yaw thrust vectoring on the total aft-end lateral

aerodynamic characteristics is presented in figures 17and 18. The variation of the lateral characteristics

with NPR at c_ = 0 ° is shown in figure 17, whereas

the effect of angle of attack with jet off and constantNPR is shown in figure 18.

The variations in wind-on lateral characteristics

with NPR shown in figure 17 would be expectedfrom the static results discussed previously. (See

fig. 16.) The changes in direction of both Cn,t and

Cy, t are caused by the change in directions of 6y asthe nozzle operation changes from overexpanded to

underexpanded conditions. Thus, as discussed ear-

lier, yaw vectoring by truncated sidewalls may notbe feasible in producing positive yaw control over

the operational NPR range without further nozzle

geometry variations. As shown in figure 18, yawingmoment and the increment in Cn resulting from side-

wall translation were essentially independent of angle

of attack. The insensitivity of the Cn increment to

is identical to the results discussed previously for

pitch thrust vectoring on the longitudinal character-istics.

Internal Static Pressure Distributions

Internal static pressure distributions for the A/B

power nozzle with 100-percent sidewalls and 6v,p =

0° are presented in figure 19. As shown in fig-

ure 6(b), pressures were measured along the center-

line of the top and bottom divergent flap as well asoutboard and inboard locations on the bottom di-

vergent flap. In general, the measured internal static

pressure distributions are similar to those measuredin conventional round nozzles. For NPR = 2.0 at

M = 0, for example, the static pressures on the noz-

zle (fig. 19(a)) show a typical sudden pressure riseacross the exhaust-flow normal shock. As expected,there was little or no effect of external flow on the

internal pressure distributions at constant NPR.

The effect of nozzle pressure ratio on the internal

static distributions for the A/B power nozzle with

the 100-percent sidewalls and 6v,p = 15 ° is presented

in figure 20. The results indicate a highly inclinedthroat at static conditions as the flow becomes sonic

(P/Pt,j = 0.528) on the top flap at x/1 = 0.67. Thereis little or no effect of Mach number on these in-

ternal static pressure distributions at constant NPR

(fig. 20).The effect of 50- and 25-percent-cutback sidewalls

on internal nozzle pressure characteristics is shown

in figures 21 and 22, respectively. As shown, the ini-

tial 50-percent-cutback sidewall produces flow sepa-

ration along the outboard portion of the bottom flap

(fig. 21(a)). Additional truncation of the sidewall

enlarges the separation region and begins to affectthe nozzle centerline pressures along the bottom flap

(fig. 22(a)). As would be expected, the separated re-

gion on the nozzle flap decreases as nozzle pressureratio is increased. Similar effects due to cutback side-

walls would be expected to occur for the unvectored

nozzle and are typical for this type of nozzle (refs. 20

and 22). There was little or no effect of external

flow on the internal static pressure distribution atconstant NPR.

External Static Pressure Distributions

Afterbody/nozzle pressure distributions for the

model with a nozzle pitch vector angle of 0 ° and 100-

percent sidewalls are presented in figure 23. Pres-

sures were measured only on the top surface of the

afterbody/nozzle as shown in figure 6(a). These pres-sure distributions show typical results of a large ex-

pansion at the start of the afterbody boattail and a

recompression along the afterbody and nozzle. At

subsonic speeds, pressure recovery to positive values

of pressure coefficient on the nozzle with the 100-percent sidewalls (fig. 23) can produce negative val-

ues of nozzle drag as previously reported in refer-

ence 23 for the configuration with the nozzle in the

dry power mode. Figures 24 and 25 present similar

afterbody/nozzle pressure distributions for the noz-zles with 50- and 25-percent-cutback sidewalls and

show essentially no effect of cutback sidewall.

The effect of nozzle pressure ratio on afterbody/

nozzle pressure distributions for the model with a

nozzle pitch vector angle of 15 ° and 100-percent side-

walls is presented in figure 26. Thrust vectoring re-duces the recompression of the flow on the afterbody/

nozzle upper surfaces. In general, vectoring tends toincrease pressures on the lower surface of the config-

uration which generally results in some induced lift

being generated.The effect of cutback sidewall on the afterbody/

nozzle pressure distributions is presented in figures 27

to 30 for the pitch-vectored nozzle. At NPR < 3.5,

Page 14: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

pressuresaremorepositiveasthe nozzlesidewallsarecut back,whereasat NPR= 6.0,pressuresaremorenegative. The largesteffectof the cutbacksidewalloccursontheoutboardportionofthesurfaceof the afterbody/nozzle.As nozzlepressureratioincreases,jet entrainmenteffectsprobablydominatethe flow field and morenegativepressuresresultfrom the pumpingactionof the vectoredexhaust.However,there is probablya pressurizationof thelowersurfaceundertheseconditionsbecausecutbacksidewallshad little or no effecton the afterbodyforcesandmoments(fig. 11).

Conclusions

An investigation has been conducted in the Lang-

ley 16-Foot Transonic Tunnel to determine the thrust

vectoring capability of two-dimensional convergent-

divergent nozzles installed on a twin-engine general

research fighter model. Pitch vectoring was accom-

plished by differential deflection of the nozzle upper

and lower divergent flaps. The effects of nozzle side-wall cutback were studied for both unvectored and

pitch-vectored nozzles. A single cutback sidewall was

employed for yaw thrust vectoring. This investiga-

tion was conducted at Mach numbers from 0 to 1.20,

at angles of attack from -2 ° to 35 ° , and at nozzle

pressure ratios up to 9. An analysis of the results of

this investigation indicates the following conclusions:

1. Nozzle sidewall cutback caused little or no

effect on peak static nozzle performance for both

unvectored and pitch-vectored nozzles.

2. Thrust-minus-drag performance for the unvec-

tored nozzle configurations varied less than 1 percent

at subsonic speeds, thus showing the relative insen-

sitivity of installed performance to nozzle sidewallcutback.

3. At static conditions, resultant pitch vector an-

gle was always greater than the geometric pitch vec-

tor angle.4. The increment in either the force or moment

coefficient that resulted from pitch or yaw vectoring

remained essentially constant over the entire angle-

of-attack range for all Mach numbers tested.

5. Longitudinal control power was a function of

nozzle pressure ratio and Mach number. Powered

controls were very effective at low Mach numbers,but their effectiveness decreased as Mach number

increased because of a reduction in thrust.

6. Longitudinal control power from thrust vector-

ing was greater than that provided by aerodynamic

controls at low speeds.

7. The yaw vectoring configuration tested was in-

effective at producing yaw vectoring at nozzle pres-sure ratios typical for operation at subsonic Mach

numbers. Negative yaw vector angles were gener-ated at underexpanded nozzle operating conditions,

but positive yaw vector angles were found at over-

expanded nozzle operating conditions for a nozzle us-

ing a single cutback sidewall to produce yaw thrust

vectoring.

NASA Langley Research CenterHampton, VA 23665-5225December 5, 1989

10

Page 15: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Appendix relationship:

Data Reduction and Calibration Procedure

Calibration Procedure

The main balance measured the combined forces

and moments due to nozzle gross thrust and theexternal flow field of that portion of the model aft of

FS 44.75. The afterbody balance measured the forcesand moments due to the external flow field exerted

over the afterbody between FS 48.25 and 66.25.

Force and moment interactions exist between the

bellows-flow transfer system (fig. 4) and the mainforce balance because the eenterline of this balance

is below the jet centerline (fig. 1). Consequently,

single and combined loadings of normal force, axial

force, and pitching moment were made with andwithout the jets operating with Stratford calibration

nozzles (ref. 17). These calibrations are performedwith the jets operating because this condition gives

a more realistic effect of pressurizing the bellows

than does capping off the nozzles and pressurizing

the flow system. Thus, in addition to the usual

balance-interaction corrections applied for a single

force balance under combined loads, another set

of interactions was applied to the data from this

investigation to account for the combined loadingeffect of the main balance with the bellows system.

These calibrations were performed over a range ofexpected normal forces and pitching moments. Note

that this procedure is not necessary for the afterbody

balance because the balance is not bridged by the

flow system.

Data Corrections

In order to achieve desired axial-force terms, the

axial forces measured by both force balances must

also be corrected for pressure-area tare forces acting

on the model, and the main balance must be cor-

rected for momentum tare forces caused by flow in

the bellows. The external seal and internal pressure

forces on the model were obtained by multiplying the

difference between the average pressure (external seal

or internal pressures) and free-stream static pressure

by the affected projected area normal to the modelaxis. The momentum tare force was determined from

calibrations using the Stratford choke nozzles prior to

the wind-tunnel investigation.

Axial force minus thrust was computed from

the main balance axial force from the following

F A - Fj = F A Mbal + (Pes,1 -- P_c)(Amb,1 - Aseal,1)

+ (Pi - Pcc)Aseal,1 - FA,mom - D/

(A1)

where the first term FA,Mbal includes all pressureand viscous forces (internal and external on both

the afterbody and thrust system). The second andthird terms account for the forward seal rim and

interior pressure forces, respectively. In terms of

an axial-force coefficient, the second term rangesfrom -0.0001 to -0.0007 and the third term varies

-t-0.0075 depending upon Mach number and pressure

ratio. The internal pressure at any given set of

test conditions was uniform throughout the inside

of the model, thus indicating no cavity flow. The

monmntum tare force FA,mo m is a momentum tarecorrection with jets operating and is a function of the

average bellows internal pressure, which is a function

of the internal chamber pressure in the supply pipes

just ahead of the sonic nozzles (fig. 5). Although

the bellows were designed to minimize momentum

and pressurization tares, small bellows tares still

exist with the jet on. These tares result from smallpressure differences between the ends of the bellows

when internal velocities are high and also from small

differences in the spring constants of the forward

and aft bellows when the bellows are pressurized.

The last term Df is the friction drag of the sectionfrom FS 44.75 to 48.25. A friction drag coefficient

of 0.0004 was applied at all Mach numbers. No

corrections were applied to the forces and moments

for the effects of angle of attack on this section.

The afterbody axial force is computed from a

similar relationship:

Raft = FA,Sbal + (Pes,2 -- Poc) (Arab,1 -- Aseal,1)

+ (Pi -Poc)Aseal,2 + (Pes,3 -Poc)

+ (Arab,2 - Aseal,2 ) (A2)

Since both balances are offset from the model cen-

terline, similar adjustments are made to the pitchingmoments measured by both balances. These adjust-

ments are necessary because both the pressure areaand bellows momentum tare forces are assumed to

act along the model centerline. The pitching-moment

tare is determined by multiplying the tare force by

the appropriate moment arm and subtracting the

value from the measured pitching moments.

11

Page 16: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Model Attitude

The adjusted forces and moments measured by

both balances are transferred from the body axis

of the metric portion of the model to the stability

axis. The attitude of the nonmetric forebody rel-ative to gravity was determined from a calibratedattitude indicator located in the model nose. The

angle of attack a, which is the angle between the

afterbody centerline and the relative wind, was de-

termined by applying terms for afterbody deflection(caused when the model and balance bend under

aerodynamic load) and a flow angularity term to theangle measured by the attitude indicator. The flow

angularity correction was 0.1 °, which is the aver-

age angle measured in the Langley 16-Foot TransonicTunnel.

Thrust-Removed Data

The resulting external and internal thrust forceand moment coefficients from the main balance in-

clude total lift coefficient CL,t, drag minus thrustcoefficient CD_F, total pitching-moment coefficient

Cm,t, total rolling-moment coefficient Cl,t, total-yawing-moment coefficient Cn,t, and total side-force

coefficient C_: t. Force and moment coefficients fromthe afterbody balance are afterbody lift coefficient

CL,af t, afterbody drag coefficient CD,aft, and after-

body pitching-moment coefficient Cm,aft.

The thrust-removed aerodynamic force and mo-ment coefficients for the entire model were obtained

by determining the components of thrust in axial

force, normal force, pitching moment, rolling mo-

ment, yawing moment, and side force, and thenby subtracting these values from the measured to-

tal (aerodynamic plus thrust) forces and moments.

These thrust components at forward speeds weredetermined from measured static data and were a

function of the free-stream static and dynamic pres-sures. The thrust-removed aerodynamic coefficientsare given as follows:

CL = CL,t -- Jet lift coefficient (A3)

CD -- CD_ F -.b Thrust coefficient (A4)

Cm = Cm,t - Jet pitching-moment coefficient (A5)

CI = Cl,t - Jet rolling-moment coefficient (A6)

Cn = Cn,t - Jet yawing-moment coefficient (AT)

Cy = Cy, t - Jet side-force coefficient (A8)

The nozzle coefficients are obtained by simply com-bining the measured results from both force balancesas follows:

CL,n = CL -- CL,aft (A9)

CD,n = CD -- CD,aft (A10)

Cm,n = Cm - Cm,aft (All)

Volume Coefficients

To facilitate the analysis of control-power char-acteristics, a powered volume coefficient is defined.

(See ref. 9.) The volume coefficient of the horizontaltail is

V- St LtS-_

where St is the horizontal tail area and Lt is thedistance from the moment reference center to the

quarter-chord of the tail. The pitch vectoringpowered-volume coefficient is defined as

where At is the nozzle throat area and Lj is thedistance from the moment reference center to the

nozzle throat. The throat area is multiplied by 2because the configuration reported on herein is atwin-engine model.

12

Page 17: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

References

1. Herbst, W. B.: Future Fighter Technologies. J. Aircr.,

vol. 17, no. 8, Aug. 1980, pp. 561-566.

2. Gallaway, C. R.; and Osborn, R. F.: Aero-

dynamics Perspective of Supermaneuverability. AIAA-85-

4068, Oct. 1985.

3. Hienz, Egon; and Vedova, Ralph: Requirements, Defini-

tion and Preliminary Design for an Axisymmetric Vector-

ing Nozzle, To Enhance Aircraft Maneuverability. AIAA-

84-1212, June 1984.

4. Skow, Andrew M.; Hamilton, William L.; and Taylor,

John H.: Advanced Fighter Agility Metrics. AIAA-85-

1779, Aug. 1985.

5. Miller, L. Earl: Post Stall Maneuvers and Thrust Vec-

toring Performance Analysis. AFWAL-TR-84-3109, U.S.

Air Force, July 1984. (Available from DTIC as AD A158

100.)

6. Richey, G. K.; Surber, L. E.; and Berrier, B. L.: Airframe-

Propulsion Integration for Fighter Aircraft. AIAA-83-

0084, Jan. 1983.

7. Nelson, B. D.; and Nicolai, L. M.: Application of Multi-

Function Nozzles to Advanced Fighters. AIAA°81-2618,

Dec. 1981.

8. Mello, J. F.; and Kotansky, D. R.: Aero/Propulsion

Technology for STOL and Maneuver. AIAA-85-4013,

Oct. 1985.

9. Capone, Francis J.; and Mason, Mary L.: Multiaxis

Aircraft Control Power From Thrust Vectoring at High

Angles of Attack. NASA TM-87741, 1986.

10. Capone, Francis J.; and Bare, E. Ann: Multiaxis Control

Power From Thrust Vectoring for a Supersonic Fighter

Aircraft Model at Mach 0.20 to 2.47. NASA TP-2712,

1987.

11. Capone, Francis J.: Static Performance of Five Twin-

Engine Nonaxisymmetric Nozzles With Vectoring and Re-

versing Capability. NASA TP-1224, 1978.

12. Capone, Francis J.; and Reubush, David E.: Effects of

Varying Podded Nacelle-Nozzle Installations on Transonic

Aeropropulsive Characteristics of a Supersonic Fighter

Aircraft. NASA TP-2120, 1983.

13. Capone, Francis J.; and Berrier, Bobby L.: Investigation

of Axisymmetric and Nonaxisymmetric Nozzles Installed

on a 0.10-Scale F-18 Prototype Airplane Model. NASA

TP-1638, 1980.

14. Mason, Mary L.; and Berrier, Bobby L.: Static In-

vestigation of Several Yaw Vectoring Concepts on Non-

axisymmetric Nozzles. NASA TP-2432, 1985.

15. Mason, Mary L.; and Berrier, Bobby L.: Static Perfor-

mance of Nonaxisymmetric Nozzles With Yaw Thrust-

Vectoring Vanes. NASA TP-2813, 1988.

16. Taylor, John G.: A Static Investigation of a Simultaneous

Pitch and Yaw Vectoring 2-D C-D Nozzle. AIAA-88-2998,

July 1988.

17. Peddrew, Kathryn H., compiler: A User's Guide to the

Langley 16-Foot Transonic Tunnel. NASA TM-83186,

1981.

18. Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.;

Grayston, Alan M.; and Sherman, C. D.: Computations

for the 16-Foot Transonic Tunnel--NASA, Langley Re-

search Center, Revision 1. NASA TM-86319, 1987. (Su-

persedes NASA TM-86319, 1984.)

19. Stevens, H. L.; Thayer, E. B.; and Fullerton, J. F.: De-

velopment of the Multi-Function 2-D/C-D Nozzle. AIAA-

81-1491, July 1981.

20. Yetter, Jeffery A.; and Leavitt, Laurence D.: Effects

of Sidewall Geometry on the Installed Performance of

Nonaxisymmetric Convergent-Divergent Exhaust Nozzles.

NASA TP-1771, 1980.

21. Capone, Francis J.; and Mason, Mary L.: Interference Ef-

fects of Thrust Reversing on Horizontal Tail Effectiveness

of a Twin-Engine Fighter Aircraft at Mach Numbers From

0.15 to 0.90. NASA TP-2350, 1984.

22. Re, Richard J.; and Leavitt, Laurence D.: Static Internal

Performance Including Thrust Vectoring and Reversing of

Two-Dimensional Convergent-Divergent Nozzles. NASA

TP-2253, 1984.

23. Capone, Francis J.; and Carson, George T., Jr.: Effects

of Empennage Surface Location on Aerodynamic Charac-

teristics of a Twin-Engine Afterbody Model With Non-

axisymmetric Nozzles. NASA TP-2392, 1985.

13

Page 18: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 1. Index to Data in Tables 2 to 13

Table

2, 34

5

6

7

8

9

10, 11

12, 13

Power

settingAfterburner

!

Dry

Sidewall,

left/right

100/100 A/B

50/50 A/B

25/25 A/B

100/100 dry

100/100 A/B

50/50 A/B

25/25 A/B

100/25 A/B

100/25 A/B

_v,p, deg0

15

15

15

0

0

14

Page 19: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table2. LongitudinalAerodynamicCharacteristicsfor A/B NozzleWith 100/100A/B Sidewallsand_v,p= 0°

(a) Total aft end

MACH NPR ALPHA CLT C(D-F) CMT CL CD CM

.99

3.01

4.96

6.99

8.97

.99

.98

93

90

88

80

70

67

7.03

7.00

6.96

7.02

7.05

6.99

7.00

6.99

1.I0

1.98

3.01

4.99

7.00

i. I0

i.i0

1.09

i. I0

I.i0

i. I0

1.09

1.07

5.01

5.00

5.01

4.99

5.00

5.01

4.99

5.O0

.00 -.0098

.02 -.0100

.04 -.0109

.04 -.0114

.03 -.0111

-2.02 -.0224

.01 -.0091

3.01 .0063

5.98 .0223

9.03 .0358

12.02 .0486

16.01 .0655

18.01 .0747

-2.01 -.0218

-.02 -.0093

3.02 .0083

6.01 .0287

8.98 .0479

11.99 .0660

16.02 .0896

17.98 .1008

-.01 -.0107

-.02 -.0088

.00 -.0097

.02 -.0097

.00 -.0101

-2.01 -.0086

-.02 -.0090

2.99 -.0044

6.01 -.0062

8.99 -.0021

12.01 .0141

16.01 .0299

18.02 .0382

-1.99 -.0125

.00 -.0098

3.03 .0003

5.99 .0037

9.00 .0141

12.01 .0356

16.02 .0605

18.01 .0734

1.201

1.202

1.202

1.203

1.202

1.199

1.202

1.201

1.198

1.200

1.198

1.200

1.202

1.199

1.201

1.201

1.203

1.201

1.199

1.200

I 199

903

9OO

901

898

9OO

899

902

.899

.901

.901

.902

.899

.899

9OO

901

901

899

901

903

900

901

.0166 0031

-.0151 0069

-.0450 0117

-.0773 0156

-.1087 0183

.0178 0137

.0165 0026

.0178 -.0083

.0212 -.0201

.0271 -.0294

.0371 -.0455

.0479 -.0634

.0542 -.0738

-.0764 .0203

-.0769 .0147

-.0755 .0083

-.0732 -.0024

-.0679 -.0144

-.0590 -.0289

-.0476 -.0473

-.0417 -.0558

.0033 0059

-.0245 0066

-.0511 0110

-.1054 0168

-.1605 0224

.0033 0038

.0034 0054

.0029 0056

.0022 0075

.0029 0064

.0074 -.0033

.0173 -.0152

.0248 -.0225

-.1052 .0152

-.1055 .0169

-.1060 .0167

-.1064 .0190

-.1050 .0175

-.0992 .0075

-.0874 -.0066

-.0785 -.0151

-.0098

-.0100

-.0109

-.0115

-.0112

-.0224

-.0091

0063

0223

0359

0487

0656

0748

-.0186

-.0093

0036

0192

0337

0471

0645

0726

-.0107

-.0088

-.0097

-.0097

-.0101

-.0086

-.0090

-.0044

-.0062

-.0020

.0142

.0300

.0384

-.0088

-.0098

-.0054

-.0076

-.0028

.0131

.0307

.0401

0166

0158

0153

0136

0121

0178

0165

0178

0212

0271

0371

0479

0542

0155

.0144

.0149

.0175

.0229

.0304

.0402

.0453

.0033

.0034

.0040

.0033

.0020

.0033

.0034

.0029

.0022

.0029

.0074

.0173

.0248

.0033

.0029

.0023

.0016

.0022

.0066

.0168

.0245

0031

0041

0060

0069

0066

0137

0026

-.0083

-.0201

-.0294

-.0455

-.0634

-.0738

.0114

.0060

-.0005

-.Oll2

-.0233

-.0376

-.0561

-.0646

.0059

.0042

.0059

.0065

.0068

.0038

.0054

.0056

.0075

.0064

-.0033

-.0152

-.0225

.0049

.0066

.0063

.0087

.0072

-.0O28

-.0170

-.0254

15

Page 20: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 2. Continued

(a) Continued

MACH

.601

.599

.601

602

603

604

600

602

603

601

600

600

598

599

6OO

•602

.599

.598

599

600

601

597

602

602

.602

•601

.600

.599

.599

•600

.600

.598

.599

.599

.598

.596

.600

.600

NPR

1.03

1.99

3.00

3.52

5.01

1.03

1.03

1.03

1.03

1.03

1.03

1.02

1.02

3.51

3.52

3.51

3.50

3.49

3.49

3.49

3.50

1.02

2.02

3.05

3.51

5.01

1.02

1.02

1.02

1.00

.99

.96

3.53

3.46

3.49

3.48

3.50

3.5O

ALPHA

.01

.02

-.02

-.02

-.02

-1.94

.00

3.01

6.00

9.00

12.02

16.00

18.03

-1.85

.01

3.00

5.97

8.99

12.00

15.99

18.00

20.01

20.01

20.01

20.00

20.02

16.63

17.99

19.98

23.97

27.98

31.99

16.79

17.99

19.98

23.96

27.97

31.98

CLT

-.0111

-.0090

-.0096

-.0092

-.0087

-.0065

-.0045

-.0023

.0013

.0052

.0099

.0255

.0340

-.0118

-.0050

0062

0172

0296

0429

0692

0827

0413

0633

0843

.0938

.1251

.0267

.0321

.0396

.0572

.0769

.0921

.0710

.0785

.0925

.1216

.1542

.1822

C(D-F)

.0037

-.0609

-.1194

-.1501

-.2386

.0052

.0043

.0040

.0042

.0052

.0068

.0127

.0176

-.1504

-.1509

-.1490

-.1490

-.1471

-.1437

-.1346

-.1279

.0234

-.0393

-.0958

-.1220

-.2085

.0144

.0173

.0225

.0375

.0584

.0831

-.1360

-.1281

-.1231

-.1047

-.0771

-.0455

CMT

0O55

0101

0171

0199

0283

0033

0031

0032

.0016

-.0013

-.0059

-.0182

-.0241

.0195

.0187

.0176

.0165

.0131

.0079

-.0055

-.0119

-.0293

-.0236

-.0189

-.0166

-.0086

-.0196

-.0232

-.0292

-.0463

-.0714

-.I010

-.0057

-.0098

-.0160

-.0354

-.0661

-.1007

CL

-.0111

-.0090

-.0096

-.0092

-.0087

-.0065

-.0045

-.0023

.0013

.0052

.0100

.0256

.0341

-.0068

-.0050

-.0018

.0012

.0056

.0110

.0272

.0356

.0415

.0412

.0415

.0416

.0415

.0268

.0322

.0398

.0573

.0771

.0923

.0262

.0318

.0402

.0591

.0825

.1013

CD

.0037

•0032

.0043

.0034

•0038

.0052

.0043

.0040

.0042

.0052

.0068

.0127

.0176

.0040

.0037

.0037

.0039

.0049

.0067

.0125

.0174

.0234

.0218

.0223

.0220

.0213

.0144

.0173

.0226

.0375

0585

0832

0129

0162

0213

0364

0583

0844

CM

.0055

.0046

.0056

.0054

.0052

.0033

.0031

.0032

.0016

-.0013

-.0059

-.0182

-.0241

.0050

.0042

.0032

.0021

-.0013

-.0066

-.0198

-.0262

-.0293

-.0292

-.0306

-.0310

-.0320

-.0196

-.0232

-.0292

-.0463

-.0714

-.I010

-.0203

-.0240

-.0304

-.0499

-.0805

-.1151

16

Page 21: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 2. Continued

(a) Concluded

MACH

152

153

153

153

154

151

151

152

152

152

152

151

.151

153

153

154

154

154

151

151

150

152

151

152

152

145

149

151

151

151

151

151

151

150

152

152

152

152

152

152

151

NPR

1.00

2.02

2.60

3.00

3.81

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

2.63

2 65

2 62

2 62

2 63

2 62

2 62

2.62

1.00

2.03

2.58

3.01

3.83

3.83

1.00

1.00

1.00

1.00

1.00

1.00

i.O0

2.58

2.64

2.63

2.63

2.63

2.63

2.63

ALPHA

.00

-.01

.00

.00

.00

-1.53

-.01

2.98

6.02

8.98

11.99

16.02

17.99

-1.54

.04

3.02

6.00

9.00

12.00

16.01

18.00

19.99

19.98

19.98

19.99

19.98

19.99

15.98

17.98

19.98

23.98

27.98

31.99

35.18

15.97

17.97

19.97

23.97

27.97

31.97

34.98

CLT

.0073

.0193

.0102

.0056

.0041

.0062

.0097

.0121

.0157

.0247

.0276

.0403

.0469

-.0412

-.0012

.0846

.1648

.2496

.3478

.4743

.5389

.0330

.3900

.5604

.6946

1.0548

.9980

.0310

.0507

.0573

.0685

.0937

.1085

.1125

.4668

.5467

.5949

.7119

.8189

.9369

1.0213

C(D-F)

.0085

-1.0161

-1.5133

-1.8833

-2.6051

-.0033

.0017

-.0016

-.0034

-.0005

.0049

.0076

.0104

-1.5609

-1.5664

-1.5270

-1.5273

-1.5146

-1.5540

-1.5296

-1.5157

.0228

-.9462

-1.4225

-1.7909

-2.7861

-2.6255

.0116

.0171

.0249

.0354

.0586

.0800

.0977

-1.4334

-1.4758

-1.4438

-1.4010

-1.3410

-1.2771

-1.2245

CMT

-.0060

.0737

.1304

.1798

.2522

-.0012

-.0018

-.0018

-.0009

-.0065

-.0104

-.0207

-.0261

1499

1529

1432

1447

1416

1422

1286

1235

-.0294

.0594

.1153

.1581

.2645

.2477

-.0179

-.0305

-.0360

-.0446

-.0655

-.0874

-.1028

.1159

.1162

.1143

.1055

.0903

.0695

.0503

CL

.0073

.0194

.0102

.0055

.0040

.0062

.0097

.0121

.0157

.0247

.0276

.0404

.0471

.0011

-.0024

.0035

.0034

.0083

.0159

.0313

.0409

.0331

.0377

.0327

.0334

.0357

.0363

.0311

.0508

.0574

.0687

.0939

.1087

.1127

.0458

.0547

.0551

.0670

.0742

.0915

.0984

CD

.0085

-. 0036

.0141

.0122

.0018

-.0033

.0017

-.0016

-.0034

-.0005

.0049

.0076

.0104

.0087

.0101

.0100

.0084

.0090

.0076

.0147

.0175

.0228

.0236

.0289

.0274

.0168

.0191

.0116

.0172

.0250

.0354

.0587

.0801

.0978

.0385

.0413

.0420

.0496

.0617

.0777

.0948

CM

-.0060

-.0135

-.0083

.0044

.0059

-.0012

-.0018

-.0018

-.0009

-.0065

-.0104

-.0207

-.0261

.0071

.0094

.0033

.0043

.0013

-.0030

-.0175

-.0231

-.0294

-.0295

-.0247

-.0210

-.0174

-.0184

-.0179

-.0305

-.0360

-.0446

-.0655

-.0874

-.1028

-.0229

-.0290

-.0295

-.0389

-.0542

-.0758

-.0962

17

Page 22: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 2. Continued

(b) Afterbody and nozzle

MACH NPR ALPHA CLAFT CDAFT CMAFT CLN CDN CMN

1.201

1.202

1.202

1.203

1.202

1 199

1 202

1 201

1 198

1 200

1 198

1 200

1 202

1 199

1 201

1 201

1.203

1.201

1.199

1.200

1.199

.903

.900

.901

.898

.900

.899

.902

.899

.901

.901

.902

.899

.899

.900

.901

.901

.899

.901

.903

.900

.901

.99

3.01

4.96

6.99

8.97

.99

.98

.93

.90

.88

.80

.70

.67

7.03

7.00

6.96

7.02

7.05

6.99

7.00

6.99

1.10

1.98

3.01

4.99

7. O0

I.I0

I.I0

1.09

I.I0

1.10

1.10

1.09

1.07

5.01

5. O05.01

4.99

5.005.01

4.99

5.00

.00

.02

.04

.04

.03

-2.02

.01

3.01

5.98

9.03

12.02

16.O1

18.01

-2.01

-.02

3.02

6.01

8.98

11.99

16.02

17.98

-.01

-.02

.00

.02

.00

-2.01

-.02

2 99

60l

8 99

12 Ol

16 Ol

18 02

-1.99

.00

3.03

5.99

9.00

12.01

16.02

18.01

-.0081

-.0079

-.0078

-.0080

-.0078

-.0163

-.0078

.0036

.0174

.0301

.0405

.0534

.0594

-.0164

-.0084

.0036

.0182

.0300

0408

0536

0589

- 0033

- 0032

- 0033

- 0034

-.0034

-.0018

-.0032

-.0049

-.0060

-.0047

-.0005

.0138

.0189

-.0017

-.0032

-.0050

-.0055

-.0043

.0003

.0151

.0203

.0084

.0084

.0084

.0085

.0085

.0091

.0086

.0092

.0114

.0150

.0199

.0266

.0305

.0093

.0087

.0093

0116

0152

0199

0269

0305

0060

0055

0055

0054

0052

0059

0060

0059

0056

0058

0073

.0142

0188

0053

0054

0053

0050

0052

0070

0141

0187

.0077

.0075

.0075

.0075

.0074

.0145

.0073

-.0022

-.0153

-.0284

-.0418

-.0562

-.0632

.0144

.0078

-.0025

-.0163

- 0289

- 0421

- 0569

- 0626

0028

0027

0028

.0029

.0028

0010

0026

0051

0066

0070

0051

-.0055

-.0093

0009

0027

0054

0063

0067

0044

-.0071

-.0112

-.0017

-.0021

-.0031

-.0035

-.0034

-.0060

-.0013

.0027

.0050

.0058

.0082

.0122

.0154

-.0022

-.0009

.0000

.0011

.0037

0063

0110

0138

- 0075

- 0O56

- 0064

- 0063

- 0067

-.0069

-.0059

.0005

-.0002

.0027

.0147

.0162

.0195

-.0071

-.0066

-.0004

-.0021

.0015

.0129

.0156

.0198

.0082

.0074

.0069

.0051

.0036

.0086

.0080

.0086

.0098

.0121

.0172

.0213

.0237

.0063

.0057

.0056

.0059

0077

0105

0133

0149

- 0027

- OO20

- 0016

- 0021

-.0032

-.0026

-.0027

-.0030

-.0034

-.0029

.O000

.0031

.O061

-.0020

-.0024

-.0030

-.0034

-.0031

-.0003

.0027

.0058

-.0046

-.0034

-.0015

-.0007

-.0008

-.0008

-.0047

-.0061

-.0048

-.0010

-.0037

-.O071

-.O106

-.0030

-.0018

.0020

.0051

.0057

0044

0007

- 0020

0031

0015

0030

0035

.0040

.0028

.0028

.0005

.0009

-.0005

-.0084

-.0097

-.0132

.0039

.0039

.0009

.0023

.0005

-.0072

-.0099

-.0142

18

Page 23: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 2. Continued

(b) Continued

MACH

.601

.599

.601

.602

.603

.604

.600

.602

.603

•601

.600

.600

.598

.599

.600

.602

.599

598

599

600

601

597

602

602

602

601

600

599

599

6O0

.600

.598

.599

.599

.598

.596

.600

•600

NPR ALPHA CLAFT CDAFT CMAFT

1.03

1.99

3.00

3.52

5.01

1.03

1.03

1.03

1.03

1.03

1.03

1.02

1.02

3.51

3.52

3.51

3.50

3.49

3.49

3.49

3.50

1.02

2.02

3 05

3 51

5 01

1 02

1 02

1 02

1 00

.99

.96

3.53

3.46

3.49

3.48

3.50

3.50

.01

.02

-.02

-.02

-.02

-1.94

.00

3.01

6.00

9•00

12.02

16.00

18.03

-1.85

.01

3.00

5.97

8.99

12.00

15.99

18.00

20.01

20.01

20.01

20.00

20.02

16.63

17.99

19.98

23.97

27.98

31.99

16.79

17.99

19.98

23.96

27.97

31.98

-.0032

-.0031

-.0031

-.0029

-.0031

-.0041

-.0028

-.0019

-.0004

.0019

.0050

.0148

.0197

-.0035

-.0025

-.0016

-.0002

.0021

.0055

.0154

.0206

.0224

.0230

.0231

.0233

.0234

0149

0177

0223

0363

0510

0665

0156

0181

.0228

.0372

.0530

.0699

.0055 .0029

.0052 .0026

.0052 .0027

.0052 .0025

.0051 .0027

.0056 .0032

.0054 .0024

.0054 .0024

.0056 .0014

.0061 -.0007

.0072 -.0042

.0108 -.0137

.0133 -.0177

.0052 .0026

.0051 .0022

.0051 .0022

.0053 .0014

.0058 -.0008

.0069 -.0046

0105 -.0142

0133 -.0186

0156 -.0215

0156 -.0221

0156 -.0224

0157 -.0226

0157 -.0229

0109 -.0148

0125 -.0171

0156 -.0215

0255 -.0370

0389 -.0573

0566 -.0835

0109 -.0156

0123 -.0176

0155 -.0221

.0256 -.0382

.0398 -•0603

.0586 -.0886

CLN

-.0079

-.0059

-.0065

-.0062

-.0056

-.0025

-.0017

-.0004

.0017

.0033

.0050

.0108

.0144

-.0033

-.0025

-.0002

.0015

.0035

.0055

.0118

.0150

.0190

.0182

.0183

0183

0181

0119

0145

0174

0210

0261

0258

0106

.0137

.0174

.0219

.0295

.0314

CDN

-.0018

-.0020

-.0009

-.0018

-.0013

-.0004

-.0011

-.0015

-.0014

-.0009

-.0003

.0019

.0043

-.0011

-.0013

-.0014

-.0014

-.0009

-.0002

.0020

.0041

.0079

.0062

.0067

.0063

0056

0034

0048

0070

0121

0196

.0266

.0020

.0038

.0059

.0107

.0185

.0258

CMN

.0026

.0020

.0029

.0029

.0025

.0002

.0007

.0007

.0002

-.0006

-.0017

-.0045

-.0064

.0024

.0020

.0010

.0007

-.0005

-.0019

-.0057

-.0076

-.0078

-.0070

-.0082

-.0084

-.0091

-.0048

-.0062

-.0077

-•0093

-.0141

-.0175

-.0046

-.0064

-.0083

-.0117

-.0202

-.0264

19

Page 24: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 2. Concluded

(b) Concluded

MACH NPR ALPHA CLAFT CDAFT CMAFT CLN CDN CMN

152 1.00 .00

153 2.02 -.01

153 2.60 .00

153 3.00 .00

154 3.81 .00

151 1.00 -1.53

151 1.00 -.01

152 1.00 2.98

152 1.00 6.02

152 1.00 8.98

152 1.00 11.99

151 1.00 16.02

151 1.00 17.99

153 2.63 -1.54

153 2.65 .04

154 2.62 3.02

154 2.62 6.00

154 2.63 9.00

151 2.62 12.00

151 2.62 16.01

150 2.62 18.00

152 1.00 19.99

151 2.03 19.98

152 2.58 19.98

152 3.01 19.99

145 3.83 19.98

149 3.83 19.99

151 1.00 15.98

151 1.00 17.98

151 1.00 19.98

151 1.00 23.98

151 1.00 27.98

151 1.00 31.99

150 1.00 35.18

152 2.58 15.97

152 2.64 17.97

152 2.63 19.97

152 2.63 23.97

.152 2.63 27.97

.152 2.63 31.97

.151 2.63 34.98

-.0016

-.0032

-.0032

-.0031

-.0043

-.0020

-.0016

-.0017

-.0002

.0024

.0070

.0135

.0183

-.0021

-.0025

.0011

.0008

.0010

.0048

.0132

.0191

.0175

.0181

0181

0181

0167

0184

0103

0165

0206

0272

0392

0522

0575

0102

.0175

.0209

.0271

.0390

.0522

.0620

.0064

.0071

.0071

.0076

.0077

.0058

.0057

.0058

.0059

.0066

.0081

.0107

.0132

.0069

.0067

.0070

.0070

.0074

.0087

.0120

0147

0137

0141

0140

0142

0142

0147

0086

.0108

0130

0185

0288

0428

0521

0095

0122

0144

0195

0299

0440

0566

.0006

.0026

.0034

.0035

.0047

.0014

.OO11

.0028

.0017

-.0008

-.0062

-.0127

-.0174

.0024

.0033

-.0004

.0001

.0007

-.0043

-.0134

- 0197

- 0199

- 0211

- 0207

- 0208

- 0191

- 0210

- 0104

- 0172

-.0214

-.0270

-.0419

-.0611

-.0715

-.0094

-.0188

-.0218

-.0283

-.0426

-.0617

-.0783

.0088

.0226

.0134

.0086

.0083

.0082

.0113

.0138

.0159

.0224

.0206

.0269

.0288

.0032

.0001

.0024

.0026

.0073

0110

0180

0219

0156

0195

0146

0153

0190

0179

O208

0343

.0368

.0415

.0546

.0565

.0552

.0357

.0372

.0342

.0399

.0352

.0394

.0364

.0022

-.0106

.0070

.0047

-.0059

-.0091

-.0040

-.0075

-.0093

-.0071

-.0032

-.0030

-.0028

.0018

.0034

.0030

.0014

.0015

-.0011

.0026

.0028

.0091

.0095

.0150

.0132

.0026

0044

0030

0064

0120

0169

0299

0373

0457

0289

0290

0277

.0301

.0319

.0337

.0382

-.0065

-.0161

-.0117

.0010

.0012

-.0026

-.0030

-.0047

-.0026

-.0056

-.0041

-.0079

-.0087

.0047

.0061

.0037

.0042

.0006

.0014

-.0041

- 0034

- 0094

- 0084

- 0040

- O001

O017

0026

- 0075

-.0133

-.0146

-.0177

-.0236

-.0262

-.0312

-.0135

-.0101

-.0077

-.0106

-.0116

-.0141

-.0179

2O

Page 25: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 3. Lateral Aerodynamic Characteristics for A/B Nozzle With 100/100 A/BSidewalls and 5v,p = 0°

MACH NPR ALPHA CROLLT CNT CYT CROLL CN CY

1.201

1.2021.202

1.203

1 202

1 199

1 202

1 201

1 198

1 200

1.198

1.200

1.202

1.199

1.201

1.201

1.203

1.201

1.199

1.2001.199

9039OO

901

898

9OO

899

902

899

901901

902

899

899

90O901

901

.899

.901

.903

.900

.901

9930l

4 96

6 99

8 97

99

98

93

9O

88

80

70

67

7 03

7.O0

6.96

7.02

7.05

6.99

7.006.99

i.I0

1.98

3.01

4.99

7.00

I.lO

I.I0

1.09

i.I0i.i0

1.10

1.09

1.07

5.01

5.O0

5.01

4.99

5.00

5.01

4.995.O0

00

0204

04

03

-2 02

01

3 O1

5.98

9.03

12.02

16.01

18.01

-2.01

-.02

3.02

6.01

8.98

11.99

16.0217.98

-.01

-.02

.00

.02

.00

-2.01

-.02

2.99

6.018.99

12.01

16.01

18.02

-1.99

.00

3.03

5.99

9.00

12.01

16.0218.01

0000

00000001

0001

0001

0001

0001

0001

0001

0002

0001

0001

0002

0002

0002

0002

0002

00030002

0002

0002

.0003

.0003

.0003

.0003

.0003

.0002

.0003

.0002

.0002

.0002

.0002

.0002

0002

0002

0002

0002

0002

0002

.0002

.0002

.0002

0002

00030003

0003

0003

0001

0003

0004

0004

0005

0003

0003

0003

0004

0005

0006

0007

0011

00040001

0000

.0005

.0006

.0005

.0005

.0005

.0004

.0005

.0005

.0005

.0004

.0003

.0002

.0003

.0004

0005

0005

0005

0005

00030002

0003

-.0007-.0011

-.0012

-.0014

-.0015

-.0007

-.0008

-.0013

-.0015

-.0019

-.0018

- 0015

- 0013

- 0022

- 0025

- 0028

- 0030

- 0034- 0031

- 0022

- 0018

- 0024

- 0028

- 0029

- 0032

- 0036

- 0023

-.0025-.0025

-.0023

-.0022

-.0021

-.0018

-.0021

-.0029

-.0030

-.0029

-.0029

-.0029-.0025

-.0024

-.0026

•0000 .0002 -.0007

•0000 .0003 -.0011•0001 .0003 -.0012

•0001 .0003 -.0014

•0001 .0003 -.0015

.0001 .0001 -.0007

.0001 .0003 -.0008

.0001 .0004 -.0013

.0001 .0004 -.0015

.0002 .0005 -.0019

.0001 .0003 -.0018

.0001 .0003 -.0015

.0002 .0003 -.0013

.0002 .0004 -.0022

.0002 .0005 -.0025

.0002 .0006 -.0028

.0002 .0007 -.0030

.0003 .0011 -.0034

.0002 .0004 -.0031

.0002 .0001 -.0022

.0002 .0000 -.0018

.0003 .0005 -.0024

•0003 .0006 -.0028

.0003 .0005 -.0029

.0003 .0005 -.0032

.0003 .0005 -.0036

.0002 .0004 -.0023

.0003 .0005 -.0025

.0002 .0005 -.0025

.0002 .0005 -.0023

.0002 .0004 -.0022

.0002 .0003 -.0021

.0002 .0002 -.0018

.0002 .0003 -.0021

.0002 .0004 -.0029

.0002 .0005 -.0030

.0002 .0005 -.0029

.0002 .0005 -.0029

.0002 .0005 -.0029

.0002 .0003 -.0025

.0002 .0002 -.0024

.0002 .0003 -.0026

21

Page 26: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 3. Continued

MACH

•601

599

601

602

603

604

600

602

603

601

600

600

598

599

600

602

599

598

599

600

601

597

602

602

602

601

6O0

599

599

600

600

598

599

599

598

596

600

600

NPR

1.03

1.99

3.00

3 52

50l

1 03

1 03

1 03

1 03

1 03

1 03

1 O2

1 02

3 51

3 52

3 51

3 50

3 49

3 49

3 49

3 50

1 02

2.02

3.05

3.51

5.01

1.02

1.02

1 02

1 00

99

96

3 53

3 46

3 49

3.48

3.50

3.50

ALPHA

01

02

- 02

- 02

- 02

-I 94

00

3 01

6.00

9.00

12.02

16.00

18.03

-1.85

.01

3.00

5.97

8.99

12.00

15.99

18.00

20.01

20.01

20.01

20.00

20.02

16.63

17.99

19.98

23.97

27.98

31.99

16.79

17.99

19.98

23.96

27.97

31.98

CROLLT CNT CYT

OOO2

0002

0002

OO02

0002

0003

0004

0004

0004

0003

0003

0003

0003

0002

0002

0002

0002

0002

0003

0002

0003

0001

0002

0002

0002

0002

.0000

.0000

.0001

.0011

.0018

.0016

.0001

.0001

.0002

.0012

.0019

.0018

0002 -.0015

0006 -.0024

0003 -.0026

0004 -.0028

0004 -.0033

0005 -.0029

0004 -.0028

0005 -.0028

0005 -.0028

0005 -.0028

0006 -.0028

0005 -.0026

0006 -.0028

0004 -.0032

0004 -.0029

0004 -.0032

0004 -.0032

0004 -.0032

0006 -.0035

.0005 -.0032

.0007 -.0040

.0006 -.0020

.0011 -.0035

.0011 -.0039

.0010 -.0041

.0012 -.0050

.0002 -.0011

.0002 -.0012

•0007 -.0025

.0078 -.0188

.0128 -.0275

.0127 -.0266

.0004 -.0021

.0005 -.0025

.0012 -.0045

.0082 -.0206

.0133 -.0298

.0141 -.0304

CROLL

0002

0002

0002

0002

0002

0003

0004

0004

0004

0003

0003

0003

0003

0002

0002

0002

0002

0002

0003

0002

0003

0001

0002

0002

0002

.0002

.0000

.0000

.0001

.0011

.0018

.0016

.0001

.0001

.0002

.0012

.0019

.0018

CN

0002

0OO6

0003

0004

0004

0005

0004

0005

0005

00O5

0006

0005

0006

0004

0004

0004

OOO4

.OOO4

.0006

.0005

.0007

.0006

.O011

.OOll

.0010

.0012

.0002

.0002

.0007

.0078

.0128

.0127

.0004

.0005

.0012

.0082

.0133

.0141

CY

-.0015

-.0024

-.0026

-.0028

-.0033

-.0029

-.0028

-.0028-.0028

-.0028

-.0028

-.0026

-.0028

-.0032

-.0029

-.0032

-.0032

-.0032

-.0035

-.0032

-.0040

-.0020

-.0035

-.0039

-.0041

-.0050

-.0011

-.0012

-.0025

-.0188

-.0275

-.0266

-.0021

-.0025

-.0045

-.0206

-.0298

-.0304

22

Page 27: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 3. Concluded

MACH

152

153

153

153

154

151

151

152

152

152

152

151

151

153

.153

.154

154

154

151

151

150

152

151

152

152

145

149

151

151

151

151

151

151

.150

152

152

152

152

152

152

151

NPR

1.00

2.02

2.60

3.00

3.81

1.00

i. 00

I. 00

I. 00

I. 00

i. 00

1.00

1.00

2.63

2.65

2.62

2.62

2.63

2.62

2.62

2.62

1.00

2.03

2.58

3.01

3.83

3.83

I.00

i. 00

I. 00

I. 00

1.00

1.00

1.00

2.58

2.64

2.63

2.63

2.63

2.63

2.63

ALPHA

.00

-.01

.00

.00

.00

-1.53

-.01

2.98

6.02

8.98

11.99

16.02

17.99

-1.54

.04

3.02

6.00

9.00

12.00

16.01

18.00

19.99

19.98

19.98

19.99

19.98

19.99

15.98

17.98

19.98

23.98

27.98

31.99

35.18

15.97

17.97

19.97

23.97

27.97

31.97

34.98

CROLLT CNT CYT

.0029

.0032

.0028

.0020

.0016

.0020

.0018

.0018

.0018

.0015

.0014

.0011

.0011

.0005

.0007

.0010

.0006

.0009

.0007

.0004

.0003

.0020

.0016

.0009

.0007

.0006

0005

0015

0014

0014

0010

0012

0006

0009

0013

0010

0009

0006

0006

-.0005

-.0006

.0037

.0093

.0062

.0043

.0030

.0029

.0033

.0033

.0037

.0043

.0037

.0043

.0049

.0029

.0028

.0041

.0039

.0047

.0047

.0043

.0051

.0010

.0085

.0071

.0050

.0056

.0052

.0017

.0016

.0017

.0011

.0020

-.0023

-.0023

.0066

0064

0062

0051

0072

0016

0010

-.0222

-.0376

-.0352

-.0352

-.0365

-.0174

-.0188

-.0170

-.0170

-.0170

-.0135

-.0134

-.0152

-.0228

-.0197

-.0245

-.0212

-.0243

-.0218

-.0197

-.0201

-.0041

-.0251

-.0253

-.0237

-.0305

-.0287

-.0075

-.0059

-.0058

-.0037

-.0042

.0061

.0048

-.0252

-.0250

-.0232

-.0209

-.0233

-.0078

-.0073

CROLL

.0029

.0032

.0028

.0020

.0016

.0020

.0018

.0018

.0018

.0015

.0014

.0011

.0011

.0005

.0007

.0010

.0006

.0009

.0007

.0004

.0003

0020

0016

0009

0007

0006

0005

0015

0014

0014

0010

0012

0006

0009

0013

0010

.0009

.0006

.0006

-.0005

-.0006

CN

.0037

.0093

.0062

.0043

.0030

.0029

.0033

.0033

.0037

.0043

.0037

.0043

.0049

.0029

.0028

.0041

.0039

.0047

.0047

.0043

.0051

.0010

0085

0071

0050

0056

0052

0017

0016

0017

0011

0020

- 0023

- 0023

0066

0064

.0062

.0051

.0072

.0016

.0010

CY

-.0222

-.0376

-.0352

-.0352

-.0365

-.0174

-.0188

-.0170

-.0170

-.0170

-.0135

-.0134

-.0152

-.0228

-.0197

-.0245

-.0212

-.0243

-.0218

-.0197

-.0201

-.0041

-.0251

- 0253

- 0237

- 0305

- 0287

- 0075

- 0059

- 0058

- 0037

- 0042

.0061

.0048

-.0252

-.0250

-.0232

-.0209

-.0233

-.0078

-.0073

23

Page 28: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 4. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 50/50 A/BSidewalls and 5v,p = 0 °

(a) Total aft end

MACH NPR ALPHA CLT C(D-F) CMT CL CD CM

1.201

1.201

1.200

1.201

1.201

.902

.901

900

897

900

598

598

600

600

602

.97 .01 -.0096 .0173

3.01 .02 -.0086 -.0150

5.00 .02 -.0104 -.0452

7.06 .02 -.0108 -.0774

9.03 .02 -.0111 -.1084

i. I0 .00 -.0108 .0033

2.02 .02 -.0108 -.0264

3.00 .02 -.0111 -.0518

4.99 .O1 -.0109 -.1058

7.01 .02 -.0108 -.1599

1.03 .01 -.0085 .0039

2.02 .02 -.0069 -.0626

3.01 .01 -.0068 -.1197

3.58 .02 -.0067 -.1542

5.09 .02 -.0061 -.2454

.0045 -.0096

.0064 -.0086

.0120 -.0104

.0158 -.0109

0189 -.0112

0065 -.0108

0098 -.0108

0127 -.0112

0179 -.0109

0231 -.0109

0049 -.0085

0110 -.0070

.0171 -.0068

.0205 -.0067

.0292 -.0062

.0173

.0161

.0158

.0147

.0134

.0033

.0026

.0033

0033

0028

0039

0031

0045

0040

0027

.0045

.0035

.0062

.0069

.0071

0065

0073

0076

0075

0075

0049

0054

0056

0056

0055

(b) Afterbody and nozzle

MACH

1.201

1.201

1.200

1.201

1 201

902

901

900

897

900

.598

.598

.600

.600

.602

NPR ALPHA CLAFT CDAFT CMAFT

.97 .01 -.0084

3.01 .02 -.0081

5.00 .02 -.0084

7.06 .02 -.0083

9.03 .02 -.0083

i. I0 .00 -.0035

2.02 .02 -.0036

3.00 .02 -.0037

4.99 .01 -.0037

7.01 .02 -.0036

1.03 .O1 -.0032

2.02 .02 -.0031

3.01 .01 -.0036

3.58 .02 -.0031

5.09 .02 -.0028

.0083

0084

0085

0085

0085

0060

0055

0055

0054

0052

0054

0051

0051

0051

0050

.0082

0079

0081

0080

0079

0032

0034

.0034

.0034

.0032

.0030

.0030

.0036

.0029

.0027

CLN

-.0012

-.0005

-.0021

-.0026

-.0029

-.0073

-.0072

-.0075

-.0072

-.0073

-.0053

-.0039

-.0033

-.0037

-.0034

CDN

.0090

.0078

.0073

.0062

.0049

-.0028

-.0028

-.0022-.0021

-.0024

-.0015

-.0020

-.0006

-.0011

-.0024

CMN

-.0037

-.0044

-.0019

-.0011

-.0008

.0033

.0040

.0042

.0040

.0042

.0019

.0024

.0021

.0027

.0028

24

Page 29: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 5. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 25/25 A/B

Sidewalls and 5v,p = 0°

(a) Total aft end

MACH NPR ALPHA CLT C(D-F) CMT CL CD CM

.92

3.03

5.01

7.O0

8.97

.95

91

90

88

85

81

74

70

6.98

7.00

6.99

7. O0

7. O0

6.99

7.04

7.01

1.09

2.03

3.01

5 .O3

7.02

i. I0

1.09

1.09

1.09

1.09

1.09

1.09

1.08

5.02

5.02

5.02

5.02

5.02

5.02

5.03

5.01

.02

.02

.01

.02

.03

-2.04

.01

2.99

5.98

8.99

12.01

16.03

17.99

-1.99

-.01

3.01

6.01

9.01

11.98

15.99

18.01

-.02

-.01

-.02

.00

.00

-2.05

-.01

3.02

6.02

9.03

12.01

16.00

18.01

-2.05

.01

2.99

6.00

9.00

12.02

16.04

18.01

1.200

1.200

1.202

1.202

1.201

1.200

1.203

1.204

1.200

1.201

1 204

1 200

1 200

1 200

1 202

1 201

1 201

1.199

1.199

1.203

1.200

.901

.903

.898

.903

.899

.902

.901

.902

.897

.901

.902

901

899

901

899

900

901

901

902

903

899

-.0104

-.0092

-.0101

-.0102

-.0105

-.0222

-.0109

.0039

.0197

.0337

.0498

.0660

.0752

-.0210

-.0079

.0097

0291

0491

0670

0919

1035

- 0092

- 0089

-.0077

-.0082

-.0078

-.0080

-.0079

-.0031

-.0053

-.0027

.0140

.0290

.0376

-.0113

-.0077

.0022

.0056

.0146

.0367

.0612

.0738

.0184 .0054

-.0152 .0063

-.0448 .0106

-.0760 .0137

-.1075 .0174

.0196 .0131

.0184 .0052

.0186 -.0048

.0218 -.0176

.0294 -.0302

.0375 -.0469

.0487 -.0643

.0550 -.0745

-.0742 .0193

-.0752 .0128

-.0746 .0065

-.0717 -.0035

-.0664 -.0159

-.0576 -.0315

-.0460 -.0514

-.0392 -.0607

.0042 .0046

-.0261 .0079

-.0513 .0091

-.1044 .0147

-.1601 .0197

.0038 .OO30

.0038 .0043

.0033 .0044

.0027 .0063

.0032 .0065

.0077 -.0032

.0174 -.0144

.0249 -.0221

-.1051 .0131

-.1054 .0146

-.1055 .0144

-.1057 .0170

-.1043 .0162

-.0986 .0061

-.0862 -.0081

-.0783 -.0172

-.0104

-.0093

-.0101

-.0102

-.0106

-.0222

-.0109

0039

0198

0338

0499

0661

0753

-.0178

-.0079

.0049

.0196

.0348

.0481

.0668

.0754

-.0092

-.0089

-.0077

-.0082

-.0079

-.0080

-.0079

-.0031

-.0052

-.0027

.0141

.0291

.0378

-.0074

-.0077

-.0035

-.0058

-.0024

.0141

.0313

.0402

.0184

.0162

.0161

.0150

0136

0196

0184

0186

0218

0294

0375

0487

0551

0169

.0159

.0164

.0190

.0239

.0318

.0418

.0478

.0042

.0032

.0041

.0040

.0032

.0038

.0038

.0033

.0027

.0032

.0077

.0174

.0250

.0037

.0038

0035

0028

0033

0078

0183

0255

.0054

.0034

.0048

.0050

.0057

.0131

.O052

-.0048

-.0176

-.0302

-.0469

-.0643

-.0745

.0105

.0041

-.0022

-.0123

-.0247

-.0402

-.0602

-.0695

.0046

.0054

.0040

.0044

.0040

.0030

.0043

.0044

.0063

.0065

-.0032

-.0144

-.0221

0027

0042

0040

0066

0058

- 0042

- 0185

- 0277

25

Page 30: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 5. Continued

(a) Continued

MACH

.602

.599

.604

.597

.598

.602

.599

601

600

602

600

598

599

.600

599

602

6OO

599

599

598

6OO

598

6OO

599

.600

.599

.600

.601

.600

.601

•598

.601

.599

• 601

• 600.598

.600

.599

NPR

1.03

1.99

3. O0

3.54

4.97

1.03

1.03

1.03

1.03

1.03

1.03

1.03

1.02

3.49

3.50

3.50

3.50

3.50

3.50

3.49

3.50

1.02

1.97

3.01

3.55

4.98

1.03

1.03

1.02

1.00

.98

.96

3.49

3.51

3.51

3.51

3.52

3.51

ALPHA

.03

.02

.02

.O1

.01

-1.74

.03

2.99

6.00

8.99

12.00

15.99

17.98

-1.67

.01

3.00

6.01

9.00

12.00

16.00

17.99

20.02

20.01

19.99

20.00

20.00

16.59

17.96

19.98

23.98

27.98

31.96

16.78

17.99

19.99

23.99

27.99

31.98

CLT

-.0102

-.0079

-.0070

-.0065

-.0050

-.0057

-.0041

-.0020

.0015

.0051

.0098

.0258

.0334

-.0096

-.0033

.0069

.0186

.0308

.0440

.0703

.0838

.0410

.0624

.0843

.0957

.1263

.0268

.0318

.0397

.0569

.0773

.0932

.0710

.0804

.0937

.1229

.1551

.1834

C(D-F) CMT CL CD CM

.0048

-.0610

-.1177

-.1523

-.2385

.0049

0048

0041

0046

0052

0068

0132

0180

-.1493

-.1495

-.1487

-.1480

-.1461

-.1425

-.1343

-.1269

.0232

-.0374

-.0944

-.1248

-.2052

.0142

.0175

.0229

.0382

.0596

.0849

-.1327

-.1292

-.1229

-.1045

-.0768

-.0459

•0048

.0097

.0146

0179

0249

0030

0028

0030

0014

-.0009

-.0052

-.0180

-.0233

.0175

.0167

.0162

.0146

.0115

.0064

-.0074

-.0141

-.0288

-.0236

-.0205

-.0184

-.0125

-.0190

-.0225

-.0288

-.0460

-.0728

-.1036

-.0075

-.0117

-.0181

-.0375

-.0681

-.1029

-•0102

-.0079

-.0070

-.0065

-.0050

-.0058

-.0041

-.0020

.0016

.0052

.0099

.0259

.0336

-.0052

-.0033

-.0010

.0026

.0068

.0121

.0279

.0366

.0412

.0413

.0419

.0422

.0431

.0269

.0319

.0398

0571

0775

0934

0269

0331

0412

0601

.0829

.1017

.0048

.0029

.0044

.0047

.0054

.0049

0048

0041

0047

0052

0069

0132

0180

0039

.0040

.0040

.0046

.0056

.0077

.0138

.0188

.0233

.0211

.0226

.0226

.0237

.0142

.0175

.0229

.0383

.0597

.0850

.0140

.0169

.0221

.0371

.0594

.0854

.0048

.0042

.0033

.0031

.0017

.0030

.0028

.0030

.0014

-.0009

-.0052

-.0180

-.0233

.0031

.0023

.0018

.0002

-.0029

-.0080

-.0218

-.0285

-.0288

-.0289

-.0320

-.0331

-.0358

-.0190

-.0225

-.0288

-.0460

-.0728

-.1036

-.0219

-.0261

-.0325

-.0520

-.0826

-.1174

26

Page 31: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 5. Continued

(a) Concluded

MACH NPR ALPHA CLT C(D-F) CMT

•151 1.00 .02 .0108 .0098 -.0077

149 2.00 .01 .0270 -i.0416 .0749

151 2.59 .00 .0297 -1.5589 .1185

151 3.00 .01 .0288 -1.9362 .1658

150 3.78 .00 .0322 -2.7005 .2354

149 1.00 -1.36 .0100 .0003 -.0031

150 1.00 .00 .0274 -.0007 -.0094

149 1.00 2.99 .0333 -.0018 -.0095

151 1.00 5.98 .0363 .0003 -.0099

151 1.00 9.01 .0347 .0049 -.0108

150 1.00 12.00 .0343 .0110 -.0117

148 1.00 15.99 .0516 .0174 -.0244

151 1.00 17.98 .0550 .0231 -.0296

•150 2.59 -1.39 -.0127 -1.5848 .1245

150 2.59 -.02 .0257 -1.5878 .1239

151 2.60 3.02 .1076 -1.5731 .1258

151 2.60 5.98 .1877 -1.5526 .1249

148 2.60 9.00 .2891 -1.5993 .1254

151 2.60 11.99 .3614 -1.5196 .1182

150 2.60 15.99 .4850 -1.5058 .1096

148 2.60 17.98 .5675 -1.5380 .I040

151 1.00 19.99 .0349 .0254 -.0269

150 2.01 19.97 .3839 -.9574 .0770

150 2.60 19.98 .5841 -1.4836 .1187

150 3.01 19.98 .7095 -1.8380 .1607

150 3.84 19.98 .9838 -2.5838 .2355

149 1.00 15.98 .0092 .0158 -.0119

152 1.O0 17.97 .0252 .0182 -.0229

149 1.00 19.98 .0390 .0280 -.0298

149 1.00 23.99 .0640 .0414 -.0448

149 1.00 27.98 .0728 .0574 -.0592

.149 1.00 31.98 .0978 .0821 -.0846

.149 1.00 34.98 .1066 .1011 -.1024

.151 2.61 15.98 .4786 -1.5053 .1249

.151 2.61 17.97 .5438 -1.4827 .1140

.151 2.61 19.97 .6012 -1.4631 .1095

.151 2.61 23.97 .7145 -1.4181 .1031

.150 2.61 27.99 .8347 -1.3635 .0862

.150 2.61 31.98 .9509 -1.2870 .0630

.150 2.61 34.97 1.0279 -1.2299 .0453

CL

.0108

.0268

.0296

.0285

.0320

.0100

.0274

.0333

.0363

.0347

.0344

.0517

.0551

.0259

.0262

.0243

.0243

.0341

.0354

.0471

.0588

.0350

.0310

.0360

.0317

.0359

.0093

.0253

.0392

.0642

.0730

.0980

.1068

.0393

.0518

.0558

.0651

.0795

.0988

.1024

CD

.0098

-.0057

.0092

.0101

.0086

.0003

-.0007

-.0018

.0003

.0049

.0110

.0174

.0231

.0036

.0069

.0078

.0088

.0116

.0155

.0232

.0298

.0254

.0139

.0240

.0262

.0231

.0158

.O182

.0280

.0414

.0575

.0822

.1012

.0293

.0341

.0381

.0431

.0582

.0783

.0936

CM

-.0077

-.0140

-.0239

-.0142

-.0205

-.0031

-.0094

-.0095

-.0099

-.0108

-.0117

-.0244

-.0296

-.0196

-.0208

-.0179

-.0177

-.0226

-.0243

-.0348

-.0456

-.0269

-.0120

-.0270

-.0228

-.0268

-.0119

-.0229

-.0298

-.0448

-.0592

-.0846

-.1024

-.0202

-.0309

-.0356

-.0422

-.0601

-.0832

-.1015

27

Page 32: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 5. Continued

(b) Afterbody and nozzle

MACH

1.200

1.200

1.202

1.202

1.201

1.200

1.203

1.204

1.200

1.201

1.204

1.200

1.200

1.200

1.2021.201

1.201

1.199

1.199

1.203

1.200901

903898

903

899

902

.901

.902

.897

.901

.902

.901

.899

.901

899

900

901

901

902

903

.899

NPR ALPHA CLAFT CDAFT CMAFT

.92

3.03

5.01

7.00

8.97

.95

.91

•90

.88

.85

.81

.74

•70

6.98

7.00

6.99

7.00

7.00

6.99

7.04

7.01

1.09

2.03

3.01

5.03

7.02

I.I0

1.09

1.09

1.09

1.09

1.09

i.09

1.08

5.025.02

5.025.02

5.02

5.02

5.03

5.01

.02

.02

.01

.02

.03

-2.04

.01

2.99

5.98

8.99

12.01

16.03

17.99

-1.99

-.01

3.01

6.01

9.01

11.98

15.99

18.01

-.02

-.01

-.02

.00

.00

-2.05

-.01

3.02

6.02

9.03

12.01

16.00

18.01

-2.05

.01

2.99

6.00

9.00

12.02

16.04

18.01

-.0087

-.0085

-.0084

-.0086

-.0083

-.0171

-.0087

.0031

.0166

.0284

.0406

.0535

.0594

-.0170

-.0088

.0031

.0174

.0303

.0406

.0538

.0602

-.0034

-.0035

-.0035

-.0033

-.0034

-.0017

-.0032

-.0050

-.0054

-.0049

-.0005

.0130

.0184

-.0017

-.0033

-.0047

-.0056

-.0045

-.0003

.0145

.0203

.0083

.0083

.0084

.0084

.0084

.0091

.0085

.0090

.Oll2

.0148

.0196

.0266

.0305

.0093

.0087

.0092

.0114

.0150

.0198

0268

0309

0060

0055

0055

0054

.0052

.0059

.0059

.0059

.0056

.0058

.0072

.0139

.0184

.0053

.0054

.0053

.0050

.0052

.0067

.0139

.0184

.0084

.0082

.0080

.0082

.0079

.0153

.0082

-.0017

-.0144

-.0272

-.0418

-.0560

-.0629

.0150

•0081

-.0020

-.0155

-.0287

-.0419

-.0569

-.0640

.0028

.0030

.0029

.0027

.0028

.0010

.0026

.0052

.0061

.0070

.0053

-.0044

-.0089

.0009

.0027

.0051

.0063

.0067

.0048

-.0062

-.0119

CLN

-.0017

-.0007

-.0017

-.0017

-.0023

-.0051

-.0023

.0008

.0032

.0054

.0093

.0126

.0159

-.0008

.0008

.0018

.0022

.0045

.0075

.0130

.0151

-.0058

-.0054

-.0042

-.0049

-.0045

-.0063

-.0047

.0019

.0002

.0022

.0146

.0161

.0194

-.0058

-.0045

.0012

-.0002

.0021

.0144

.0168

.0200

CDN

.0101

.0079

.0077

.0066

.0051

.0105

.0099

.0095

.0105

.0146

.0179

.0221

.0246

.0076

.0072

.0072

.0076

.0089

.0120

.0151

.0169

-.0018

-.0023

-.0014

-.0014

-.0021

-.0021

-.0022

-.0025

-.0030

-.0026

.0005

.0034

.0065

-.0016

-.0016

-.0019

-.0023

-.0019

.0012

.0043

.0071

CMN

-.0030

-.0048

-.0032

-.0032

-.0022

-.0022

-.0031

-.0031

-.0032

-.0030

-.0051

-.0083

-.0116

-.0045

-.0041

-.0003

.0032

.0040

.0016

-.0033

-.0O55

.0018

.0024

.0010

.0017

.0012

.0020

.0017

-.0009

.0003

-.O0O4

-.0085

-.0100

-.0132

.0018

.0015

-.0011

.0003

-.0009

-.0090

-.0123

-.0157

28

Page 33: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 5. Continued

(b) Continued

MACH

.602

.599

.604

.597

.598

•602

.599

.601

.600

.602

.600

.598

.599

.600

599

602

600

599

599

598

600

598

600

599

600

599

600

•601

.600

.601

.598

.601

.599

.601

.600

.598

.600

.599

NPR ALPHA CLAFT CDAFT CMAFT

1.03

1.99

3.00

3.54

4.97

1.03

1.03

1.03

1.03

i .03

1.03

1.03

1.02

3.49

3.50

3.50

3.50

3.50

3.50

3.49

3.50

1.02

1.97

3.01

3.55

4.98

1.03

1.03

1.02

1.00

.98

.96

3.49

3.51

3.51

3.51

3.52

3.51

.03

.02

.02

.01

.01

-1.74

.03

2.99

6.00

8.99

12.00

15.99

17.98

-1.67

.01

3.00

6.01

9.00

12.00

16.00

17.99

20.02

20.01

19.99

20.00

20.00

16.59

17.96

19.98

23.98

27.98

31.96

16.78

17.99

19.99

23.99

27.99

31.98

-.0038

-.0036

-.0033

-.0033

-.0033

-.0036

-.0031

-.0020

-.0005

.0017

.0044

.0142

.0190

-.0036

-.0030

-.0018

-.0003

.0020

.0049

.0150

.0199

.0223

.0227

.0229

.0232

.0239

.0146

.0175

.0223

.0361

.0515

.0669

.0157

.0183

.0231

.0372

.0531

.0696

.0055 .0034

•0051 .0032

.0051 .0028

.0052 .0029

.0051 .0030

.0056 .0027

.0055 .0027

.0054 .0025

.0056 .0016

.0061 -.0004

.0070 -.0034

0105 -.0129

0130 -.0169

005"1 .00280051 .0027

0051 .0024

0053 .0014

0058 -.0007

0067 -.0039

0104 -.0138

0130 -.0179

0156 -.0213

0155 -.0217

0156 -.0220

0157 -.0226

0160 -.0236

.0109 -.0145

.0126 -.0168

.0156 -.0214

.0255 -.0367

.0392 -.0580

.0568 -.0841

.0110 -.0158

.0125 -.0178

.0157 -.0224

.0257 -.0383

• 0400 -.0604

.0585 -.0881

CLN

-.0064

-.0043

-.0037

-.0032

-.0017

-.0021

-.0011

.0000

.0021

.0035

.0055

.0117

.0146

-.0016

- 0003

0008

0028

0048

0072

0130

0167

0188

0185

0190

.0190

.0192

.0123

.0144

.0176

.0210

.0260

.0265

.0112

.0148

.0181

.0229

.0298

.0321

CDN

-.0007

-.0022

-.0007

-.0005

.0003

-.0006

-.0007

-.0013

-.0010

-.0009

-.0001

.0027

.0050

-.0013

-.0011

-.0011

-.0007

-.0002

.0009

.0033

.0058

.0077

.0056

.0070

.0069

.0077

.0033

.0049

.0073

.0128

.0205

.0281

.0029

.0044

.0064

.0114

.0194

.0269

CMN

.0014

.0010

.0005

.0002

-.0013

.0002

.0000

.0005

-.0002

-.0005

-.0018

-.0051

-.0065

.0003

-.0004

-.0006

-.0012

-.0022

-.0040

-.0081

-.0106

-.0075

-.0071

-.0100

-.O105

-.0122

-.0045

-.0057

-.0074

-.0093-.0149

-.0195

-.0061

-.0083

-.0101

-.0137

-.0221

-.0293

29

Page 34: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 5. Concluded

MACH

.151

.149

.151

.151

.150

.149

.150

.149

.151

.151

.150

.148

.151

.150

.150

.151

.151

.148

.151

.150

.148

.151

150

150

150

150

149

152

149

149

149

149

149

151

.151

.151

.151

.150

.150

.150

(b) Concluded

NPR ALPHA CLAFT CDAFT CMAFT

02

Ol

00

01

00

-I 36

O0

2 99

5 98

90l

12 O0

15 99

17.98

-1.39

-.02

3.02

5.98

9.00

11.99

15.99

17.98

19.99

19.97

19.98

19.98

19.98

15.98

17.97

19.98

23.99

27.98

31.98

34.98

15.98

17.97

19.97

23.97

27.99

31.98

34.97

- 0004

- 0009

- 0006

- 0007

- 0005

- 0006

- 0004

- 0005

0004

0050

0089

0136

0193

- 0030

-.0020

-.0017

0007

0028

0038

0106

0160

0196

0176

0188

0185

0190

0119

0160

0191

0285

0392

0527

0590

0111

0169

0212

0281

0383

0518

0575

i .00

2.O0

2.59

3.O0

3.78

i .00

1 O0

1 O0

1 O0

1 O0

1 O0

1 O0

1 O0

2 59

2 59

2 60

2 60

2 60

2.60

2.60

2 60

1 O0

20l

2 60

3 01

3 84

1 00

1 00

1 00

1 00

1 O0

1 00

1 00

2 61

2 61

2 61

2 61

2 61

2 61

2 61

0059 -.0010

0068 .0003

0068 .0006

0068 .0009

0070 .0009

0049 .0007

0047 -.0004

0046 .0013

0048 .0016

0055 -.OO31

0073 -.0075

0095 -.0123

0121 -.0178

0063 .0038

0062 .0030

0062 .0031

0064 .0012

0069 -.0008

.0076 -.0014

.0103 -.0091

0128 -.0146

0144 -.0219

0144 -.0202

0148 -.0216

0149 -.0215

0156 -.0225

.0109 -.0152

.0124 -.0188

.0142 -.0208

.0207 -.0300

.0303 -.0432

.0441 -.0627

.0534 -.0742

.0104 -.0111

.0124 -.0182

.0149 -.0222

.0205 -.0287

.0300 -.0407

.0441 -.0610

.0533 -.0714

CLN

0111

0277

0302

0293

0325

0106

0278

0338

0360

0298

0255

0381

0359

0289

0283

0259

0236

0313

0316

0365

0428

0154

0134

0172

0132

0169

-.0027

0092

0200

0357

0337

0453

0479

0281

0350

0346

0371

.0412

.0470

.0449

CDN

.0038

-.0125

.0023

.0033

.0017

-.0046

-.0054

-.0064

-.0045

-.0006

.0037

.0078

.0110

-.0027

.0007

.0016

.0024

.0047

.0079

.0129

.0169

.0109

-.0005

.0092

0114

0076

0049

0059

0138

0207

.0272

.0380

.0477

.0189

.0217

.0232

.0226

.0282

.0342

.0403

CMN

-.0067

-.0143

-.0244

-.0151

-.0214

-.0038

-.0091

-.0108

-.0115

-.0077

-.0042

-.0121

-.0118

-.0234

-.0238

-.0211

-.0188

-.0219

-.0228

-.0256

-.0310

-.0049

.0082

-.O053

-.0013

-.0043

.0033

-.0041

-.0090

-.0148

-.0160

-.0219

-.0283

-.0090

-.0127

-.0134

-.0135

-.0194

-.0222

-.0301

3O

Page 35: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 6. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/100

Dry Sidewalls and 5v,p = 0 °

(a) Total aft end

MACH NPR ALPHA CLT C(D-F) CMT CL CD CM

1.202 .97 .00 -.0091 .0168 .0039 -.0091 .0168 .0039

1.201 3.01 .01 -.0094 -.0151 .0069 -.0095 .0161 .0038

1.200 4.94 .02 -.0113 -.0445 .0122 -.0113 .0158 .0063

1.200 7.01 .03 -.0121 -.0774 .0164 -.0122 .0137 .0075

1.201 9.04 .02 -.0116 -.1089 .0192 -.0117 .0123 .0073

•904 I.I0 -.02 -.0106 .0033 .0063 -.0106 .0033 .0063

•896 2.01 .02 -.0095 -.0263 .0086 -.0095 .0031 .0057

•897 3.00 .02 -.0102 -.0520 .0124 -.0102 .0039 .0069

•900 5.00 .01 -.0099 -.1056 .0175 -.0099 .0030 .0068

•902 7.01 .02 -.0099 -.1596 .0228 -.0099 .0014 .0071

•601 1.03 -.03 -.0056 .0038 .0041 -.0056 .0038 .0041

.600 1.99 .01 -.0038 -.0605 .0091 -.0039 .0037 .0027

•600 3.03 .01 -.0046 -.1211 .0163 -.0046 .0050 .0038

•601 3.50 .01 -.0045 -.1496 .0190 -.0045 .0048 .0038

•599 4.99 .00 -.0037 -.2406 .0275 -.0037 .0041 .0036

•601 1.03 -1.81 -.0051 .0042 .0036 -.0052 .0042 .0036

•600 1.03 2.02 -.0017 .0038 .0032 -.0017 .0038 .0032

•599 1.03 -.01 -.0038 .0037 .0036 -.0038 .0037 .0036

•598 1.03 6.00 .0010 .0039 .0022 .0010 .0039 .0022

•601 1.03 8.97 .0054 .0049 -.0009 .0055 .0049 -.0009

•602 1.03 11.98 .0109 .0067 -.0060 .0110 .0067 -.0060

31

Page 36: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 6. Concluded

(b) Afterbody and nozzle

MACH

1.202

1.201

1.200

1.200

1.201

.904

.896

.897

90O

902

601

600

600

601

599

601

600

599

598

601

602

NPR ALPHA CLAFT CDAFT CMAFT

.97

3.01

4.94

7.01

9.04

i.I0

2.01

3.O0

5.00

7.01

1.03

1.99

3.03

3.50

4.99

1.03

1.03

1.03

1.03

1.03

1.03

.O0

.01

.02

.03

.02

-.02

.02

.02

.01

.02

-.03

.01

.01

.01

.O0

-1.81

2.02

-.01

6.00

8.97

11.98

-.0084

-.0083

-.0084

-.0085

-.0084

-.0036

-.0038

-.0038

-.0037

-.0036

-.0033

-.0031

-.0031

-.0031

-.0025

-.0035

-.0023

-.0031

--.0003

.0019

.0048

.0084

.0084

.0085

.0085

.0085

.0060

.0054

.0055

.0054

.0051

.0053

.0050

.0050

.0050

.0050

.0053

.0052

.0052

.0054

.0059

.0068

.0081

.0080

.0080

.0080

.0080

.0032

.0035

.0034

.0033

.0032

0031

0028

0030

0029

0022

0028

0027

0029

.0015

-.0005

-.0038

CLN

-.0007

-.0011

-.0029

-.0037

-.0033

-.0071

-.0056

-.0064

-.0062

-.0064

-.0023

-.0008

-.0015

-.0015

-.0012

-.0016

.0006

-.0007

.0013

.0036

.0062

CDN

.0085

.0077

.0074

.0052

.0038

-.0027

-.0023

-.0016

-.0023

-.0037

-.0015

-.0012

.0000

-.0002

-.0009

-.0011

-.0014

-.0015

-.0016

-.0010

-.0001

CMN

-.0042

-.0042

-.0017

-.0005

-.0006

.0031

.0022

.0035

.0035

.0039

.0010

-.0002

.0008

.0009

.0013

.0009

.0005

.0007

.0007

-.0004

-.0022

32

Page 37: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 7. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/100

A/B Sidewalls and 6v,p = 15°

MACH NPR ALPHA CLT C(D-F) CMT CL CD CM

1.205

1.199

1.197

1.197

1.202

1.197

1.195

1.200

1.198

1.197

1.201

1.199

1.202

1.200

1.202

1 2O0

1 2O0

1 199

9OO

9OO

9OO

.899

.899

.901

.901

.899

.899

.899

.903

.898

.902

.902

.898

.902

.899

.898

.900

.902

.896

.93

3.00

5.00

6.98

8.91

.96

91

89

85

8O

73

66

62

7.01

7.04

6.98

6.99

7.06

1.06

2.00

3.01

5.01

6.98

1.07

1.06

1.06

1.06

1.06

1.06

1.03

1.01

5.02

4.99

5.01

4.99

4.98

5.01

5.02

4.99

.03

.02

.00

-.03

-.01

-2.01

-.03

3.03

5.99

9.02

12.00

16.00

17.99

-1.98

.03

2.99

8.99

11.98

-.02

.01

-.01

-.03

-.04

-2.01

.00

3.02

6.03

9.02

12.00

16.01

18.00

-2.02

.00

3.00

6.00

8.98

12.00

16.00

17.97

-.0065

.0086

.0214

.0312

.0385

-.0187

-.0080

.0081

.0260

.0397

.0575

.0740

0851

0202

0333

0506

0853

1024

.0021

0185

0275

0448

0600

0024

0035

0073

0053

.0104

.0262

.0437

.0504

.0399

.0446

.0542

.0575

.0701

.0880

.I153

.1250

.0161

-.0121

-.0404

-.0693

-.0970

.0173

.0169

.0190

.0242

.0317

.0417

.0537

.0609

-.0700

-.0694

-.0656

-.0517

-.0435

.0049

-.0208

-.0448

-.0953

-.1452

.0045

.0050

.0052

.0055

.0073

.0128

.0251

.0328

-.0961

-.0950

-.0920

-.0892

-.0845

-.0761

-.0581

-.0498

.0007

-.0245

-.0439

-.0583

-.0682

.0083

.0012

-.0116

-.0288

-.0423

-.0635

-.0844

-.0979

-.0533

-.0593

-.0668

-.0885

- 1023

- 0133

- 0390

- 0532

- 0788

- I000

-.0142

-.0140

-.0142

-.0131

-.0175

-.0278

-.0437

-.0487

-.0788

-.0786

-.0795

-.0785

-.0831

-.0928

-.1109

-.1199

-.0065

-.0009

.0045

.0071

.0074

-.0187

-.0080

.0081

.0260

.0397

.0576

.0741

.0853

-.0010

.0090

.0222

.0484

0608

0021

0089

0107

0149

0173

0024

.0035

.0073

.0054

.0104

.0263

.0439

.0505

.0136

.0148

.0193

.0174

.0249

.0379

.0589

.0654

.0161 .0007

.0163 -.0101

.0164 -.0195

.0158 -.0239

.0146 -.0244

.0173 .0083

.0169 .0012

.0190 -.0116

.0242 -.0288

0317 -.0423

0417 -.0635

0537 -.0844

0610 -.0979

0158 -.0189

0158 -.0249

0176 -.0326

.0282 -.0542

.0355 -.0676

.0049 -.0133

.0050 -.0242

.0057 -.0276

.0057 -.0354

.0056 -.0389

.0045 -.0142

.0050 -.0140

.0052 -.0142

.0055 -.0131

.0073 -.0175

.0128 -.0278

.0251 -.0437

.0328 -.0487

.0053 -.0356

.0057 -.0353

.0067 -.0364

.0077 -.0352

.0103 -.0397

.0163 -.0494

.0304 -.0676

.0372 -.0763

33

Page 38: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 7. Continued

MACH

.600

.602

.601

.601

600

597

600

601

602

600

602

601

599

602

601

.602

602

602

601

602

601

599

599

599

598

599

599

601

601

598

6O0

600

598

602

600

599

60O

599

NPR

1.02

1.99

2.99

3.52

5.02

I. 04

1.02

1 02

I Ol

10l

10l

I O0

99

3 54

3 50

3.50

3.50

3.49

3.49

3.49

.99

.98

2.02

3. O0

3.54

5.03

3.48

1.00

.98

.97

.95

.93

3.53

3.54

3.54

3.53

3.54

3.54

ALPHA

.02

.01

-.04

-.05

-.05

-2.12

-.03

3.01

6.02

8.97

12.01

16.02

17.98

-2.04

.02

3.02

5.98

8.99

12.00

16.01

18.01

20.01

19.97

19.98

19.99

19.97

18.01

16.49

19.98

23.97

27.99

31.98

16.10

17.98

19.98

23.96

27.98

31.97

CLT

.0063

.0395

.0567

.0659

.0905

0066

0101

0140

0186

0224

0283

0439

0521

0613

0678

0786

0899

.1017

.1136

.1391

.0477

.0567

.1082

.1425

.1617

.2143

.1531

.0423

.0560

.0722

.0904

.1055

.1376

.1494

.1615

.1897

.2113

.2362

C(D-F) CMT CL CD CM

0059

- 0506

- 1054

- 1353

- 2203

0049

0055

0067

0090

0114

0147

.0230

.0287

-.1383

-.1339

-.1289

-.1235

-.1171

-.1098

-.0946

.0268

.0336

-.0110

-.0565

-.0821

-.1521

-.0860

.0229

.0333

.0498

.0700

.0958

-.1006

-.0900

-.0809

-.0562

-.0295

.0072

-.0195

-.0684

-.0928

-.1061

-.1419

-.0200

-.0211

-.0228

-.0262

-.0301

-.0362

-.0499

-.0563

-.1059

-.1065

-.1087

-.1125

-.1173

-.1236

-.1393

-.0549

-.0615

-.1160

-.1403

-.1546

-.1915

-.1478

-.0507

-.0620

-.0795

-.1014

-.1316

-.1413

-.1470

-.1544

-.1764

-.1961

-.2330

.0063

.0183

0193

0208

0233

0066

0101

0140

0186

0225

0284

0440

0522

0209

0228

0266

.0308

.0357

.0407

.0577

.0478

.0568

.0673

.0681

.0694

.0727

.0668

.0424

.0561

.0724

.0906

.1058

.0535

.0624

.0699

.0896

.1038

.1213

OO59

0066

0069

0068

0071

0049

0055

0067

0090

0114

0147

.0230

.0287

.0061

.0069

.0086

.0111

.0140

.0180

.0275

.0268

.0336

.0374

.0376

.0378

.0395

.0341

.0229

.0333

.0499

.0700

.0959

.0255

.0317

.0382

.0566

.0759

.1052

-.0195

-.0354

-.0360

-.0385

-.0442

-.0200

-.0211

-.0228

-.0262

-.0301

-.0362

-.0499

-.0563

-.0381

-.0394

-.0419

-.0457

-.0506

-.0567

-.0725

-.0549

-.0615

-.0818

-.0828

-.0861

-.0933

-.0805

-.0507

-.0620

-.0795

-.1014

-.1316

-.0727

-.0793

-.0864

-.1081

-.1280

-.1646

34

Page 39: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 7. Concluded

MACH

•152

.153

.150

.150

.149

.152

•152

.153

152

152

152

151

154

153

152

152

152

151

151

151

155

151

152

152

152

152

152

152

152

150

149

149

151

151

150

151

.150

•150

.150

NPR

1.00

2•01

2.60

2.98

i.00

I.00

i.00

1.00

1.00

1.00

1.00

1.00

2.59

2.60

2.60

2.60

2.60

2.60

2.60

2.60

i.O0

2.02

2.61

2.99

3.83

1.O0

1.00

1.00

1.00

I.O0

1.00

1.00

2.62

2.60

2.59

2.59

2.59

2.59

2.59

ALPHA

-.02

-.03

-.02

-.02

-1.90

.01

3.00

6.03

8.99

11.99

16.02

17.93

-2.03

-.01

2.98

5.98

9.03

11.95

15.92

17.55

20.01

19.97

19.96

19.98

19.96

15.98

17.98

19.98

23.98

27.99

31.98

35.18

15.97

17.99

19.96

23.97

27.97

31.97

34.98

CLT C(D-F) CMT

-.0225 -.0116

.3415 -.9091

.5170 -1.4535

.5951 -1.7745

0272 -.0023

0167 -.0029

0225 -.0019

0201 -•0016

0289 .0039

0315 .0106

0407 .0166

0406 .0201

.4535 -1.3913

.5103 -1.3795

.5946 -1.3851

.6703 -1.3490

.7468 -1.3106

.8229 -1.2705

.9291 -1.2101

.9714 -1.1832

.0528 .0283

.7021 -.7146

1.0236 -1.1245

1•2146 -1.4097

1•6433 -2.0324

.0259 .0236

.0435 .0325

.0560 0412

.0711 0564

.0942 0799

.1157 1085

.1164 1231

.9573 -I 2009

.9989 -1.1471

1.0530 -1.1068

1.1293 -1.0273

1.2273 -.9397

1.3133 -.8512

1•3705 -.7700

-.0065

-.5587

-.8291

-.9299

-.0255

-.0205

-.0219

-.0219

-.0279

-.0316

-.0451

-.0495

-.7918

-.7968

-.8158

-•8186

-•8232

-.8336

-.8516

-.8622

-.0520

-.6093

-.8559

-.9647

-1.2419

-.0428

-.0553

-.0630

-•0738

-.0964

-.1212

-.1340

-.8685

-.8727

-.8830

-.8827

-.9049

-.9325

-.9499

CL

-.0225

.0078

.0075

-.0011

.0272

.0167

.0225

.0201

.0289

.0316

.0408

.0407

.0182

0244

0234

0269

0316

0379

0526

0561

0530

0619

0632

0610

0638

0260

.0436

0561

0713

0944

1160

1166

0657

0744

0860

0840

.1027

.1069

.1160

CD

-.0116

-•0074

.0060

.0150

-.0023

-.0029

-.0019

-.0016

0039

0107

0166

0201

0094

0098

0106

0143

0174

0244

0325

0392

0283

0405

0525

0456

0415

0237

0325

.0412

.0564

.0799

.1086

.1232

.0640

.0684

.0762

.0831

.0995

.1169

.1328

CM

-.O065

-.0388

-.0399

-.0229

-.0255

-.0205

-.0219

-.0219

-.0279

-.0316

-.0451

-.0495

-.0418

- 0447

- 0454- 0484

- 0527

- 0600

- 0747

- 0821

- 0520

-.0743

-.0813

-•0730

-.0922

-.0428

-.0553

-.0630

-.0738

-.0964

-.1212

-.1340

-.0816

-.0929

-.I011

-.1027

-.1220

-.1419

-.1598

35

Page 40: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 8. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 50/50 A/BSidewalls and _v,p = 15 °

(a) Total aft end

MACH

1.199

1.200

1.200

1.194

1.200

.899

.904

.901

.899

.901

.601

.601

.601

.601

.601

NPR ALPHA CLT C(D-F) CMT CL CD CM

•91 .02 -.0076 .0181 .0030 -.0076 .0181 .0030

3.02 -.02 .0084 -.0110 -.0227 -.0010 .0177 -.0087

4.97 -.02 .0217 -.0379 -.0433 .0052 .0181 -.0194

6.96 -.02 .0331 -.0673 -.0599 .0090 .0175 -.0254

9.02 -.03 .0411 -.0963 -.0708 .0098 .0165 -.0263

1.06 -.03 -.0003 .0059 -.0099 -.0003 .0059 -.0099

2.04 .01 .0135 -.0215 -.0311 .0050 .0054 -.0186

2.99 -.02 .0250 -.0438 -.0488 .0086 .0061 -.0243

5.04 -.04 .0451 -.0945 -.0782 .0153 .0068 -.0350

7.02 -.04 .0604 -.1437 -.1002 .0178 .0068 -.0392

1.02 .03 .0079 .0067 -.0180 .0079 .0067 -.0180

2.00 -.03 .0344 -.0520 -.0573 .0159 .0067 -.0305

3.04 -.03 .0564 -.1075 -.0904 .0187 .0077 -.0343

3.52 -.03 .0655 -.1338 -.1032 .0207 .0081 -.0373

5.05 -.03 .0919 -.2186 -.1418 .0250 .0089 -.0449

(b) Afterbody and nozzle

MACH

1.199

1.200

1.200

1.194

1.200

.899

.904

901

899

901

601

601

601

601

.601

NPR ALPHA CLAFT CDAFT CMAFT CLN CDN CMN

.91 .02 -.0080 .0086 .0078 .0004 .0094 -.0047

3.02 -.02 -.0067 .0087 .0064 .0057 .0089 -.0152

4.97 -.02 -.0055 .0087 .0053 .0107 .0094 -.0246

6.96 -.02 -.0044 .0087 .0041 .0134 .0088 -.0295

9.02 -.03 -.0035 .0086 .0030 .0133 .0079 -.0293

1.06 -.03 -.0011 .0056 -.0007 .0008 .0003 -.0092

2.04 .01 .0006 .0050 -.0032 .0044 .0004 -.0154

2.99 -.02 .0014 .0049 -.0044 .0072 .0011 -.0199

5.04 -.04 .0030 .0048 -.0066 .0123 .0020 -.0284

7.02 -.04 .0040 .0046 -.0081 .0138 .0022 -.0311

1.02 .03 .0015 .0051 -.0040 .0064 .0016 -.0140

2.00 -.03 .0039 .0048 -.0073 .0120 .0020 -.0232

3.04 -.03 .0049 .0048 -.0087 .0138 .0029 -.0256

3.52 -.03 .0055 .0048 -.0096 .0152 .0033 -.0277

5.05 -.03 .0071 .0048 -.0117 .0179 .0040 -.0332

36

Page 41: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 9. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 25/25 A/B

Sidewalls and 6v,p = 15 °

(a) Total aft end

HACH NPR ALPHA CLT C(D-F) CMT CL CD CM

1.200

1.200

1.201

1.201

1.200

1.199

1.202

1.200

1.198

1.201

1.203

1.200

1.203

1.200

1.198

1.199

1.200

1.199

1.199

.901

.898

.901

.901

.900

.899

.902

.899

.902

.903

.900

.899

.898

.901

.900

900

900

898

898

898

899

.91

3.02

5.04

7.04

9.01

.93

90

88

86

80

74

64

61

7 02

7 O0

70l

7 02

7.02

7.02

1.07

2.03

3.00

5.01

7.04

1.07

1.07

1.06

1.06

1.07

1.06

1.03

!.01

5.03

5.01

5.00

5.00

4.99

4.99

4.99

5. O0

.00

.00

-.02

-.04

-.03

-2.02

-.03

3.01

6.00

9 02

12 02

16 Ol

18 O0

-2 02

O0

3 02

6 O0

8.98

11.99

-.02

-.02

-.03

-.03

-.04

-2.01

.02

3.01

6.00

8.99

12.02

16.03

18.00

-2.04

.01

2.97

5.99

8.99

11.99

15.98

18.00

-.0060

.0079

.0219

.0334

.0420

-.0178

-.0070

0091

0275

0412

0589

0780

0894

0208

.0337

.0519

.0727

.0888

.1070

.0018

.0120

.0256

.0463

.0639

.0009

.0003

.0062

.0040

.0098

.0258

.0436

.0521

.0406

.0449

.0546

.0569

.0701

.0891

.1179

.1284

.0168

-.0119

-.0396

-.0681

-.0971

0174

0171

0195

0240

0317

0413

0543

0621

- 0684

- 0674

- 0646

- 0591

-.0501

-.0403

.0051

-.0230

-.0447

-.0936

-.1444

.0048

.0051

.0052

.0051

.0069

.0127

.0254

.0332

-.0958

-.0941

-.0913

-.0888

-.0840

-.0752

-.0572

-.0472

.0003 -.0060

-.0217 -.0010

-.0439 .0055

-.0615 .0096

-.0735 .0107

.0083 -.0178

.0007 -.0070

-.0116 .0092

-.0276 .0276

-.0401 .0413

-.0610 .0590

-.0834 .0781

-.0976 .0895

-.0561 -.0001

-.0620 .0099

-.0695 .0237

-.0817 .0401

-.0921 .0520

-.1073 .0660

-.0090 .0018

-.0243 .0039

-.0462 .0100

-.0782 .0174

-.1040 .0214

-.0096 .0008

-.0086 .0003

-.0103 .0062

-.0081 .0040

-.0136 .0099

-.0240 .0259

-.0393 .0437

-.0463 .0522

-.0784 .0151

-.0778 .0159

-.0790 .0204

-.0768 .0177

-.0818 .0257

-.0927 .0399

-.1126 .0623

-.1210 .0699

.0168

0168

0174

0170

0157

0174

0171

0195

0240

0317

0413

.0543

.0622

.0173

.0174

.0188

.0229

.0301

.0379

.0051

.0044

.0057

.0070

.0071

.0048

.0051

.0052

.0051

.0069

.0127

.0254

.0333

.0061

.0066

.0075

.0081

.0109

.0172

.0316

.0395

.0003

-.0089

-.0201

-.0269

-.0282

.0083

.0007

-.0116

-.0276

-.0401

-.0610

-.0834

-.0976

-.0216

-.0275

-.0349

-.0471

-.0575

-.0727

-.0090

-.0129

-.0238

-.0362

-.0424

-.0096

-.0086

-.0103

-.0081

-.0136

-.0240

-.0393

-.0463

-.0363

- 0358

- 0371

- 0349

- 0398

- 0507

- 0706

- 0790

37

Page 42: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 9. Continued

(a) Continued

MACH

•6O0

.601

.600

•600

.601

600

598

600

600

603

600

599

601

598

600

603

601

601

600

600

597

601

599

600

600

599

600

599

597

600

601

600

598

601

598

600

600

601

NPR

1.02

1.99

3.00

3.50

5.01

1.03

1.02

1.02

1.02

1.01

1.01

I.O0

.99

3.49

3.52

3.52

3.51

3.51

3.51

3.51

3.50

.98

2.03

3.01

3.51

5.O0

1.00

.99

.98

.97

.95

.92

3.49

3.50

3.49

3.49

3.49

3.50

ALPHA

.01

-.04

-.03

-.04

-.04

-2.02

-.02

2.99

5.99

9.02

12.00

15.99

18.01

-2.04

-.02

3.00

6.01

8.98

12.00

15.99

17.96

20.00

19.97

19.95

19.96

19.95

16.52

17.97

19.96

23.97

27.96

31.96

16.15

17.95

19.97

23.98

27.95

31.97

CLT

.0067

.0273

.0528

.0623

.0911

.0060

.0097

.0121

.0165

.0215

.0266

.0420

.0502

.0572

.0644

.0748

.0862

.0981

.1105

.1371

.1514

.0543

.0989

.1370

.1565

.2120

.0392

.0446

.0519

.0701

.0885

1065

1312

1431

1557

1834

2075

2333

C(D-F) CMT CL CD CM

.0057

-.0544

-.1076

-.1344

-.2165

.0053

.0056

.0067

.0085

.0109

.0137

.0221

.0280

- 1366

- 1351

- 1302

- 1257

- 1200

- 1126

-.0978

-.0896

.0326

-.0179

-.0596

-.0820

-.1488

.0219

.0256

.0317

.0487

.0691

.0964

-.0999

-.0903

-.0817

-.0564

-.0282

.0098

-.0167

-.0448

-.0838

-.0982

-.1409

-.0163

-.0177

-.0185

-.0218

-.0261

-.0315

-.0447

-.0512

-.0976

-.0994

- 1010

- 1047

- 1096

- 1160

- 1326

- 1413

-.0557

-.0960

-.1293

-.1456

-.1902

-.0452

-.0492

-.0555

-.0752

-.0995

-.1343

-.1310

-.1373

-.1453

-.1683

-.1926

-.2326

.0067

.0101

.0176

.0198

.0263

.0060

.0097

.0121

.0166

.0216

.0267

.0421

.0503

.0194

.0215

.0249

.0290

.0339

.0392

.0570

.0665

.0544

.0611

.0648

.0676

.0734

.0394

.0448

.O520

.0702

.0887

.1067

.0506

.0595

.0674

.0875

.1040

.1231

.0057

.0045

.0067

.0065

.0088

.0053

.0056

.0067

.0085

.0109

.0137

.0221

.0280

.0064

.0075

.0088

.0108

.0134

.0174

.0268

.0328

.0326

.0334

.0361

.0374

.0420

.0219

.0256

.0317

.0487

.0692

.0965

.0244

.0303

.0366

.0550

.0763

.1066

-.0167

-.0209

-.0329

-.0366

-.0469

-.0163

-.0177

-.0185

-.0218

-.0261

-.0315

-.0447

-.0512

-.0357

-.0374

-.0395

-.0431

-.0479

-.0542

-.0708

-.0790

-.0557

-.0707

-.0783

-.0836

-.0956

-.0452

-.0492

-.0555

-.0752

-.0995

-.1343

-.0690

-.0759

-.0835

-.1068

-.1310

-.1712

38

Page 43: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 9. Continued

MACH

150

151

151

151

150

152

.150

151

150

151

151

150

151

150

150

151

150

.150

150

149

149

149

149

152

.153

.148

149

152

149

150

147

148

151

149

149

.148

.151

.151

.151

•150

NPR

1.00

2.01

2.60

3.04

3.76

1.00

I. O0

I. O0

I. O0

I. O0

1.00

1.00

I. O0

2.61

2.62

2.62

2.61

2.61

2.62

2.61

2.61

1.00

2.01

2.63

3.01

3.80

I. O0

1.00

1.00

i. O0

1.00

1.00

I. O0

2.59

2.59

2.59

2.59

2.59

2.59

2.59

ALPHA CLT

(a) Concluded

C(D-F) CMT CL CD CM

•01 .0381 .0067 -.0327

-.03 .3226 -.9357 -.4342

-.03 .5032 -1.4329 -.7190

-.01 .5978 -1.8054 -.8609

•00 .7907 -2.4841 -1.1401

-1.59 .0037 .0039 -.0187

-.01 .0069 .0021 -.0176

3.00 .0094 .0036 -.0196

6.00 .0100 .0022 -.0192

8.99 .0265 .0204 -.0290

11.99 .0318 .0253 -.0333

16.01 .0454 .0338 -.0459

18.00 .0570 .0415 -.0570

-1.96 .4407 -1.4704 -.7199

-.03 .4888 -1.4546 -.7189

3.00 .5685 -1.4201 -.7168

5.99 .6488 -1.3950 -.7221

8.99 .7235 -1.3563 -.7258

12.00 .8115 -1.3211 -.7373

15.98 .9226 -1.2663 -.7595

17.86 .9750 -1.2313 -.7691

20.02 .0456 .0299 -.0483

19.99 .6358 -.7864 -.4466

19.97 .9586 -1.1737 -.7178

19.96 1.1527 -1.4304 -.8519

19.96 1.6637 -2.1388 -1.2027

15.98 .0164 .0196 -.0349

17.96 .0288 .0227 -.0458

19.97 .0395 .0303 -.0512

23.98 .0627 .0452 -.0664

27.97 .0822 .0643 -.0871

31.96 .1044 .0921 -.1149

34.98 .1124 .1085 -.1321

15.97 .9017 -1.2614 -.7492

17.97 .9496 -1.2232 -.7563

19.97 1.0036 -1.1961 -.7635

23.97 1.0624 -1.0811 -.7481

27.98 1.1614 -.9947 -.7687

31.97 1.2535 -.8971 -.7965

34.96 1.3192 -.8259 -.8207

.0381

.0426

.0416

.0340

.0446

.0037

.0069

.0095

.0100

.0265

.0319

.0455

.0572

.0228

.0211

.0260

.0289

.0292

.0415

.0519

.0601

.0457

.0359

.0313

.0418

.0456

.0165

.0289

.0397

0629

0824

1046

1126

0367

0424

.0459

.O548

.0746

.0921

.0989

0067

0145

0297

0265

0188

0039

0021

0036

0022

.0204

0253

0339

0415

0292

0289

0290

0294

.0349

.0387

.0490

.0568

.0300

.0270

.0358

.0385

.0459

.0197

.0227

.0304

.0453

.0644

.0922

.1086

.0444

.0474

.0507

.0570

.0722

.0943

.II01

0327

0446

0520

0462

0615

0187

0176

0196

0192

0290

0333

0459

0570

0434

0433

0446

0472

0503

0585

0741

0827

0483

0494

0562

0680

0818

0349

0458

O512

0664

O871

1149

1321

0675

0768

0791

0866

1060

1320

1515

39

Page 44: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 9. Continued

(b) Afterbody and nozzle

MACH

1.200

1.200

1.201

1.201

1.200

1.199

1.202

1.200

1.198

1.201

1.203

1.200

1.203

1.200

1.198

1.199

1.200

1.199

1.199

.901

.898

.901

.901

.900

.899

.902

.899

.902

.903

.900

.899

.898

901

9O0

900

9O0

898

898

898

899

NPR ALPHA CLAFT CDAFT CMAFT

.91

3.02

5.04

7.04

9.01

.93

90

88

86

80

74

64

61

7.02

7.00

7.01

7.02

7.02

7.02

1.07

2.03

3.00

5.01

7.04

1.07

1.07

1.06

1.06

1.07

1.06

1.03

1.01

5.03

5.01

5.O0

5.00

4.99

4.99

4.99

5.00

.00

.00

-.02

-.04

-.03

-2.02

-.03

3.01

6.00

9.02

12.02

16.01

18.00

-2.02

.00

3.02

6.00

8.98

11.99

-.02

-.02

-.03

-.03

-.04

-2.01

.02

3.01

6.00

8.99

12.02

16.03

18.00

-2.04

.01

2.97

5.99

8.99

11.99

15.98

18.00

-.0083

-.0071

-.0060

-.0048

-.0037

-.0166

-.0081

.0046

.0191

.0303

.0421

.0546

.0617

-.0130

-.0044

0081

0222

0324

0434

- 0013

- 0001

0013

0030

0042

0001

-.0012

-.0024

-.0036

-.0019

.0031

.0181

.0227

.0044

.0029

.0020

.0014

.0037

.0097

.0243

.0295

.0084 .0081

.0085 .0068

.0085 .0057

0085 .0045

0084 .0032

0092 .0149

0086 .0077

0092 -.0031

0115 -.0167

0154 -.0298

0201 -.0435

0269 -.0572

.0312 -.0660

.0091 .0113

.0087 .0040

0095 -.0067

0119 -.0201

0160 -.0321

0206 -.0446

0055 -.0004

0050 -.0021

0049 -.0043

0047 -.0067

0044 -.0084

0054 -.0019

.0055 -.0005

.0056 .0012

.0054 .0028

.0057 .0027

.0076 .0002

.0151 -.0110

.0193 -.0150

.0045 -.0084

.0048 -.0066

.0050 -.0052

.0051 -.0041

.0058 -.0041

.0084 -.0081

.0162 -.0196

.0209 -.0248

CLN

.0024

.0061

.0115

.0144

.O144

-.0012

.0011

.0046

.0085

0110

0169

0236

0277

0130

0143

0156

0179

0196

0227

0031

0040

.0087

.0144

.0172

.0008

.0015

.0085

.0076

.0118

.0228

.0256

.0295

.0106

.0129

.0184

.0163

.0220

.0302

.0381

.0404

CDN

.0084

.0083

0088

0085

0073

0082

0085

0103

0125

0163

.0212

0274

0310

0082

0087

0093

0109

0141

0173

- 0004

- 0006

0008

.0023

.0027

-.0006

-.0004

-.0004

-.0003

.0012

.0051

.0103

.0140

.0017

.0018

.OO25

.0030

.0051

.0088

.0154

.0186

CMN

-.0078

-.0157

-.0258

-.0314

-.0314

-.0067

-.0070

-.0085

-.0109

-.0104

-.0175

-.0262

-.0316

-.0329

-.0315

-.0282

-.0269

-.0254

-.0280

-.0086

-.0108

-.0195

-.0295

-.0340

-.0077

-.0080

-.0115

-.0109

-.0163

-.0242

-.0283

-.0313

-.0279

-.0292

-.0319

-.0308

-.0357

-.0426

-.0510

-.0542

4O

Page 45: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 9. Continued

(b) Continued

MACH

•600

•601

.600

•600

.601

600

598

600

600

603

600

599

601

598

600

.603

.601

.601

.600

.600

597

601

599

600

600

599

600

599

597

.600

.601

.600

.598

.601

.598

•600

.600

.601

NPR

1.02

1.99

3.00

3.50

5.01

1.03

1.02

1.02

1.02

1.01

1.01

I. O0

.99

3.49

3.52

3.52

3.51

3.51

3.51

3.51

3.50

.98

2.03

3.01

3.51

5.00

1.00

.99

.98

.97

.95

.92

3.49

3.50

3.49

3.49

3.49

3.50

ALPHA

.01

-.04

-.03

-.04

-.04

-2.02

-•02

2.99

5.99

9.02

12.00

15.99

18.01

-2.04

-.02

3.00

6.01

8.98

12.00

15.99

17.96

20.00

19.97

19.95

19.96

19.95

16.52

17.97

19.96

23.97

27.96

31.96

16.15

17.95

19.97

23.98

27.95

31.97

CLAFT

.0012

.0028

.0047

.0053

.0074

.0000

.0014

.0030

0048

0074

0102

0199

0251

0042

0054

.0073

.0094

.0120

.0148

.0257

.0310

.0275

.0306

0320

0331

O355

0198

0229

0273

0416

.0556

.0730

.0242

.0283

.0328

.0485

.0612

.0792

CDAFT

.0052

.0049

.0049

.0049

.0049

.0050

•0051

.0054

0059

0067

0079

0119

0148

0046

0048

.0053

.0061

.0071

.0087

.0134

.0166

.0173

0183

0189

0193

0203

0123

0141

.0173

.0277

.0409

.0600

.0132

.0158

.0192

.0308

.0440

.0644

CMAFT

-•0039

-.0060

-.0086

-.0095

-.0124

-.0030

-.0040

-.0050

-.0064

-.0088

-.0120

-.0214

-.0258

-.0088

-.0096

-.0109

-.0126

-.0153

-.0185

-.0291

-.0339

-.0292

-.0336

-.0358

-.0373

-.0409

-.0226

-.0251

-.0293

-.0453

-.0646

-.0936

-.0290

-.0324

-.0371

-.0550

-.0731

-.1037

CLN

.0055

.0073

.0129

.0145

.0189

.0060

.0083

.0091

.0117

.0142

.0165

.0221

.0253

.0152

.0161

.0176

.0196

.0219

.0244

.0313

0355

0270

0305

0328

0346

0378

0196

0218

.0247

.0286

.0332

.0337

.0264

.0313

.0346

.0390

.0428

.0439

CDN

.0004

-•0004

.0017

.0016

.0039

0003

0006

0013

0026

0042

0058

0102

.0132

.0018

.0027

.0034

.0047

.0062

.0087

0134

0162

0153

0151

0171

0180

.0216

.0096

.0115

.0144

.0211

.0282

.0365

.0112

.0145

.0173

.0242

.0324

.0422

CMN

-.0129

-.0149

-•0243

-.0271

-.0345

-•0132

-.0137

-•0135

-.0154

-.0173

-.0196

-•0233

-•0254

-•0269

-.0278

-.0286

-.0305

-.0326

-.0357

-.0417

-.0451

-•0265

-.0371

-.0425

-.0462

-.0547

-•0226

-•0241

-.0262

-.0299

-•0349

-.0407

-.0400

-.0435

-.0463

-.0518

-.0579

-.0675

41

Page 46: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 9. Concluded

(b) Concluded

MACH

150

151

151

151

150

152

150

151

150

151

151

150151

.150

• 150

.151

150

150

150149

149149

149

152

153

148

149

152

149150

147

148

151

.149

.149

.148

.151

.151

.151

.150

NPR ALPHA CLAFT CDAFT CMAFT CLN CDN CMN

1.00 .01 .0030 .0058 -.0064 .0351 .0008 -.0263

2.01 -.03 .0063 .0067 -.0111 .0363 .0078 -.0335

2.60 -.03 .0094 .0075 -.0150 .0322 .0221 -.0369

3.04 -.01 .0090 .0076 -.0146 .0249 .0188 -.0316

3.76 .00 .0118 .0084 -.0182 .0327 .0104 -.0434

1.00 -1.59 .0019 .0069 -.0068 .0018 -.0030 -.0119

1.00 -.01 .0029 .0066 -.0077 .0039 -.0045 -.0099

1.00 3.00 .0064 .0073 -.0109 .0031 -.0036 -.0087

1.00 6.00 .0050 .0071 -.0077 .0050 -.0048 -.0115

1.00 8.99 .0088 .0082 -.0117 .0177 .0123 -.0173

1.00 11.99 .0126 .0095 -.0160 .0193 .0158 -.0174

1.00 16.01 .0178 .0118 -.0211 .0277 .0221 -.0247

1.00 18.00 .0270 .0160 -.0314 .0301 .0256 -.0256

2.61 -1.96 .0062 .0075 -.0106 .0166 .0216 -.0328

2.62 -.03 .0084 .0076 -.0127 .0127 .0213 -.0306

2.62 3.00 .0067 .0080 -.0096 .0193 .0209 -.0350

2.61 5.99 .0095 .0088 -.0119 .0194 .0206 -.0353

2.61 8.99 .0114 .0097 -.0133 .0179 .0253 -.0369

2.62 12.00 .0152 .0113 -.0178 .0263 .0274 -.0406

2.61 15.98 .0222 .0147 -.0266 .0296 .0344 -.0476

2.61 17.86 .0311 .0190 -.0369 .0290 .0378 -.0458

1.00 20.02 .0247 .0167 -.0282 .0210 .0133 -.0201

2.01 19.99 .0274 .0190 -.0321 .0085 .0080 -.0173

2.63 19.97 .0275 .0200 -.0336 .0038 .0158 -.0226

3.01 19.96 .0276 .0202 -.0344 .0142 .0182 -.0336

3.80 19.96 .0310 .0229 -.0404 .0146 .0230 -.0413

1.00 15.98 .0173 .0126 -.0234 -.0008 .0071 -.0115

1.00 17.96 .0221 .0145 -.0285 .0069 .0082 -.0173

1.00 19.97 .0259 .0169 -.0315 .0138 .0135 -.0197

1.00 23.98 .0300 .0219 -.0335 .0329 .0233 -.0328

1.00 27.97 .0432 .0329 -.0502 .0391 .0315 -.0369

1.00 31.96 .0550 .0461 -.0678 .0495 .0461 -.0471

1.00 34.98 .0638 .0574 -.0829 .0487 .0512 -.0493

2.59 15.97 .0198 .0143 -.0248 .0169 .0301 -.0427

2.59 17.97 .0234 .0157 -.0286 .0190 .0317 -.0482

2.59 19.97 .0295 .0191 -.0353 .0165 .0317 -.0439

2.59 23.97 .0317 .0235 -.0358 .0231 .0335 -.0508

2.59 27.98 .0462 .0356 -.0537 .0284 .0366 -.0522

2.59 31.97 .0570 .0494 -.0707 .0350 .0450 -.0613

2.59 34.96 .0667 .0623 -.0877 .0322 .0478 -.0638

42

Page 47: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 10. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/25

A/B Sidewalls and 6v,p = 0°

(a) Total aft end

MACH

1.201

1.198

1.198

1.200

1.200

1.203

1.199

1.200

1.201

1.201

1.198

1.200

1.198

1.201

1.201

1.200

1.200

1.200

1.201

1.196

1.199

.903

.902

.901

.898

.900

.899

.902

.901

.900

.902

.900

.899

.898

.899

.902

.901

.896

.901

.899

.899

.901

NPR ALPHA CLT C(D-F) CMT CL CD CM

.95

3.01

5. O0

6.98

9.01

.95

93

91

89

87

81

75

.70

7.00

7.00

7. O0

7.00

6.99

7.01

6.96

6.99

1.09

2.00

3.03

5.03

7.03

i. II

1.09

1.09

I.I0

I.i0

i. I0

1.09

1.08

4.99

5.01

5.00

4.98

5.01

4.99

4.99

5.00

-.01

.00

.01

.02

.01

-2.02

.00

3.02

6.00

9.02

12.01

15.99

18.01

-2.03

-.01

3.00

6.03

9.01

12.00

16.02

18.00

.00

-.02

-.01

.00

.02

-2.02

-.02

2.98

6.00

9.01

11.99

16.00

18.00

-2.04

-.032.98

6.02

9.00

12.01

16.03

17.99

-.0095

-.0086

-.0106

-.0110

-.0111

-.0221

-.0105

.0053

.0216

.0349

.0468

.0623

.0723

-.0262

-.0120

.0066

.0271

.0461

.0637

.0870

.0995

-.0O75

-.0070

-.0076

-.0075

-.0084

-.0070

- 0076

- 0043

- 0061

- 0034

0136

0284

.0364

-.0130

-.0095

-.0005

.0034

.0127

.0352

.0595

.0717

.0175

-.0147

-.0452

-.0762

-.1084

.0191

.0180

.0187

.0222

.0288

.0378

.0475

.0543

-.0752

-.0763

-.0759

-.0726

-.0663

-.0582

-.0469

-.0405

.0035

-.0258

-.0518

-.1062

-.1605

.0034

.0036

.0031

.0024

.0027

.0076

.0174

.0249

-.1051

-.1051

-.1056

-.1062

-.1045

-.0990

-.0867

-.0781

.0058

.0065

.0122

.0159

.0190

.0139

.0055

-.0062

-.0199

-.0310

-.0453

-.0618

-.0730

.0226

.0161

.0091

-.0020

-.0143

-.0286

-.0466

- 0571

0050

0075

0111

0165

0224

0034

.0050

.0057

.0076

.0074

-.0031

-.0146

-.0217

.0156

.0169

.0171

.0193

.0185

.0077

-.0067

-.0149

-.0095

-.0086

-.0106

-.0110

-.0112

-.0221

-.0105

0054

0216

0350

0469

0624

0724

-.0230

-.0120

.0019

.0175

.0320

.0449

.0620

0715

- 0075

- 0070

- 0076

- 0075

- 0085- 0071

-.0076

-.0043

-.0061

-.0034

.0136

.0285

.0365

-.0091

-.0095

-.0061

-.0079

-.0042

.0127

.0296

.0384

.0175

.0165

.0159

.0144

.0128

.O191

.0180

.0187

.0222

.0288

0378

0475

0543

0155

0145

0149

0178

0235

0308

0406

0460

0035

.0027

.0038

.0033

.0020

.0034

.0036

.0031

.0025

.0028

.0076

.0174

.0249

.0032

.0030

.0025

.0021

.0024

.0072

.0175

.0249

.0058

.0035

.0062

.0069

.0069

.0139

.0055

-.0062

-.0199

-.0310

-.0453

-.0618

- 0730

0136

0071

0000

- 0110

- 0233

-.0377

-.0557

-.0661

.0050

.0049

.0057

.0057

.0062

.0034

.0050

.0057

.0076

.0074

-.0031

-.0146

-.0217

.0049

.0063

.0064

.0085

.0078

-.0030

-.0174

-.0256

43

Page 48: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 10. Continued

MACH

600

603

598

597

60O

599

601

604

601

601

599

600

598

599

602

600

599

600

603

598

600

151

149

150

150

152

151

151

151

150

149

149

151

151

149

151

151

151

151

150

150

151

NPR

1.03

2.01

2.99

3.50

5. O0

1.03

1.03

1.03

1.03

1.03

1.03

1.03

1.02

3.48

3.54

3.50

3.50

3.50

3.51

3.49

3.50

1.00

1.99

2.61

3.00

3.79

1.03

1. O0

1.00

1.00

i .00

i.00

1.00

I. 00

2.61

2.61

2.61

2.61

2.61

2.61

2.61

2.61

ALPHA CLT

(a) Concluded

C(D-F) CMT CL CD CM

•00 -.0076 .0049 .0040 -.0076 .0049 .0040

•02 -.0058 -.0603 .0093 -.0058 .0040 .0034

•02 -.0058 -.1193 .0159 -.0059 .0051 .0039

•02 -.0055 -.1501 .0190 -.0055 .0051 .0038

•02 -.0051 -.2399 .0275 -.0052 .0044 .0035

-1.89 -.0069 .0043 .0037 -.0069 .0043 .0037

-.02 -.0042 .0041 .0031 -.0042 .0041 .0031

3.00 -.0015 .0042 .0029 -.0015 .0042 .0029

6.01 .0017 .0049 .0015 .0018 .0049 .0015

9.00 .0058 .0059 -.0013 .0059 .0059 -.0013

12.00 .0106 .0076 -.0059 .0106 .0076 -.0059

15.99 .0258 .0139 -.0181 .0259 .0140 -.0181

18.00 .0342 .0191 -.0239 .0343 .0191 -.0239

-1.83 -.0103 -.1486 .0191 -.0055 .0047 .0042

-.02 -.0037 -.1502 .0184 -.0036 .0045 .0033

2.98 .0071 -.1489 .0176 -.0008 .0045 .0026

6.03 .0180 -.1479 .0165 .0019 .0051 .0015

9.00 .0301 -.1455 .0130 .0062 .0059 -.0019

12.01 .0428 -.1413 .0078 .0111 .0078 -.0070

15.98 .0697 -.1339 -.0059 .0274 .0143 -.0209

18.01 .0836 -.1267 -.0127 .0363 .0193 -.0277

•00 -.0062 .0192 -.0015 -.0062 .0192 -.0015

•01 .0045 -1.0258 .0894 .0044 .0018 -.0042

•02 .0018 -1.5807 .1525 .0013 .0201 .0003

•02 .0026 -1.9654 .1917 .0021 .0145 .0011

•02 .0047 -2.6482 .2583 .0040 .0125 -.0019

-1.53 -.0002 -o0019 -.0008 -.0002 -.0019 -.0008

•03 .0271 .0085 -.0109 .0271 .0085 -.0109

2.99 .0289 .0086 -.0102 .0289 .0086 -.0102

5.99 .0326 .0103 -.0102 .0327 .0103 -.0102

8.98 .0344 .0150 -.0128 .0344 .0150 -.0128

11.99 .0404 .0217 -.0185 .0405 .0217 -.0185

15.99 .0534 .0286 -.0297 .0535 .0286 -.0297

18.00 .0585 .0366 -.0377 .0586 .0366 -.0377

-1.55 -.0264 -1.6118 .1534 .0178 .0167 -.0014

•02 .0181 -1.5804 .1493 .0176 .0164 -.0024

2.98 .0986 -1.5734 .1501 .0155 .0207 -.0016

5.99 .1803 -1.5564 .1495 .0151 .0190 -.0010

9.01 .2752 -1.5474 .1448 .0261 .0237 -.0064

11.99 .3625 -1.5447 .1431 .0289 .0267 -.0096

15.99 .4893 -1.5211 .1312 .0432 .0356 -.0227

17.99 .5489 -1.4790 .1178 .0547 .0437 -.0343

44

Page 49: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 10. Continued

MACH

1 201

1 198

1 198

1 200

1 200

1 203

1 199

1.200

1.201

1.201

1.198

1.200

1.198

1.201

1.201

1.200

1.200

1.200

1 201

1 196

1 199

903

902

901

.898

.900

.899

.902

.901

.900

.902

.900

.899

.898

.899

.902

.901

.896

.901

.899

.899

.901

(b) Afterbody and nozzle

NPR ALPHA CLAFT CDAFT CMAFT

.95

3.01

5.00

6.98

9.01

.95

.93

.91

.89

.87

.81

.75

.70

7.00

7.00

7.00

7.00

6.99

7.01

6 96

6 99

1 09

2 O0

3 03

5 03

7.03

I.Ii

1.09

1.09

i. I0

I.I0

I.i0

I. 09

1.08

4.99

5.01

5. O0

4.98

5.01

4.99

4.99

5.O0

-.0086

-.0084

-.0084

-.0084

-.0085

-.0169

-.0083

.0038

.0180

.0301

.0403

.0528

.0603

-.0169

-.0083

.0036

0181

0301

0406

0530

0605

- 0033

- 0034

- 0034

- 0035

-.0035

-.0019

-.0034

-.0052

-.0060

-.0049

-.0005

.0140

.0194

-.0021

-.0034

-.0052

-.0053

-.0045

-.0001

.0151

.0205

-.01

.00

.01

.02

.01

-2.02

.00

3.02

6.00

9.02

12.01

15.99

18.01

-2.03

-.01

3.00

6.03

9.01

12.00

16.02

18.00

.00

-.02

-.01

.00

.02

-2.02

-.02

2.98

6.00

9.01

11.99

16.00

18.00

-2.04

-.03

2.98

6.02

9.00

12.01

16.03

17.99

.0084

.0086

.0086

.0086

.0086

.0093

.0087

.0093

0116

0151

0198

0264

0308

0094

0088

0093

.0116

0153

0198

0267

0309

0058

0053

0054

.0053

.0051

.0058

.0059

.0058

.0055

.0057

.0071

.0140

.0186

.0053

.0054

.0052

.0050

.0051

.0067

.0141

.0187

.0083

.0080

.0080

.0080

.0080

.0149

.0079

-.0023

-.0159

-.0287

-.0416

-.0553

-.0637

0150

0077

- 0023

- 0161

- 0288

- 0418

- 0556

- 0642

.0028

.0030

.0030

.0031

.0032

.0012

.0030

.0056

.0067

.0072

.0053

-.0058

-.0100

.0014

.0030

.0056

.0062

.0069

.0045

-.0072

-.0116

CLN

-.0009

-.0002

-.0022

-.0026

-.0027

-.0052

-.0022

.0016

.0036

.0049

.0065

.0096

.0121

-.0061

-.0037

- 0018

- 0005

0018

0043

0090

0109

-.0042

-.0036

-.0042

-.0040

-.0050

-.0052

-.0042

.0010

.0000

.0015

.0141

.0144

.0171

-.0071

-.0061

-.0009

-.0026

.0003

.0128

.0145

.0179

CDN

.0091

.0079

.0073

0058

0041

0098

0093

0094

0107

0137

0181

0211

0235

0061

.0057

.0056

.0062

.0083

.0110

.0139

.0152

-.0023

-.0026

-.0016

-.0020

-.0031

-.0024

-.0023

-.0026

-.0030

-.0029

.0005

.0034

.0063

-.0021

-.0023

-.0027

-.0029

-.0027

.0005

.0034

.0062

CMN

-.0024

-.0045

-.0018

-.0011

-.0011

-.0010

-.0024

-.0039

-.0040

-.0023

-.0038

-.0066

-.0092

-.0013

-.0006

.0024

.0051

.0055

.0041

-.0001

-.0020

.0021

.0019

.0027

.0025

.0031

.0022

.0020

.0001

.0009

.0002

-.0084

-.0088

-.0117

.0035

.0033

.0008

.0023

.0009

-.0075

-.0102

-.0139

45

Page 50: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 10. Concluded

(b) Concluded

MACH NPR ALPHA CLAFT CDAFT CMAFT CLN CDN CMN

600 1.03 .00 -.0033 .0055

603 2.01 .02 -.0033 .0051

598 2.99 .02 -.0033 .0052

597 3.50 .02 -.0033 .0052

600 5.00 .02 -.0032 .0052

599 1.03 -1.89 -.0037 .0055

601 1.03 -.02 -.0031 .0054

604 1.03 3.00 -.0019 .0054

601 1.03 6.01 -.0005 .0056

601 1.03 9.00 .0019

599 1.03 12.00 .0047

600 1.03 15.99 .0147

598 1.02 18.00 .0194

599 3.48 -1.83 -.0037

602 3.54 -.02 -.0031

600 3.50 2.98 -.0018

599 3.50 6.03 -.0004

600 3.50 9.00 .0020

603 3.51 12.01 .0053

598 3.49 15.98 .0154

600 3.50 18.01 .0206

151 1.00 .00 -.0009

149 1.99 .01 -.0014

150 2.61 .02 -.0024

150 3.00 .02 -.0025

152 3.79 .02 -.0018

151 1.03 -1.53 -.0022

151 1.00 .03 - 0033

151 1.00 2.99 - 0017

150 1.00 5.99 - 0016

149 1.00 8.98 0003

149 1.00 11.99 0058

151 1.00 15.99 0143

.0029 -.0042 -.0006 .0011

.0030 -.0025 -.0011 .0005

.0029 -.0026 -.0001 .0011

.0029 -.0023 -.0001 .0009

.0029 -.0020 -.0007 .0006

.0028 -.0032 -.0012 .0009

•0028 -.0011 -.0012 .0003

.0024 .0005 -.0012 .0005

.0015 .0023 -.0007 .0000

.0061 -.0008 .0039 -.0002 -.0006

.0070 -.0038 .0059 .0006 -.0021

.0106 -.0134 .0112 .0033 -.0047

.0131 -.0172 .0149 .0059 -.0067

.0051 .0029 -.0018 -.0004 .0013

.0050 .0030 -.0005 -.0006 .0004

•0051 .0024 .0010 -.0006 .0002

•0052 .0015 .0023 -.0001 .0000

•0057 -.0007 .0042 .0003 -.0013

•0067 -.0045 .0058 .0010 -.0026

•0105 -.0143 .0119 .0038 -.0066

•0132 -.0187 .0157 .0061 -.0090

•0076 -.0019 -.0053

•0078 -.0012

•0076 .0002

•0075 .0007

•0079 .0003

0055 .0015

0051 0038

0050 0025

0047 0034

0052 0019

0066 - 0044

0098 - 0137

•0116 .0004

•0058 -.0059 -.0030

•0037 .0125 .0001

•0046 .0069 .0004

•0059 .0046 -.0022

0020 -.0074 -.0023

0304 .0034 -.0147

0306 .0036 -.0127

0343 .0056 -.0136

0341 .0099 -.0147

0347 .0151 -.0141

0392 .0188 -.0160

151 1.00 18.00

149 2.61 -I 55

151 2.61

.151 2 61 2

.151 2 61 5

.151 2 61 9

.150 2 61 11

.150 2 61 15

.151 2 61 17

02 -.0019

98 -.0008

99 -.0024

Ol .0007

99 .0046

99 .0115

99 .0157

0184 .0121 -

0022 .0065

0061

0065

0060

0068

0179

0023

0022

0018 .0164

0045 .0175

0011 .0254

0076 -.0033 .0244

0104 -.0104 .0317

0126 -.0144 .0390

0402 .0246 -.0199

0200 .0102 -.0036

0195 .0103 -.0046

0142 -.0034

0129 -.0055

0169 -.0075

0191 -.0062

0252 -.0123

0311 -.0199

46

Page 51: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 11. Lateral Aerodynamic Characteristics for A/B Nozzle With 100/25 A/B

Sidewalls and 5v,p = O°

MACH NPR ALPHA CROLLT CNT CYT CROLL CN CY

1.201

1.198

1.198

1.200

1.200

1.203

1.199

1.200

1.201

1.201

1.198

1.200

1.198

1.201

1.201

1.200

1.200

1.200

1.201

1.196

1.199

.903

.902

.901

.898

.900

.899

.902

.901

.900

.902

.900

.899

.898

.899

.902

901

896

901

899

899

901

.95 -.01

3.01 .00

5.00 .01

6.98 .02

9.01 .01

.95 -2.02

.93 .00

.91 3.02

.89 6.00

.87 9.02

.81 12.01

.75 15.99

.70 18.01

7.00 -2.03

7.00 -.01

7.00 3.00

7.00 6.03

6.99 9.01

7.01 12.00

6.96 16.02

6.99 18.00

1.09 .00

2.00 -.02

3.03 -.01

5.03 .00

7.03 .02

i. II -2.02

1.09 -.02

1.09 2.98

i. I0 6.00

i.i0 9.01

I.i0 11.99

1.09 16.00

1.08 18.00

4.99 -2.04

5.01 -.03

5.00 2.98

4.98 6.02

5.01 9.00

4.99 12.01

4.99 16.03

5.00 17.99

.0000

.0000

.0001

.0003

.0004

0000

0001

0001

0002

0002

0001

.0001

.0001

.0003

.0003

.0004

.0004

.0005

.0005

.0005

.0006

.0002

.0001

.0001

.0004

.0006

.0002

.0002

.0002

.0001

.0001

.0001

.0001

.0002

.0003

.0003

.0003

.0003

.0003

.0003

.0003

.0004

.0009

.0004

.0021

.0036

.0052

.0009

.0010

.0010

.0009

.0011

.0001

-.0004

-.0004

.0036

.0037

.0038

0038

0042

0037

0038

0038

0006

-.0012

-.0007

.0024

.0054

.0006

.0006

.0006

.0003

.0002

.0002

.0000

.0001

.0023

.0023

.0023

.0023

.0021

.0020

.0021

.0023

-.0012 .0000 .0009 -.0012

-.0009 .0000 .0007 -.0011

-.0032 .0001 .0007 -.0009

-.0054 .0003 .0006 -.0007

-.0076 .0004 .0005 -.0004

-.0012 .0000 .0009 -.0012

-.0014 .0001 .0010 -.0014

-.0020 .0001 .0010 -.0020

-.0024 .0002 .0009 -.0024

-.0024 .0002 .0011 -.0024

-.0020 .0001 .0001 -.0020

-.0012 .0001 -.0004 -.0012

-.0011 .0001 -.0004 -.0011

-.0054 .0003 .0005 -.0006

-.0056 .0003 .0007 -.0009

-.0060 .0004 .0008 -.0013

-.0063 .0004 .0007 -.0015

-.0068 .0005 .0011 -.0021

-.0075 .0005 .0007 -.0027

-.0076 .0005 .0008 -.0029

-.0076 .0006 .0007 -.0029

-.0024 .0002 .0006 -.0024

-.0002 .0001 .0000 -.0016

-.0010 .0001 -.0001 -.0013

-.0054 .0004 .0000 -.0013

-.0096 .0006 .0000 -.0012

-.0023 .0002 .0006 -.0023

-.0023 .0002 .0006 -.0023

-.0025 .0002 .0006 -.0025

-.0019 .0001 .0003 -.0019

-.0016 .0001 .0002 -.0016

-.0017 .0001 .0002 -.0017

-.0013 .0001 .0000 -.0013

-.0020 .0002 .0001 -.0020

-.0050 .0003 -.0001 -.0010

-.0050 .0003 -.0001 -.0010

-.0050 .0003 -.0001 -.0010

-.0052 .0003 -.0001 -.0012

-.0046 .0003 -.0003 -.0006

-.0044 .0003 -.0004 -.0004

-.0047 .0003 -.0003 -.0007

-.0055 .0004 -.0001 -.0015

47

Page 52: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 11, Concluded

MACH

.600

.603

.598

.597

•600

.599

.601

•604

•601

.601

.599

•600

.598

.599

602

600

599

600

603

598

600

151

149

150

150

152

.151

151

151

150

149

149

151

151

149

151

151

151

.151

.150

.150

.151

NPR

1.03

2.01

2.99

3.50

5.00

1.03

1.03

1.03

1.03

i .03

1.03

1.03

1.02

3.48

3.54

3.50

3.50

3.50

3.51

3.49

3.50

1.O0

1.99

2.61

3.O0

3.79

1.03

I. 00

1. O0

1.00

1.00

1.00

1.00

1.00

2.61

2.61

2.61

2.61

2.612.61

2.612.61

ALPHA

.00

.02

.02

.02

.02

-1.89

-.02

3.00

6.01

9.00

12.00

15.99

18.00

-1.83

-.02

2.98

6.03

9.00

12.01

15.98

18.01

.00

.01

.02

.02

.02

-1.53

.03

2.99

5.99

8.98

11.99

15.99

18.00

-1.55

.02

2.98

5.99

9.01

11.99

15.99

17.99

CROLLT CNT CYT

.0003

-.0001

.0000

.0002

.0007

.0003

.0003

.0003

.0003

.0003

.0003

.0002

.0002

.0001

.0002

.0002

.0002

.0002

.0002

.0003

.0003

.0026

-.0015

-.0012

-.0001

.0025

.0022

.0021

.0020

.0016

.0016

.0015

.0014

.0013

-.0018

-.0017

-.0017

-.0020

-.0020

-.0023

-.0022

-.0022

.0003

-.0028

-.0013

.0005

.0056

.0003

.0003

.0004

.0003

.0001

.0001

.0003

.0002

.0004

.0006

.0005

.0005

.0004

.0005

.0006

.0008

.0042

-.0420

-.0333

- 0162

0233

0039

0043

0038

0034

.0033

.0030

.0027

.0026

-.0353

-.0345

-.0344

-.0345

-.0352

-.0355

-.0357

-.0350

-.0020

.0019

-.0006

-.0032

-.0107

-.0020

-.0022

-.0023

-.0022

-.0018

-.0021

-.0026

-.0027

-.0033

-.0036

-•0036

-.0036

-.0033

-.0036

-.0041

-.0050

-.0225

.0294

.0142

-•0105

-.0649

-.0192

-.0211

-.0192

-.0161

-.0161

-.0143

-.0137

-.0121

.0214

.0210

.0209

.0226

.0244

.0263

.0250

.0246

CROLL

.0003

-.0001

.0000

.0002

.0007

.0003

.0003

.0003

.0003

.0003

.0003

.0002

.0002

.0001

.0002

.0002

.0002

.0002

.0002

.0003

.0003

.0026

-.0015

-.0012

-.0001

.0025

.0022

.0021

.0020

.0016

.0016

.0015

.0014

.0013

-.0018

-.0017

-.0017

-.0020

-.0020

-.0023

-.0022

-.0022

CN

.0003

-.0001

-.0001

.0000

.0001

.0003

.0003

.0004

.0003

.0001

.0001

.0003

.0002

.0001

.0001

.0001

.0001.0000

.0001

.0002

.0004

.0042

.0028

.0001

.0041

.0018

.0039

.0043

.0038

.0034

.0033

.0030

.0027

.0026

-.0012

-.0012

-.0012

-.0016

-.0021

-.0021

-•0019

-.0017

CY

-.0020

-.0012

-.0014

-.0016

-.0017

-.0020

-.0022

-.0023

-•0022

-.0018

-.0021

-.0026

-.0027

-.0018

-.0018

-.0020-.0020

-.0017

-.0020

-.0025

-.0034

-.0225

-.0217

-.0177

-•0245

-.0177

-.0192

-.0211

-.0192

-.0161

-.0161

-.0143

-.0137

-.0121

-.0112

-.0108

-.0107

-.0089

-.0072

-.0056

-.0072

-.0072

48

Page 53: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 12. Longitudinal Aerodynamic Characteristics for Dry Nozzle With 100/25

A/B Sidewalls and 6v,p = 0 °

(a) Total aft end

MACH

1.200

1 200

1 200

1 202

1 200

1 201

1 202

1 202

1 201

1 200

1.200

1.202

1.197

1.202

1.202

1.201

1.200

1.200

1.201

1.203

1.199

.899

.900

.897

.896

.902

.899

.900

.903

.901

.902

.901

.901

.900

.901

900

900

903

899

90O

902

898

NPR ALPHA CLT C(D-F) CMT CL CD CM

.93

2.96

5.01

7.06

8.96

.94

.92

88

84

80

77

76

76

7 03

7 06

7 O0

6 99

6.98

6.99

7.01

6.98

I.I0

2.01

2.99

4.97

7.01

I.ii

I.I0

I.I0

1.10

I.I0

I.I0

1.09

1.06

4.99

4.99

5.00

5.01

4.99

4.99

5. O0

4.99

Ol

Ol

02

Ol

02

-20l

Ol

30l

6 O0

90l

11.99

16.02

18.00

-2.01

.01

3.03

5.99

9.01

12.00

15.99

17.98

-.03

-.01

-.01

.00

.00

-2.03

.03

3.03

6.00

9.01

11.99

16.03

18.00

-2.02

.00

3.03

6.01

8.99

12.01

16.03

17.99

-.0075

-.0077

-.0087

-.0103

-.0102

-.0230

-.0078

0115

0311

0424

0570

0725

0810

- 0213

- 0088

0094

0292

0463

.0649

.0859

.0981

-.0085

-.0090

-.0081

-.0077

-.0076

-.0069

-.0067

-.0016

-.0023

.0045

.0200

.0375

.0423

-.0093

-.0072

.0013

.0033

.0107

.0322

.0553

.0659

.0167

-.0042

-.0246

-.0463

-.0672

.0184

.0171

.0195

.0250

.0317

.0401

0506

0571

- 0446

- 0457

- 0441

- 0408

-.0333

-.0255

-.0146

-.0073

.0039

-.0164

-.0338

-.0701

-.1071

.0040

.0040

.0038

.0036

.0047

.0099

.0215

.0277

-.0695

-.0699

-.0702

-.0701

-.0694

-.0634

-.0507

-.0432

005O

0064

0095

0137

0154

0185

0033

- 0142

- 0329

- 0408

- 0559

-.0704

-.0798

.0197

.0129

.0027

-.0095

-.0221

-.0378

-.0551

-.0662

.0045

.0082

.0091

.0123

.0158

.0033

.0038

.0036

.0035

-.0023

-.0119

-.0254

-.0257

.0102

.0120

.0120

.0143

.0123

.0010

-.0134

-.0206

- 0075

- 0077

- 0088

- 0104

- 0102

- 0230

- 0078

0115

0311

.0424

.0571

.0726

.0811

-.0191

-.0088

.0061

.0228

.0366

.0521

.0689

.0791

-.0085

-.0090

-.0081

-.0077

-.0076

-.0069

-.0067

-.0015

-.0022

.0046

.0201

.0376

.0424

-.0067

-.0072

-.0026

-.0044

-.0008

.0169

.0350

.0432

0167

0166

0171

0163

0150

0184

0171

0195

0250

.0317

.0401

.0506

.0571

.0177

.0169

.0179

.0209

.0279

.0352

.0450

.0517

.0039

.0031

.0038

.0040

.0033

.0040

.0040

.0038

.0036

.0047

.0100

.0215

.0278

0041

0038

0038

0032

0037

0088

0202

0273

.0050

.0044

.0056

.0080

.0078

.0185

.0033

-.0142

-.0329

-.0408

-.0559

-.0704

-.0798

.0140

.0071

-.0030

-.0153

-.0278

-.0435

-.0608

-.0720

0045

0062

0055

0054

0056

0033

0038

0036

.0035

-.0023

-.0119

-.0254

-.0257

.0034

.0051

.0051

.0074

.0054

-.0059

-.0203

-.0275

49

Page 54: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 12. Continued

MACH

600

601

601

599

597

603

599

600

599

600

599

600

599

599

601

600

599

601

601

603

596

•600

.600

.600

.599

.599

.600

.599

.599

.601

.599

.599

.602

.599

.599

.598

.598

.599

NPR

1.04

1.98

2.99

3.50

4.98

1.04

i .04

1.04

1.04

1.05

1.05

1.05

1 05

3 53

3 51

3 50

3 49

3 49

3 49

3 50

3 48

1 05

2 00

3 O0

3 51

5 03

1 05

I 05

I 05

1.03

1.01

.98

3.48

3.49

3.49

3.49

3.50

3.50

ALPHA

.00

.02

.01

.01

.00

-1.90

.00

2.99

6.00

8.99

12.00

15.99

18.02

-i 88

033 O0

6 O0

9 O0

12 O0

16 O0

18 01

20 02

20 Ol

20 O0

20 02

20 00

16 66

18 O0

19 99

23 98

27 98

31.99

16.82

17.98

19.99

23.98

27.97

31.99

CLT

-.0081

-.0085

-.0070

-.0069

-.0056

-.0016

0000

0017

0064

0092

0145

0297

0371

-.0060

-.0004

0072

0157

0252

0356

0584

0716

0395

0537

0703

0782

1005

.0262

.0311

.0373

.0540

.0722

.0863

0569

0650

0769

1016

1307

1547

(a) Continued

C(D-F) CMT

.0037 .0043

-.0410 .0109

-.0813 .0125

-.1019 .0145

-.1639 .0197

.0049 .0010

.0048 .0016

.0047 .0028

.0056 -.0008

.0065 -.0026

.0085 -.0067

.0148 -.0185

.0195 -.0234

-.1021 .0127

-.1003 .0119

-.I000 .0117

-.0994 .0105

-.0969 .0073

-.0943 .0026

-.0856 -.0109

-.0810 -.0175

.0221 -.0251

-.0212 -.0200

-.0581 -.0223

-.0777 -.0213

-.1365 -.0174

.0138 -.0181

.0166 -.0210

.0212 -.0247

.0360 -.0404

.0566 -.0633

.0803 -.0903

-.0862 -.0117

-.0841 -.0153

-.0778 -.0211

-.0605 -.0392

-.0350 -.0689

-.0055 -.1017

CL

-.0081

-.0085

-.0070

-.0069

-.0056

-.0016

.0000

.0017

.0064

.0093

.0146

.0298

.0372

-.0025

-.0005

0017

0048

0089

0140

0299

0391

0396

0389

0415

0423

0431

0263

0313

0374

0542

0724

0865

0271

0327

.0411

.0589

.0814

.0991

CD

.0037

.0015

.0027

.0035

.0035

.0049

.0048

.0047

.0056

0065

0085

0148

0196

0044

0046

0046

0049

0061

0078

0142

0195

0221

0197

0214

0214

0215

0138

0166

0212

0360

0566

0803

0128

0158

0209

0360

0582

0838

CM

.0043

.0067

.0045

.0046

.0041

.0010

.0016

.0028

-.0008

-.0026

-.0067

-.0185

-.0234

.0027

.0020

.0018

.0006

-.0025

-.0072

-.0207

-.0274

-.0251

-.0243

-.0304

-.0312

-.0331

-.0181

-.0210

-.0247

-.0404

-.0633

-.0903

-.0214

-.0252

-.0310

-.0492

-.0788

-.1116

5O

Page 55: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 12. Continued

MACH

152

150

150

151

151

149

151

151

149

150

151

150

150

151

151

153

152

152

152

151

.151

.153

.150

.149

.150

.150

• 150

.150

.150

.151

.151

.151

.153

.152

149

149

149

152

150

153

152

NPR

1.00

2.02

2.61

2.98

3.86

1.00

1.00

I. 00

i. O0

1.00

1.00

1.00

i. O0

2.60

2.60

2.60

2.60

2.60

2.60

2.60

2.60

I.O0

1.98

2.59

3.03

3.81

2.79

1.01

i.O0

i.O0

i.O0

i.O0

1.00

1.00

2.63

2.60

2.60

2.60

2.60

2.61

2.61

ALPHA

02

02

Ol

01

O0

-I 32

.03

3.03

6.03

8.99

11.99

16.02

18.00

-1.36

.03

3.02

6.04

9.00

11.99

15.99

18.02

20.00

20.00

19.98

19.98

19.99

15.99

15.99

17.98

19.98

23.98

27.99

31.99

35.10

15.98

17.98

19.98

23.99

27.98

31.98

34.97

CLT

•0205

.0184

.0310

.0324

.0334

.0382

.0401

.0375

.0416

.0485

.0507

.0571

.0691

-•0003

.0257

.0827

.1356

.1988

.2540

.3450

.3886

.0483

.2804

.4387

5402

7148

3534

0098

0199

0368

0539

.0754

.0924

.0998

.3603

4079

4470

5147

6086

6688

7293

(a) Concluded

C(D-F) CMT CL CD CM

.0253 -.0121

-•7185 .0717

-1.0952 .0915

-1.3186 .1125

-1.8846 .1652

.0233 -.0154

.0173 -.0144

.0197 -.0107

.0187 -.0127

.0253 -.0162

.0274 -•0191

.0378 -.0281

.0448 -•0392

-1.0686 .0967

-1•0706 .0980

-1.0521 .0959

-1•0494 .0977

-I•0405 .0929

-1•0321 .0916

-1.0177 .0774

-1.0041 .0693

.0210 -.0273

-•6343 .0596

-1•0083 .0614

-1.2708 .0849

-1.7498 .1327

-1.1673 0964

0106 - 0092

0121 - 0172

0200 - 0261

0339 - 0371

0563 - 0583

0793 - 0798

0980 - 0943

-I 0684 0755

-i 0316 0619

-1.0189 0600

-.9411 0474

-.9178 0329

-.8252 0055

-.7816 -.0144

.0205

.0181

.0307

.0322

.0332

.0382

.0401

.0375

.0416

.0485

.0508

.0572

.0692

.0250

.0251

.0274

.0245

.0334

.0339

.0501

.0561

.0484

.0486

.0651

.0698

.0704

.0199

.0099

.0200

.0369

.0540

.0756

.0926

.I000

.0508

.0675

.0684

.0804

.0940

.1102

.1203

.0253

-.0065

.0002

.0056

.0098

.0233

.0173

.0197

.0187

.0253

.0274

.0378

.0448

-.0012

-.0028

-•0019

.0014

.0034

.0042

.0118

.0181

.0210

.0029

.0192

.0234

.0227

-.0029

.0106

.0122

.0200

.0339

.0564

.0794

.0981

.0122

0175

0225

0352

0511

0698

0895

-.0121

.0015

-.0137

-.0134

-.0128

-.0154

-.0144

-.0107

-.0127

-.0162

-.0191

-.0281

-.0392

-.0058

-.0045

-.0051

-.0038

-•0086

-•0102

-.0254

-.0339

-.0273

-.0074

-.0436

-•0459

-.0446

-.0193

-.0092

-.0172

-.0261

-.0371

-.0583

-.0798

-.0943

-.0324

-.0440

-.0464

-.0552

-.0724

-.0958

-.1165

51

Page 56: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 12. Continued

MACH

1.200

1.200

1.200

1.202

1.200

1.201

1.202

1.202

1.201

1.200

1.200

1.202

1.197

1.202

1.202

1.201

1.200

1.200

1.201

1.203

1.199

.899

.900

.897

.896

.902

.899

.900

.903

.901

.902

.901

.901

.900

.901

.900

.900

.903

.899

.900

.902

.898

(b) Afterbody and nozzle

NPR ALPHA CLAFT CDAFT CMAFT

.01

.01

.02

.01

.02

-2.01

.01

3.01

6.00

9.01

11.99

16.02

18.00

-2.01

.01

3.03

5.99

9.01

12.00

15.99

17.98

-.03

-.01

-.01

00

O0

-2 03

O3

3 03

6 O0

9 O1

11.99

16.03

18.00

-2.02

.00

3.03

6.01

8.99

12.01

16.03

17.99

.93

2.96

5.01

7.06

8.96

.94

.92

.88

.84

.80

.77

.76

.76

7.03

7.06

7. O0

6.99

6.98

6.99

7.01

6.98

i. I0

2.01

2.99

4.97

7.01

I.Ii

l.lO

I.I0

I.I0

I.i0

I.I0

1.09

1.06

4.99

4.99

5.00

5.01

4.99

4.99

5.00

4.99

- 0083

- 0081

- 0081

- 0082

- 0082

- 0166

- 0077

0052

0197

0304

0421

0547

0618

- 0166

- 0078

0045

0192

0303

0421

O545

0620

- 0031

- 0035

- 0035

- 0034

- 0033

- 0017

- 0031

- 0050

- 0052

- 0030

0010

0159

.0199

-.0017

-.0033

-.0048

-.0061

-.0036

.0006

.0158

.0211

.0084

.0084

•0085

.0085

.0086

.0091

.0086

.0092

.0116

.0154

.0201

.0268

.0313

.0092

.0086

.0092

.0116

.0154

.0201

.0267

.0313

.0060

.0057

.0057

.0057

.0056

.0058

.0059

.0059

.0056

.0059

.0075

.0150

.0191

.0056

0057

0056

0052

0055

0072

0149

0190

.0080

.0078

.0078

.0078

.0078

0149

0074

- 0037

- 0174

- 0299

- 0436

- 0574

-.0660

.0148

.0074

-.0032

-.O171

-.0299

-.0436

-.0574

-.0664

.0024

.0029

.0030

.0029

.0028

00110024

0052

0053

0047

0033

- 0076

- 0102

0010

0028

0052

0067

0059

0038

- 0072

- 0122

CLN

0OO8

0004

- 0006

- 0021

- 0020

- 0064

0000

0063

0114

0120

0150

0179

0193

- 0026

- 0010

.0017

.0036

0063

0100

0145

0171

- 0054

- 0055

-.0046

-.0043

-.0043

-.0052

-.0036

.0034

.0029

.0076

.0191

.0217

.0225

-.0050

-.0038

.0022

.0017

.0029

.0163

.0192

.0221

CDN

.0083

.0082

.0086

.0078

.0064

.0093

.0086

.0103

.0134

.0163

.0200

.0238

.0258

.0085

.0083

.0086

.0093

.0125

.0150

.0183

.0204

-.0021

-.0026

-.0019

-.0018

-.0023

-.0019

-.0019

-.0020

-.0020

-.0012

.0024

.0065

.0087

- 0015

- 0018

- 0018

- 0020

- 0019

0017

0054

0083

CMN

-.0030

-.0035

-.0022

.0001

.0000

.0036

-.0041

-.0105

-.0155

-.0109

-.0124

-.0129

-.0138

-.0008

-.0003.0002

.0018

.0021

.0001

-.0034

-.0056

.0021

.0033

.0025

.0025

.0028

.0023

.0014

-.0015

-.0018

-.0070

-.0151

-.0179

-.0155

.0024

.0023

-.0001

.0007

-.0005

-.0097

-.O131

-.0153

52

Page 57: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 12. Continued

(b) Continued

MACH NPR ALPHA CLAFT CDAFT CMAFT CLN CDN CMN

.600

.601

.601

.599

•597

.603

.599

600

599

600

599

600

599

599

601

600

599

.601

.601

.603

.596

.600

•600

.600

599

599

600

599

599

601

599

599

602

599

.599

.598

.598

.599

1.04 .00 -.0028 .0055 •0024 -.0053

1.98 .02 -.0031 •0053 .0030 -•0054

2.99 .O1 -.0032 .0054 .0031 -.0038

3.50 .01 -.0031 .0054 .0029 -.0038

4.98 .00 -.0032 .0053 .0030 -.0024

1.04 -1.90 -.0033 .0054 .0023 .0016

1.04 .00 -.0026 .0054 .0024 .0027

1.04 2.99 -.0019 .0053 .0027 .0037

1.04 6.00 .0002 .0056 .0008 .0062

1.05 8.99 .0023 .0061 -•0011 .0070

1.05 12.00 .0049 .0070 -.0038 .0097

1.05 15.99 .0148 .0108 -•0134 .0149

1.05 18.02 .0197 .0134 -.0175 .0175

3.53 -1.88 -.0036 .0053 .0027 .0011

3.51 .03 -.0027 .0052 .0023 .0022

3.50 3.00 -.0016 .0053 .0022 .0034

3.49 6.00 .0000 .0055 .0010 .0047

3.49 9.00 .0022 .0059 -.0010 .0067

3.49 12.00 .0052 .0069 -.0043 .0087

3.50 16.00 .0154 .0108 -.0141 .0145

3.48 18.01 .0204 .0135 -.0185 .0187

1.05 20.02 .0213 .0163 -•0204 .0184

2.00 20.01 .0216 .0162 -.0207 .0174

3.00 20.00 .0220 .0164 -.0216 .0194

3.51 20.02 .0224 .0166 -.0220 .0199

5.03 20.00 .0229 .0168 -•0228 .0202

1.05 16.66 .0144 .0119 -.0146 .0120

1.05 18.00 .0169 .0134 -.0166 .0143

1.05 19.99 .0213 .0163 -.0206 .0161

1.03 23.98 .0345 .0259 -.0351 .0196

1.01 27.98 .0495 .0393 -.0556 .0229

.98 31.99 .0642 .0563 -.0805 .0223

3.48 16.82 .0154 .0121 -.0159 .0118

3.49 17.98 .0177 .0135 -.0177 .0151

3.49 19.99 .0224 .0166 -.0221 .0187

3.49 23.98 .0363 .0265 -.0377 .0226

3.50 27.97 .0520 .0406 -.0595 .0294

3.50 31.99 .0677 .0586 -.0861 .0314

-.0019

-.0038

-.0026

-.0019

-.0018

-.0005

-.0006

-.0007

.0000

.0004

.0016

.0041

.0062

-.0009

-.0006

-.0007

-.0005

.0001

.0009

.0034

.0060

.0058

.0035

.0050

.0048

.0047

.0019

.0032

.0049

.0102

0173

0240

0007

0023

0043

0094

.O176

.0252

.0019

.0037

.0014

.0017

.0011

-.0014

-.0008

.0001

-.0015

-.0016

-.0029

-.0051

-.0060

.0000

-.0003

-.0003

-.0004

-.0015

-.0030

-•0066

-.0090

-.0048

-•0036

-.0088

-.0092

-.0102

-.0035

-.0044

-•0041

-.0052

-.0077

-.0099

-.0056

-.0075

-.0090

-.0115

-.0194

-.0254

53

Page 58: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 12. Concluded

MACH

152

150

150

151

151

149

151

151

149

150

151

150

150

151

151

153

152

152

152

151

151

153

150

149

150

150

150

150

150

151

151

151

153

152

149

149

149

152

150

153

152

(b) Concluded

NPR ALPHA CLAFT CDAFT CMAFT

.02

.02

.01

.01

.00

-1.32

.03

3.03

6.03

8.99

11.99

16.02

18.00

-1.36

.03

3.02

6.04

9.00

11.99

15.99

18.02

20.00

20.00

19.98

19.98

19.99

15.99

15.99

17.98

19.98

23.98

27.99

31.99

35.10

15.98

17.98

19.98

23.99

27.98

31.98

34.97

.0012

.0022

.0044

.0033

.0039

-.0031

-.0010

-.0011

.0004

.0029

.0079

.0161

.0224

.0036

.0036

.0059

.0086

.0124

.0128

.0200

.0281

.0198

.0175

.0201

.0198

.0200

.0085

.0082

.0172

.0189

.0267

.0383

.0512

.0560

.0097

.0165

.0191

.0266

.0378

.0500

.0606

I.O0

2.02

2.61

2.98

3.86

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

2.60

2.60

2.60

2.60

2.60

2.60

2.60

2.60

1.00

1.98

2.59

3.03

3.81

2.79

1.01

1.00

1.00

I.O0

1.00

1.00

I.O0

2.63

2.60

2.60

2.60

2.60

2.61

2.61

.0068 -.0043

.0073 -.0056

.0075 -.0082

.0076 -.0066

.0079 -.0063

.0058 .0030

.0053 .0011

.0052 .0026

.0054 .0023

.0059 .0002

.0070 -.0060

.0106 -.0148

.0136 -.0218

.0056 -.0052

.0058 -.0049

.0062 -.0068

.0068 -.0091

.0083 -.0133

.0091 -.0138

.0122 -.0219

.0163 -.0318

.0149 -.0203

.0150 -.0176

.0163 -.0214

.0162 -.0219

.0166 -.0234

.0113 -.0111

.0095 -.0097

.0124 -.0199

.0140 -.0204

.0199 -.0278

.0304 -.0424

.0439 -.0608

.0527 -.0703

.0104 -.0107

.0129 -.0187

.0147 -.0214

.0209 -.0266

.0311 -.0408

.0448 -.0595

.0577 -.0770

CLN

.0193

.0159

.0263

0288

0294

0413

0410

0386

0412

0457

.0429

0411

0468

0214

0215

0214

0159

.0210

.0210

.0300

.0280

.0286

.0311

.0450

.0500

.0504

.0114

.0017

.0028

.0180

.0273

.0373

.0414

.0440

.0411

.0510

.0494

.0539

.0562

.0602

.0597

CDN

.0185

-.0139

-.0073

-.0020

.0019

0175

0120

0145

0133

0194

0204

.0272

.0312

-.0068

-.0085

-.0081

-.0054

-.0049

-.0049

-.0004

.0018

.0061

-.0121

.0029

.0072

.0060

-.0142

.0012

-.0003

.0060

.0141

.0260

.0355

.0454

.0018

.0046

.0078

.0143

.0200

.0250

.0318

CMN

-.0078

.0071

-.0054

-.0069

-.0064

-.0185

-.0155

-.0133

-.0150

-.0164

-.0132

-.0133

-.0174

-.0006

.0004

.0017

.0053

.0047

.0037

-.0036

-.0021

-.0070

.0101

-.0222

-.0240

-.0211

-.0083

.0005

.0028

-.0057

-.0092

-.0158

-.0190

-.0241

-.0217

-.0253

-.0250

-.0286

-.0317

-.0363

-.0395

54

Page 59: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 13. Lateral Aerodynamic Characteristics for Dry Nozzle With 100/25 A/B

Sidewalls and 5v,p = 0°

MACH NPR ALPHA CROLLT CNT CYT CROLL CN CY

1.200 .93 .01 .0000 .0006 -.0007 .0000 .0006 -.0007

1.200 2.96 .01 .0000 .0005 -.0009 .0000 .0005 -.0008

1.200 5.01 .02 .0002 .0019 -.0031 .0002 .0007 -.0012

1.202 7.06 .01 .0003 .0030 -.0047 .0003 .0006 -.0012

1.200 8.96 .02 .0004 .0041 -.0061 .0004 .0006 -.0009

1.201 .94 -2.01 .0000 .0005 -.0009 .0000 .0005 -.0009

1.202 .92 .01 .0001 .0006 -.0011 .0001 .0006 -.0011

1.202 .88 3.01 .0002 .0006 -.0013 .0002 .0006 -.0013

1.201 .84 6.00 .0001 .0003 -.0007 .0001 .0003 -.0007

1.200 .80 9.01 .0002 .0001 -.0007 .0002 .0001 -.0007

1.200 .77 11.99 .0001 -.0002 -.0006 .0001 -.0002 -.0006

1.202 .76 16.02 .0001 -.0001 -.0004 .0001 -.0001 -.0004

1.197 .76 18.00 .0001 -.0004 .0004 .0001 -.0004 .0004

1.202 7.03 -2.01 .0003 .0030 -.0047 .0003 .0006 -.0011

1.202 7.06 .01 .0004 .0032 -.0051 .0004 .0008 -.0015

1.201 7.00 3.03 .0004 .0032 -.0052 .0004 .0009 -.0017

1.200 6.99 5.99 .0004 .0033 -.0053 .0004 .0009 -.0018

1.200 6.98 9.01 .0005 .0033 -.0056 .0005 .0009 -.0021

1.201 6.99 12.00 .0004 .0030 -.0055 .0004 .0006 -.0020

1.203 7.01 15.99 .0005 .0029 -.0050 .0005 .0006 -.0015

1.199 6.98 17.98 .0005 .0027 -.0046 .0005 .0003 -.0011

.899 I.i0 -.03 .0002 .0008 -.0021 .0002 .0008 -.0021

.900 2.01 -.01 .0001 -.0003 -.0008 .0001 .0005 -.0018

.897 2.99 -.01 .0002 .0000 -.0014 .0002 .0000 -.0012

.896 4.97 .00 .0004 .0023 -.0048 .0004 .0003 -.0016

.902 7.01 .00 .0006 .0045 -.0078 .0006 .0003 -.0015

.899 i. Ii -2.03 .0002 .0007 -.0021 .0002 .0007 -.0021

.900 1.10 .03 .0002 .0008 -.0023 .0002 .0008 -.0023

.903 I.I0 3.03 .0002 .0008 -.0023 .0002 .0008 -.0023

•901 I.i0 6.00 .0002 .0005 -.0020 .0002 .0005 -.0020

•902 I.i0 9.01 .0002 .0005 -.0017 .0002 .0005 -.0017

•901 i. I0 11.99 .0002 .0006 -.0019 .0002 .0006 -.0019

•901 1.09 16.03 .0002 .0003 -.0015 .0002 .0003 -.0015

•900 1.06 18.00 .0002 .0001 -.0014 .0002 .0001 -.0014

.901 4.99 -2.02 .0004 .0023 -.0048 .0004 .0002 -.0016

•900 4.99 .00 .0004 .0024 -.0050 .0004 .0003 -.0018

•900 5.00 3.03 .0004 .0024 -.0049 .0004 .0002 -.0017

.903 5.01 6.01 .0004 .0024 -.0052 .0004 .0003 -.0020

•899 4.99 8.99 .0004 .0021 -.0045 .0004 .0000 -.0012

•900 4.99 12.01 .0004 .0021 -.0045 .0004 .0000 -.0012

.902 5.00 16.03 .0004 .0022 -.0047 .0004 .0001 -.0015

.898 4.99 17.99 .0004 .0023 -.0048 .0004 .0002 -.0016

55

Page 60: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 13. Continued

MACH

•6OO

.601

•601

.599

•597

•603

.599

.600

•599

.600

.599

.600

.599

.599

.601

•600

.599

.601

• 601

.603

.596

.600

•600

60O

599

599

6O0

599

599

.601

.599

.599

•602

.599

.599

• 598

•598

.599

NPR

1.04

1.98

2.99

3.50

4.98

1.04

1.04

I.04

1.04

I. 05

1.05

1.05

I.05

3.53

3.51

3.50

3.49

3.49

3.49

3.50

3.48

1.05

2.00

3.00

3.51

5.03

1.05

1.05

1.05

1.03

1.01

.98

3.48

3.49

3.49

3.49

3.50

3.50

ALPHA

.00

.02

.01

.01

.00

-1.90

.00

2•99

6•00

8.99

12•00

15.99

18•02

-1.88

.03

3.00

6.00

9.00

12.00

16.00

18.01

20.02

20.01

20.00

20.02

20.00

16.66

18.00

19.99

23.98

27.98

31.99

16.82

17.98

19.99

23.98

27.97

31.99

CROLLT CNT CYT

.0001

-.0001

.0001

.0O02

.0005

•0003

.0003

•0003

.0003

.0003

.0003

.0003

.0003

.0003

.0004

.0003

.0003

.0003

.0003

.0004

.0004

.0000

-.0002

.0000

.0002

.0005

.0000

.0000

.0001

.0010

.0016

.0014

.0001

.0001

.0002

.0012

.0019

.0017

.0004

-.0019

-.0002

.0011

.0048

.0009

.0009

.0009

.0008

.0008

.0010

.0006

.0007

.0015

.0015

.0014

.0014

.0013

.0014

.0015

.0016

.0008

-.0012

.0004

.0016

.0052

.0003

.0004

•0009

.0073

.0126

.0124

.0010

.0012

.0017

.0087

.0141

.0144

-.0008

.0024

-.0005

-.0024

-.0076

-.0028

-.0026

-.0027

-.0026

-.0026

-.0031

-.0022

-.O025

-.0044

-.0042

-.0041

-.0039

-.0036

-.0042

-.0043

-.0046

-.0022

-•0002

-•0025

-.0043

-.0093

-.0010

-.0013

-•0026

-.0174

-.0272

-•0258

-.0024

-.0032

-.0044

-.0205

-•0303

-.0299

CROLL

.0001

-.0001

.0001

.0002

.0005

.0003

.0003

.0003

.0003

.0003

.0003

.0003

.0003

.0003

.0004

.0003

.0003

.0003

.0003

.0004

.0004

.0000

-.0002

.0000

.0002

.0005

.0000

.0000

.0001

.0010

.0016

.0014

.0001

.0001

.OO02

.0012

.0019

.0017

CN

.0004

.0001

-.0002

-.0001

.0000

.0009

.0009

.0009

.0008

.0008

.0010

.0006

.0007

.0003

.0003

.0003

.0002

.0001

.0003

.0003

.0004

.0008

.0007

.0004

.0004

.0004

.0003

.0004

.0009

.0073

.0126

.0124

-.OO02

.0000

.0005

.0075

.0129

.0132

CY

-.0008

.0000

.0000

-.0003

-.0003

-.0028

-.0026

-.0027

-.0026

-.0026

-.0031

-.0022

-.0025

-.0021

-.0020

-.0019

-.0018

-.0015

-.0020

-.0021

-.0025

-.0022

-.0025

-.0020

-.0021

-.0019

-.0010

-.0013

-.0026

-.0174

-.0272

-.0258

-.0004

-.0010

-.0023

-.0184

-.0281

-.0278

56

Page 61: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Table 13. Concluded

MACH

.152

•150

150

151

151

149

151

151

149

150

151

150

•150

.151

.151

.153

.152

.152

152

151

151

153

150

149

150

150

150

150

•150

.151

.151

.151

153

152

149

149

149

152

150

153

.152

NPR

1.00

2.02

2.61

2.98

3.86

I. O0

1.00

I.O0

1.00

1.00

i.O0

I.O0

1.00

2.60

2.60

2.60

2.60

2.60

2.60

2.60

2.60

i. O0

1.98

2.59

3.03

3.81

2.79

1.01

1.00

1.00

1.00

1.00

i.O0

1.00

2.63

2.60

2.60

2.60

2.60

2,61

2.61

ALPHA

.O2

.02

.01

.01

.00

-1.32

.03

3.03

6.03

8.99

11.99

16.02

18.00

-1.36

.03

3.02

6.04

9.00

11.99

15.99

18.02

20.00

20.00

19.98

19.98

19.99

15.99

15.99

17.98

19.98

23.98

27.99

31.99

35.10

15.98

17.98

19.98

23.99

27.98

31.98

34.97

CROLLT CNT CYT

.0045

.0009

.0023

•0030

.0056

.0028

.0026

.0026

.0024

.0024

0020

0023

0018

0002

0000

- 0003

- 0004

- 0006

-.0004

-.0003

-.0008

-.0008

-.0036

-.0020

-.0006

0009

0009

0017

0018

0017

0015

.0022

.0010

.0014

.0008

.0005

.0005

.0007

.0007

.0000

-.0003

CROLL CN CY

.0073 -.0305 .0045 .0073 -.0305

-.0266 .0105 .0009 .0043 -.0265

-.0096 -.0157 .0023 .0051 -.0301

.0031 -.0301 .0030 .0037 -.0241

.0371 -.0793 .0056 .0047 -.0257

•0045 -.0188 .0028 .0045 -.0188

•0047 -.0200 .0026 .0047 -.0200

.0042 -.0167 .0026 .0042 -.0167

•0043 -.0170 .0024 .0043 -.0170

•0042 -.0168 .0024 .0042 -.0168

•0036 -.0132 .0020 .0036 -.0132

•0034 -.0147 .0023 .0034 -.0147

•0030 -.0113 .0018 .0030 -.0113

-.0143 .0012 .0002 .0006 -.0135

-.0144 .0013 .0000 .0005 -.0134

-.0144 .0030 -.0003 .0002 -.0114

-.0146 .0046 -.0004 .0000 -.0099

-.0150 .0063 -.0006 -.0004 -.0081

-.0152 .0064 -.0004 -.0006 -.0081

-.0149 .0048 -.0003 -.0002 -.0097

-.0150 .0051 -.0008 -.0001 -.0095

.0001 .0002 -.0008 .0001 .0002

-.0331 .0349 -.0036 -.0011 -.0036

-.0169 .0110 -.0020 -.0014 -.0045

-.0013 -.0100 -•0006 -.0025 -.0014

.0273 -.0486 .0009 -•0035 .0028

-.0107 .0035 .0009 -.0028 -.0011

.0007 -.0026 .0017 .0007 -.0026

.0012 -.0043 .0018 .0012 -.0043

.0007 -.0025 .0017 .0007 -.0025

.0006 -.0023 .0015 .0006 -.0023

.0019 -.0046 .0022 .0019 -.0046

-.0029 .0073 .0010 -.0029 .0073

-.0029 .0059 .0014 -.0029 .0059

-.0152 .0059 .0008 -.0009 -.0078

-.0163 .0082 .0005 -.0011 -.0069

-.0161 .0081 .0005 -.0008 -.0070

-.0154 .0048 .0007 -.0007 -.0097

-.0145 .0044 .0007 .0006 -.0105

-.0186 .0159 .0000 -.0043 .0019

-.0208 .0217 -.0003 -.0064 .0075

57

Page 62: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

i

I'll'

_t

iI

't ,"k !\'i

=o.. ......_i

i

k\

r_

©

r_

b_b?

©

©

, ,..._

o

©

au

58

Page 63: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

.qP''_"_'L F',_,'_'r

COLOii iHO _'L_rH

L-84-12,085

Figure 2. Model with afterburner power nozzles installed in the Langley 16-Foot Transonic Tunnel.

59

Page 64: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

8c_

oc,4

od

Lr_

o

\\

\\

_Z

t_

=_

;A

_ o_bO

c_

t_

60

Page 65: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

oo

II

iiiiiiiiiiiiiiiiiiil

ii!i!iiiii!i!iiiiiiii""J <

x

©

©

©

°_

o

o

o

°_

r_

e_

°,.,_

61

Page 66: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

FS 66.30 FS 70.48

4.18

'(--1.24 -_i < 2 II

.TO--,'-

FS 61.51 I

• _ • la

3.65 2 1.i9

Sedion A-A

Afterburner Dower, 6 -0 °v,p

FS 66.30 FS 70.45

4.15 l.

2.14 --_--J,'-1:1-12,-0

15°

.20 R--,., -•,,_-- 1.25 -_-_

,t 3.30

Section A-A

Afterburner power, 6 • 15°v,p

T1.59

I nstrumentation section

VIi

i3,65

FS 66.30 FS 70.39

, ,, _"--i. 05 "_- -- 2.18 --

\\

L,: $

_-_ _. t_'_dy/______

=LLV__ .8g • !

210 .20R _ _,_'20R'I_ I

Section A-A

Dry power, 6v, p-O°

l

1.02

Total-temperature

3.00

i

i i L

J

J- i ,, /

probe

/

///,

Total-pressure rake _ Left rear view

Ilooking upstream)

_A 4"13 _.33

_- Splitter plate

(a) Nozzles.

Figure 5. Nozzle geometric characteristics. All linear dimensions in inches.

62

Page 67: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

FS 66.30 6 "0 °v,p

FS 67.57 A/B sidewall

Percent sidewall 25 50 100

FS 68.85 FS 70.48

FS 69.40

Dry power nozzle

A/B sidewall

Percent sidewall 25 100i I

FS 68.85 FS 70.39

FS 66.30

Afterburner power nozzles

6 - 15°v,p

A/B sidewall

6 -0 °v,p

Dry power sidewall

FS 66.30

Sidewall geometry

FS 67.57

I

Percent sidewall 25 50 100

Top view

(b) Sidewall configurations.

Figure 5. Continued.

• • _ • ' . r "P

63

Page 68: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

(c) Afterburnerpowernozzlewith 100-percentsidewallsand5v,p= 0°.

Figure5. Concluded.

L-84-12,084

ORIGINAL PAGE

COLOR PHOTOGRAPH

64

Page 69: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

oo oo

x _ |o |1 • • • • • • • • •

!

oo

c_

LL

LL

Ira4

l' mJ

T

Q.o

IL

I "it

\

k

!I

N

0

C_

.<

_T_

65

Page 70: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Y

0 _ 0_0 ---0---0

ii •

h_

-- Outboard row, y/-_ = -0.838f..,.

(bottom flap only)

h.

-- Centerline row, y/-_ = 0

(top and bottom flap)

Inboard row, y/-_ = 0.838

(bottomflap only)

Xr

/."2 17 "_

x//.

O.36

.121.091.451.81

O.167

•334

•501

•667

•835

(b) Internal nozzle.

Figure 6. Concluded.

66

Page 71: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

1.00

Percent sidewall

Left . Right0 100 100[] 50 5O0 25 25

I. 00

• 96

F .92F.

I

• 88

.84

• 96

FG.92

F.I

• 88

.84

(

1.00 2O

W__.P__W.

I

.96

• 92

•88

8p, dog

I0

-I00 2 4 6 0 2 4

NPR NPR

Figure 7. Effect of cutback sidewalls on A/B nozzle static performance with c_ = 0° and 6v,p = 0°.

67

Page 72: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

F

F.I

I. O0

•96

• 92

• 88

.84

r

Percent sidewall

Left Right© 100 100[] 50 50

<> 25 25

FG

F.I

1.00

.96

.92

• 88

.84

1.00 3O

W__E

W.I

• 96

• 92

•88

6p, deg

20

10

0 2 4 6 0 2 4

NPR NPR

Figure 8. Effect of cutback sidewalls on A/B nozzle static performance with c_ = 0 ° and/_v,p = 15%

68

Page 73: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

N

m

0

8

000

0

dI

0o

\

v

_t

00

0

co

Z

Z

0

Z

0

II

II

©

0

_2

0

°_¢_

.0

6g

Page 74: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

m

i_//

Z

0

c'_G

0

0

!I

0 0

z

0

m

0

0 8

Z

70

Page 75: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Percent sidewall

Left RightO 100 100

1.2 O 25 25 .4

.8

Cm, t

-.4

.8

-.zl CD-F -1.2

.4 -1.6

-.8

,7 -2.0

-2.4

-2.8

-1.2 -3.20 1 2 3 4 0 1 2 3

NPR NPR

(a) M = 0.15.

Figure 10. Effect of cutback sidewalls on total lift coefficient, drag coefficient, and pitching-moment coefficient

(including thrust) with _ = 0 ° and 5v,p = 0 °.

71

Page 76: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

i- _8_R _

Cl-

ooQ

O

_J

O

I !

,"t-

w-...i

I i !

,_)

O

._.1

O

i

°

i::=

o¢.

N

i °

N

!

O,.Z

Z

,-.d

©

v

72

Page 77: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

°B

,.,--i

o80

/

0

oo

0

0 Q

• o 0 o o o ,i I i i | I !

O

..[.,..

E

,,-"4

!I

<

< D

|_

..-I

O

@o

!

a,.

Z

Z

O

?'3

Page 78: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

O

°B

in

_8_ _

ODO

//

/

O

i

00

I I ! i !

T

ooO

Oo

O

E

I

oO

O

oO

i °

oO

O

!

g

Z

A

A

oII O

74

Page 79: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

1.2

.8

CL,t .4

-.4

.4

Cm,t -.4

-.8

-1.20

\NPR

Percent sidewall

Left Right© i00 i00

0 25 25.4

-.4

-.8

-1.2

CD-F

-1.6

-2.0

-2.4

-2.8

4 -3.20 2

NPR

(a) M = 0.15.

Figure 11. Effect of cutback sidewalls on total lift coefficient, drag coefficient, and pitching-moment coefficient

(including thrust) with a = 0° and 6v,p = 15 °.

75

Page 80: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

_E

O..

OOO

OO

O

I

oOO

i i°

(J

O

oO

m_

0-

Z

_k

oOO

O

(.3

O

,-4 N _ N

i I I I

IX)

!j'

7•= ,_ o --0 ° I" °

i"

.,-,E

C,.)

0

!

r,,,,"im

Z

-6

,._ ca

76

Page 81: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

q_

_ b_ "_

c_

_ _8_ _

c_

Q

!

ooC_

!

oo0

o

mJ

! !

0

I I

/Z_

O

i

fml C_

E

!

c_a

oo _

i

oO

_D

c_

c_J

°,-q

0 0

Y7

Page 82: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

_....

s,.t% ¢'.,_o_

r,,

ocJO

/

!

• • • , . . ot ! I I i i I

.c.,.,

,,..J

c",,J

• ii

.,-.E

Z

Z

4

"3'8

Page 83: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

\

\\

• o

k

d

[

.... . -

T

CIO

I"

p,

i

• - u,

i i

Ec.)

,.4

II

z

©

b_

o_

0

©

©

79

Page 84: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

tO0 (]

q

L\

i

0

1)

I

i" i"

_yf

i

j

i

,I

]

E

/

oab" '

H

..(3

©(J

80

Page 85: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Z

\

\

4

I

I ° I ° I" t' S° _' I" I"

• . . ....i i i" i i i I i

-,-,

<

I •

o ?.

E

If

e.J

f i"

o

L_

81

Page 86: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

n.,.

,.o_"o clO,s

\ i

i

f, f,

i i i i i" i i i

d

i" _° i" i"f° i •

,,_I

e,h

....:[:::

-d

oIf ¢J

82

Page 87: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

i

oo0_

r

\

I

\ c

\\\

t>

._J(J

l"

l

i

II

Z

©(J

bD

©

©

o

_ m

_ea_'_

_._

83

Page 88: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

i

\t

t" _" i"

<_

'</,,

I

L_j.JI7

7j_ rr _b

<.x U

?...-E

/

I

7_

84

Page 89: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

o80<] <

\'t

J

t

J,)

t • i

zt t

t i t i t t i" t

! tp

t

< •

gL

o

t •

E

I ,.o

i"

m

°

8_

Page 90: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

,<:s,_o80<1

\

oJ

i i _ i i ib

Ii •

1i • i iJ' i ° i"

Jo.i

i' i ° i °

E

SS

0

86

Page 91: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

.O6

M

0.15

.60

.90

1.20

•O4/

CL5v /

. O2

S

Cm5

V

-. 02

-. 04

-. 06

-.08

L_-----------_ _ -"-'-"" -f------ -I----.-_

.I0 0 2 4 6 8 I0

NPR

Figure 14. Effect of nozzle pressure ratio on longitudinal control power and lift effectiveness due to pitchvectoring with a = 0°.

87

Page 92: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

C

m8

0

Control effector V

0

[]

©

Pitch vectoring 0.0217

.0244o0072

Horizontal tail .2718'_ .3200

Canard .0970

f

,,,jr _}-.-----\I / u_--

-.04 /

-.06 O///

Reference

Current

13

10211310

/

/...-----_

Ji

-.080 .2 .4 .6 .8 1.0 1.2

M

Figure 15. Comparison of longitudinal control power from powered and aerodynamic control effectors with_=0 °

88

Page 93: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Percent sidewall

Left Right0 100 100

1.00 [] i00 25 1.00

FF.

I

•96

•92

• 88

:/( FG

Fi

•96

•92

• 88

.84 .84

I0

W___9_

W.I

1.00 6y, deg 0

•96

•92

• 88

.840 4

NPR

-I0

I0

5p, deg 0

[

-lO6 0 2 4 6

NPR

Figure 16. Effect of yaw vectoring by cutback sidewalls on nozzle static performance with cz -- 0 ° and 6v,p = 0 °.

8g

Page 94: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

.0_

M - 0.15

Percent sidewall

Left Right0 la) l_C] I00 2.5 M -0.60

CI.,t

-.(2

.O4

Crl, t

.02

0

".04

-.02

.O4

.02

Cy,t 0

-.02

-.04 0

/

4 6 0

NPR

"i v _'E]

4NPR

(a) M = 0.15 and 0.60.

Figure 17. Effect of yaw vectoring by cutback sidewalls on total afterbody lateral coefficients (including thrust)

for A/B power nozzle with a = 0° and 6v,p = 0 °.

9O

Page 95: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

• 02M • 0.90

Percent sidewall

Left Right0 100 100[3 lO0 25 M - 1.20

C[,t

-.02

D 13

.04

Cn, t

-.04

r_

.O4

.02

Cy, t 0

-.02

-.040

v ---8

4

NPR

C

6 0 2 4

NPR

(b) M = 0.90 and 1.20.

Figure 17. Concluded.

91

Page 96: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

.O4

Jet off

Percent sidewall

Left Right© 100 100 Jet on

[] 25 25 NPR • 2.5

.02

-.02

-.04

.O4

.0_

Cn,t 0

-.02

-.04[3-----{ 0 [] 0 I

.04

.02

Cy, t 0

-.0_ E_._ _ :.--.O=:=

D u

__B_._._.--__-------._. t

-.O4-4 0 4 8 12 16 -4 0 4 8 12 16

a, deg o, deg

(a) M = 0.15.

Figure 18. Effect of yaw vectoring by cutback sidewalls on total lateral aerodynamic coefficients (including

thrust) at constant NPR settings with 6v,p = 0 °.

92

Page 97: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

.04

Jet off

Percent sidewall

Left Right0 10(1 100r-I I00 25

Jet on

NPR - 3.5

.02

-.02

-.04

c , (3 :

.04

.02

Cn,t 0 C " -_ " 2 n

-.02

-.04

.04

. .02

Cy, t 0

-.02

-.04-4 8 12 16 -4 0

(b) M = 0.60.

Figure 18. Continued.

4

a, deg

12 15

g3

Page 98: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

.O4

Jetoff

PercentsidewallLeft Right

O 100 100[] 10(] 25

Jet on

NPR - 5.0

.OZ

Ct, t 0 o " c 3 c _,

-.02

-.04

.04

.02

Crl,t 0 1:3 _ _'2 0 (3 [n

v

n

v

-.02

.02

Cy, t 0

-.OZ

"'_4 4

o, deg

E_:i, B m

8 12 16 -4 0 4 8 12 16a, deg

(c) M = 0.90.

Figure 18. Continued.

g4

Page 99: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

.O4

Jet off

Percent sidewall

Left RightO lO0 lO0[] I00 25

Jet on

NPR - 7.0

.02

CI.,t

-.02

-.04

C O

.O4

.02

Cn,tE_Iv

[]n

-.02

-.04

.04

Cy,t

.02

-.02

-.O4-4

v

[] c o (

4 8 12 16 -4 0 4 8 12 16

(d) M -- 1.20.

Figure 18. Concluded.

95

Page 100: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/PLj

1,0

.8

.6

.4

.2

Top flap, centerline

NPR

0 2.00(3 2.50<3 3.o2

3.50rx 3.99

5.01

Bottomflap, centerline

P/Pt,j

Bottom flap, outboard1.0 _|tt_ttt_t_t_ttt,.,, ._+t,,,_ti!!!!!!!!!!!!!!i iiiii_i uiii.qi_.4¢11tttt#¢_:_.

_-_ !!!iiiii ui_uih_=,,,,iii_ii!!!!!!!_t;!tttt!t!tt!_[tl]iij H.u.,;::::::::r:_:::::::;::v.:::::v,m::v,::v, v,::H+__;;;;;_.........:::,,_::::::::::::::,,:::m,,!. ,,:;,.:,,,,,,t)iliiilll jii__iiiii#+i¢......... ,

8 _L_+_; ; ; ;;; ; ;; _; ; m; ; _LL_v'":: v' ""H :e_+_H'+'F_'m ; ;; ; ;; : ': ' ;:;LLLI_LI_

l_J,_ii4+] iM HilII M!!!!-'!!!!iiiiiiiii_iiiii_iiiiiiiiiiiilHiiii.:iiiiig;_

t_H:H_HH:HH:_::;:H H:H::H :::::;H::',::::_::::m::H H', HH::;H H H::_::H :H:'.W, HH+t

.6 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

_ifi ilii::::iiii::::iiiP:iii::i::_iT/:::ii::i_:::iiii::iiiii ::iiiii::iiiii::_:iiiF:iiiii :/:::!!':!::_i_#:i_::_i_::ii:::_ai:_::_:qiiiiiiijiiiiiiiiiiiiiiiiiiiiiiiii.....................tt{+H HI :: ',',::: ',',: :: ',:H : ; : '.'.: : '.: '. :::::::_'_'_``_'_'_'_'_'_:'_`_:'`---_'_::::::''`_:_'_'_'_`'_;:'_'_':`_

• ]_:::;::::,....==:,,i-iiilMiiiilMii!,_=..!!!![!!!!!![!iiiiii.=!iiiiiii)iiifil _

ld-1: p i1H :]: ' H'_ 9 | f : H ',tI_H JlH li III II h,--'_,_ :N, ',: ',:',',',W,P,',:H H',i:i::: ',H ',: ',',',:: : ',h ,; }+1_

• _!!iFiilFiiiiiiiiii!!!'!!!!!!!iiiiiiiiiiiiiiiiil}iiiiiiiiiilt_t_' ' u :; ; H : H H:_: H ,,T:,,w, ,,,,: H ,,:_: ,,: H ,,:H ',,':H H :ll_t'H-bHH_H+Hi_fl

_++_++.+H_u,,, ::::: ,,. t,, ,,:::: :. E iE E Mii Mi i_ii H i ii iii _h.i_

I_IHhti. _H _fH_+i++{. :',',U V,V,:: V,; :',V,',',::',: V,::; ',;;_ fill il jill jj i;,+_,_ f_-m_ff

n 1_8_[_iii _i_¢_J_ rffff'il HHi L=h_ __ : m m _ __*_@8_1U .........................................................

0 .2 .4 .6 .8 1.0

H

lit

0

Bottom flap, inboard

.2 .4 .6 .8 1.0

x/[ x/[

(a) M = 0.

Figure 19. Effect of NPR on internal static pressure distributions for A/B power nozzle with 100-percent

sidewalls, 6v,p = 0 °, and a = 0 °.

Page 101: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

lYPt,j

1.0

.8

.6

.4

.2

Top flap, centerline

H!tH_!

"t+r+'-:!

,++;'qltHl._fa]!X:!iiit

ti:qt*it

.4{+!+,il

"+;!!Y!

;I!F'?I i

H_::IU i

!!i_i!i!Itl:"!_;_::itb:;

::;i] ::

it_iii!!

NPR

O I.g9

[] 3.00

© 3.52Z_ 5.01 ! r_,,: L:._H

I 1!:I !_tt!t

!i"r::

Bolom flap, centerline

_/Pt,j

00 .2

Bottom flap, outboard

i_' tii

::_4;I

NN

*::" it

.8

jiiL,i

i!ii!i

H÷*-!

_f:ltllt

!q4;"'

t11_t

uvJ![f

+. ,_4+,,iAlb:'

x: ::

1.0

Bottom flap, inboard

(b) M = 0.60.

Figure 19. Continued.

,E_!i!_l;_iil'::it li:itid't;iilI!il!I_JrII i_

•i! !_A !i;__i_]A ;;:' _:_

[ir;;ii! :i[I':I

0 .Z .4 .6

iii ii_i!i, i i[

:tt! fiIfi ti _I!: _'I':

.8 1.0

xlt

97

Page 102: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/Ptj

1.0

.8

.6

.4

.2

Top flap, centerlineNPR

0 1.98[] 3.01

<) 4.997.OO

Bottom flap, centerline

i _; t E ": "_ t +j

:F..+41

P/Pt.j

l.O:

.8

.6

.4

.2

00 .2

Bottom flap, outboard

.4 .6 .8 1.0 0

xl{

Bottom flap, inboard

.2 .4 .6 .8

x/[

!i_!!4h;_

!TV[

;ilHl

ittlH

1.0

(c) M = 0.90.

Figure 19. Continued.

98

Page 103: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/Pt.j

Top flap, centerline

8

. ._ -. _., i__

.4

NPR

6 3.01I_ 4.960 6,99

,3 8.97

Bottom flap, centerline

P/P_,j

1.0

.8

.6

.4

.Z

0

0

Bottom flap, outboard

.2 .4 .6 .8 1.0

×/_

(d)M = .2o.

Figure 19. Concluded,

Bottom flap, inboard

__ .......... ': "'i: '_i::r 'i::ii_" i_"k"_i:_'_'; ii_i;L_iiii

.2 .4 .6 .8

x/[

1.0

99

Page 104: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

_'Pt.j

Top flap, centerline1 0 ................... _;_;,_ - _ ..................

• _;_iiiiiiiiimth_M,,,:;: ............ !]i_ ; '""_

_"_;;iiiiiiiiiiiii211_i!!iiii_%iiiiilkiii!_iiiiiiii_u_ .................4f++_,VH_+_-_.H:!tHIII[IIII_ ".................................... ; ...................::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: , .................. H ...........

• ==================================================================================== :x,_,-,,," ........

===========================================_;_IIIIIIIIIIIII;_ilIIIIIII_III:'I,1_

fi__ff_'f_t!!_t_!!!!!![!![!!!!?!iiiiii!!!!!!!iiiii

_iiiiiiiiiiiiiFiiiiiiii[ii_1iiiiiiiiiiiiiiiiiiiiiiiiiiiii_[iiiiiiiiiiiiiiigiiiiiiiiiiiiiiiii

_iiiii] iii![iiiii ii iiiii iii]i i]i!]iZi,_:'_.:iiiiiF,:_ iUiUilllUi¢_A

• q ......

_:_:i_=====H==========================================_:===========m:=;m===m:=='==.........

======================================================================

k_i_;;_]!!!!!!iiiiiii_E_E_iii_B_;;_]_i]_;_;_;_;hT'+.2_E_!:::::::_r -

_;iiiiiiiiiiiiiiii!!!!!!!!iiiiiiiiiiiiiiiiiiiiii!!!_ i_.2 .....................................................................................................

=============================================== ...... _1_ .

===========================================================================================

Ill I ::::::::::::::::::::::::::::::::::::::::::::;+:::::::::_ff_._mmm_IIll .......................................................................I! ...... :[::HTH::::H:H:;;;;;;:H:H[IHH::_,_"J+h_'tf_!_HH_!+fH_+ffI_[

NPR

0 2.00[] 2.51

© _.043.50

{_ 4.06

E_ 4.020 5.03

Bottomflap, centerline

Pl_f.j

1.0

.8

.6

.4

.2

Bottomflap, outboard........................... :::n:_n_._+_,,+_...b_bid_,_ ,_t_ttttt_

ii_;ii!!!!!!!_!!!!_;_!!_!!!!_'NI_r_1_]i_i_;::::_::::_: :.HH

::ilEiiii_iiiiiiiilEi;i;iiii_iiiiiiiii_::::iiiiiil]iii[IFill " , ...................._!!!iiiiii;ii;;;_;E_[_i_;_;_;_;_;_::::........................................................................................ _+,_:::::::::::::::::::::::::::::::::::: _ ::::::::::::::::::::::::: ............

:::::::::::::::::::::::::::::: ...... :::::::::::::::::::::::::::::::::::::::::::::

_iiiiiiiii!!tm_!!_$ti!!!!!!!!!!!!!!!!!!!!!!iiii]iil]iiu_::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ""iiiiiiii!!!!! :,,_?!_tff tf_ !

==============================================

==================================================================================================.............................................................................................. P,+_Ht

_iiiiiiiil]iiiii_iil]iiiiiii[iiiiiiiiilEiiiii!!!-_4_;; ..................

:m_::_iiiiiiii!!!E!!!!_!1!]!_;_E_!!!!!!!!?!![!!!iEiE._!iiiiiiiiii1iiiJ_+_4_i:_

___iiiii_iiiiiiil;_;iii_]!!!!!!]i_iii?iiiiiiiiiiiii[iiil]_........ ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: .......=================================== ======================================_!!]!!!!!!!!!!!iiiiiiii_:£_i]iiiiiiiiiii_iiiii_

iiiiiiill]i[]iiiiiii[iiii]i!!!iiiiiiiu2_-:;...... [:_=_[_u_u_u_u_tlliiiiiiii.iiiiiiEj!!EjjjjjjjjjjEjjjjjj!!:-:--_-_'_ijiijiiii_iilEiiiiiijiiiiii]iiijEjiijijl, _,iiiiiiiiiiiiiiiiiiiiiiii_._i_i_i_ii_i!!iiiiiiiN_ii_ii_ii_i_iiii_iiiiiiiiiiiiiiiii: ,-.'m ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: .......

!!!iiiii]iiiii_ii[iiiiii_iiiiiiiii[]ii]iiiiiiiiiiiiiiiiiiiiii_iiiiiii[iiiiiiii]iiiiiiiii__ltllt :-.Mtt! ......................... iiiiiiiiiiiiiiiiiiiiii_ii"iiii!!!!!i!!!!!!iiil]iiilEil]iiii_iiiiiiiiiii

It_ii!!!!!!!!!]!!!!!!!!iiiiiii!![!!!!!!!!!!![!!!!!!!!!!!!f!!!!_=========================================iiljjiijjijijjj[iiii:::l:l_================================================================================ ........

.2 .4 .6 .8 1.0

Bottom flap, inboard

, _ ,, _ I _ r _ _ _ a, 'F I [ ', I : I, rF ; ; I 1= rFi ', ; ', ; 11r, : : ] ', : [ ', ', : : 1, r, 'r ; : _ 'r _ ; : ', ', [ _ _ : ¢[ _ _ ......

_iiiiiiii!=:=:i U:::iF_::I:=F_:iiiiiiiFdF:::iii::i:=_i_d:dii:/:Fdik_:dii_

_,'; ;';]_ ;;; :; ;; ;_;]; [; ; ;; _]'r;;_] ;] [;;i;"z : :: I =[ .........

i

HHI ............................... ,,, ,, ,:,, ,H_+HJ_

_[i]iiiiiiiiil]]!!!]!!!!!!!!!!!!!!!!!!t!t_i[iiil[i[il]i _,]_:i;',_r_+t_

_!! [i_ _ "_i }iii iiill][i [] IiJi] IIi [III [; ; ;1:11 ;1:1111 :l ill 1::1; _i :1:11 "l fill: :t: II [I_l _'l I _':II "÷_+...... ! ......

_+_1:1] ......... IJH]H H H HJ_IH ::;_:1;:;::;::_'_' ' '; ' '" ': :

Vii_!':':!! ...................................................

HHIi-b_d ] ill;i:; i;;;; ;; ;il fl,,.,. '-_: ::::::_ E _E] ii _i] iE] _'_::----" ', !] i i] E i [ ', i] i i i ',i

t+q ,d H H ;,, ;H _: ,,;;:; :._=:,:: ,, ,,::: H H H ;::; H ,, ,, ,, r,: ,, ,, ::: H ,,,,: H r,: H :::H ::T,_ ::: ,,H ;:: ,, ::: ,,H :!

ii i iiii; ,,:._._..._,,::,,,,,,,,:::: ,,,,_:_: : .......................................... :1,_

iiii_iiJi!!!!!!!!!!!'!!!!iiiiiiiiiiiiiii';ifi iiii!!}!!!!!!!!!':ii_E_ilE[_i]Eiii';Eiiiiiiiiiiiiii'_*'_

|_!!_!_iiiiiiiiiiii!!!!!!!!_F_F_F_;_iiii!!!!!!_!!!!;!!!!!!!!!!!,,, ; ] ',] H IT] ',I HI ',I; H H '_] [i]I ......... b_c ffr_ PH+fH+H+i+fI+t+PH_ _ ._ !"

0 .2 .4 .6 .8 1.0

4[ 4[

(a) M = 0.

Figure 20. Effect of NPR on internal static pressure distributions for A/B power nozzle with 100-percent

sidewalls, _Sv,p = 15% and a = 0 °.

100

Page 105: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

#5,j

1.o ..... ii !i!i,-:!Hi:fli_!_H*_,H ttt'Ht_+"

•8 _;iii _412

Ii! ili.ii,/,;: tt:l :2

• 6 _iil;{]ii:;_

III!I:-HI__7!i:7!17r!7

•2 _mt };n;!t*!i}tf{E:AHm_ID+V:Hi:!

_!!!!!_!!!:!

NPR

CO 1.99

[3 2.99© 3.52

A 5.02

Bolom flap, centerline

WPt,j

Bottom flap, outboard

i-tt

_ri*i. .n

t-H;t)fitf',:

=,.=.1_.iI÷,,i ÷H_

NN.4

t +H _ t+* t* _tl i ++;_4+i_b++4+

il 1ii _ : ::;, U_+l_A i711:}7712}111

.......

.6 .8

x/_

(b) M -- 0.60.

Figure 20. Continued.

.2

Bottom flap, inboard

.8 1.0

101

Page 106: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/Pt,j

+ii+4)!_

IH:

H);

++++++i+ill

NPR

0 3.01[] 5.01

0 6.98

Bottom flap, centerline

i_,+i,!, tpt)*, i -t it tit ] ,,!Hi+m+

)_)ii))7j()J)_ !i+l_:m

:_Ui)t]7)t{))

t;4++i_ H+2)i4

++_,_,,Im::!r'i_!!i )_i!itii_iit,+=,+i

_ii]!i)il_!i;)_!.!]i:_:il i;:._i[ii

_+_+;':_ f::J iEi)!)i m::v: ::_+ •_:Eiii!!7 : 7T::!F

Lti!1_ ili;i)!it':::!i_+':ii%i!!i:+)!i:::;'.i

H+,_m _..d:.+q qi .......

!!H',_!_i_i!]!:;ii::i!:.Liii :_t_=_i+

plPt,j

Bottom flap, outboard1.0

++; _+ ++ ' +; " $_ + L 'P,,_ i"_ .... 1 t ;4 +

N

.. ++i_iliiHiH_;;+;,;;;;:i':,_.; i +:

0 .2 .4 .6 .8

x/[

1.0

Ii7+_

:iJ:ilii

i)ii

ilH:

(c) M = 0.90.

Figure 20. Continued.

H_

H+::

HR!Ii:

iiF;ii): !i

Hi::tiH, :_{t _HH! H

:_]!+!+!

+*+1++,+_+++.

;_tP!_tt

"_H':!F!FT

.2

x/[

102

Page 107: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/Pt,j

Top flap, centerline

,.o_,_,_ ___i lI_il!f_ii__I_.... !_i__!_:_ii!!tiil

NPR

O 3.00

[] L00

6.98

z_ 8.gl

Bottom flap, centerline

_!h;!!_ _!II ;I I "_: __I'

_ r-_ i i ly ....... ]1 ".ILFmm_ti=!v,iF!}J 'i i;!ili!:Iti! !i;ii_:t i_!i iii

•iH;'= :ii i :::H :_

iii!#ii , _,;:,!Hi ;_i !H i "' .....;i!H i_!_ i_!1 ,;::E[r_;:;'_; i; IF F:

iiiiiiiii̧ 'i_i::il:jn:H

:i:i_iii_!i!ili!

**'li!!_ii!iii_!

ii!!iii_lli_!ili

_lli_!iiiiiii:i!;i_i!i: ;;!_4;_'

i_!li;i!i_iiiiilli!!;!Hiiiiiiii_ii

_ i!!!1!11_ iii!]!ill

!:!!i _:HH

::q3;HJ

!i!i!1I_;

#P_.j

1.0

.8

.6

.4

00 .6 .8 1.0

x/_

'i;hii

i,,_ ,

tHHm

*ilttti_+_iHh

!F;H!!_HI_t4HI

_i!i:iil

l;_It*t;

H,_'*m

tT:Hti_HHHII

0

(d) M = 1.20.

Figure 20. Concluded.

Li,

.+;H

t;!i:ttt;

_H

Hi;

.2

Bottom flap, inboard

'_Hi:!dh

i!!I!i_HI•._fH .H

:;diI ::_

;. Hi

: t$[,+

+_÷

,,r-- ,

i'4!ik

m;. l_ii:: iiii

:Hii.iH ::il

?m! itUill.4

iM.

+_.

F_!FI,b.H

i!Hi

ti::_

iH:L

Hli!

.6

:Hi: :!!::H

i[i]!!! ::_r:::_ _1:-i;_

U_:V;

Hit::_; [::11,:

:I'!!IV!!i_!! *_:,,;

..... ! _w+ F!!##i:_l t_!ttit_*_ i H,H .... mm

.... : ..... !:!!!:: Hi:!t

-, +-+!.,_. .:45;:H H,!U

t±J!itL_i_ ..... _lh-J_t_ ......[ii!!ii?..... ' .....

!iTT;i_ ::: ::: _*.n__,_;_hii!Ui_:_ :i'i

.8 1.0

x/[

103

Page 108: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/Pt, j

1.0

.8

.6

.4

.2

Top flap, centerline

_Nm__N

NPR

C_ 2.012.50

© _.01_5 3.51

4.01

15 5.00

Bottomflap, centerline

ti.i ,k_,

I]ill!!i!!

1

I _ i:_15Hi!?,i_i:.t!:_::!it

; .....

.'t._tt ! -!

: qc:

_ .... i'.li_i]i|i:ii}:-;i!}!!-,_:I

_, " ' t :: ,A]_:;

P/Pt,

2 _

00

Bottom flap, outboard

.2 .4 .6

xR

.8 1.0

i;Hl'-I_m',:

] IEH t*_ ....

Bottomflap, inboard

....III.....iiiii 'iii:

.2 .4 .6

x/[

il l_I:%iill

ii ,,!!_i!}i

.8

Idl':Al

_!!t "y

Filiii

EE i;i

: ::: :

Iilii'ii"=ii

1.0

(a) M = 0.

Figure 21. Effect of NPR on internal static pressure distributions for A/B power nozzle with 50-percent

sidewalls, _,,,p = 15°, and a = 0°.

104

Page 109: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

n/Pt,j

Top flap, centerline

-,t ,- t :!: ::i_ii!!:_tF:_li_HF;ii!ii!!i;ili!ii!ii;!!ii}i!iii;iiItA4AI_; _:_

}q,iiii !i_i!!Ni hm;!i _;iiji_!!i_i:_!!

"+_LLIt'_,.,LA;d 4 [I_'_

li_iiii!iliJ!Ci!7_ i!i iT.!ii]_li_liii7r__-!!i_ ...._",

!!i;,!!!-_ ;i r: qn:tflt + . ....

li.:::tt_ '.1+_ _:I1

_;_i;', /,,ii!_ii _i-;ti "+;_;;}!'!!_I:!!_:t"_! :t'+i:!H.........iiil!F_

0l]

0L_

NPR

2.003.043, 525.05

l!ii !iiii_iit!,i!ili

!li!!

_l!!is7ii_i!l

:1!t_ :;l_f_v:Jli k

,!!i]!t!I::!iiiii!

×/[

Bottom flap, inboard

_i:!!!7! !_:_':m ! q;

_Ai_ii;!i ;:.!'.f;!li::!ii.,....i(:i i;11

li'tt _;,{ i_:I;, !ii_!il_!li!!!ii::!I!i'q i:'_ IHI;:IiI_;t,;A 7:I_111!!mF:_ :

!iiilll li;_li!li!ll

II ;:!1 It} :! _il_'+il+'t :.:1"i

:4,-I !_!tii

O .2 .4 .6 .8

xll

:::tn::i {i!!i!i{

::M;:;4 i!q!:2':!!A!T!

"PtFH]E_i ;TL

i]171_71i

(b)M = 0.60.

Figure 121. Continued.

1.0

105

Page 110: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/Pt,j

1,0:

.8_

.6

.4

.2

T.-:i_,_iF,,:_ii:

;!_i_! _m;;:,i_}'_i_I

....... im'4 :

-'!!_iN

Top flap, centerline

'tt_:" i _---4t_!i

_'>+_ _'

. +',!P}[ilfu_:

.......i iiiiiii i

!L:_:I .....

_,7l '-! t :+i _::_ ',i

mi_rJ;TT1

mlH;:l

:: ::: _JJ_T'q

it:7;H::

.... i}fi/il*44* _4

l!!L!_1i!!{!7

:!i_!

I!Y!,=!/1

,,+t_+

:!!i!=.Igll4"_!1

iif!l

:!!!!!:;+'1_i,.-4

NPR

0 2.04

[] 2.990 5.o4A 7.02

IHk'P.... :q I+ ._1}

!iT', Ii;;

t:::11I[L/II!::?_

;Til _7.'_ n.;m;;

]ii'::iNi::i:&7

Bottom flap, centerline

'ii_,l!!il::!!i_iit:ir_:!"+_...........

lN'@iii!_i7_7_7t:;!plr:;4:!i2:_ : i: ._A:L

:il;

iii !ii_ili! i iii!!!:I!!i i;ri:

P:TI_ ; b:i_

'_!1.:'tI,:_._: ::iI i#Ii'X_i!::,,_&kt!ii',i!i! i __:i:l, :i!:_

iI ,!if!++:: ::"u:;_l,_ _tt:tm:::,ilii;;i::_ii:_;_!i;:,!:iP.:iH:J:.!ii!_!ii!+!::_!x:

;,_.;_:ii:/}!:f!i1_;i_illi/iit!':i ::_]t:l[ii::i,_:

p/Pt, j

1.0

...... _ _:;j.....,L.I,

444_t4

H!tVt

ffltttt

*_!!!Hil

0 HMi "i ......2

Bottom flap, outboard

.4 .6

x/[

:wi.i i:iiiii!:' !+.; : !:;+ w:

¢?z-_t:_v,ii!:,!

_M _ ' _t_

i;_mJtt_: 2

.8

'x

fill+>12'

!t4H

14-_1

4f_

1.

Bottom flap, inboard

! ',v : ;i h :=_+_l,q: ! +:_:: ,+_,- H ...... ::Mi_:ii

. ii i+,, .%+iI,1_ :++ M,:, _:_ I+:+,1t' t !!!1

,:_;;;; ...... !Tit_!{Ul_i_,_ft;ii,+h;:l..._,-:

0 .2 ,4 .6

x/(

(c) M = 0.90.

Figure 21. Continued.

,+ b;:h i ...... +,

:}++i +i;;,+ !' Hi_. -41;::4;i

iff.. ;;_+i !:_il!':lh:: iU:_ L4;,., ;

fv_;ZAI;:

......{il'l.,+,i,.r_i!!!{il

},*._ :ii IENHN_I

:_ : : _ rt;;!tt,,; ...... Hh{7]l!l

1.0

106

Page 111: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/Pt,_

1.0

H_

.6 _

;fix

.4 _

H+f*-

:_T_

.2 _

4H_:

Topflap, centerline

NPR

0 3.02[] 4.97

0 6.96

9.02

!I .........._u/.! _!i.;_: ::

_II :_, .....

::P_d .........

!:!,

Bottom flap, centerline

iiii _iii_ !itEi!

_i ,i!li

i:_il

P/Pt,j

1.0

.8

.6

;t_4

_+_

•4 trait

H+_-,

00

Bottom flap, outboard

"!.... !

N

.2 .4

xl_

(d) M = 3_.20.

Figure 21. Concluded•

_FZ

t!:!!

_k

F:Y,

I[]

[!;;

I!F

IiII

0

•_i ......

ttil !iJ_i.tAI :: ::

:ili :i: ::i

i;14 :!! :!+,

I:I_ ii

/d!_;

IIIH4i _ ....

!_ ttm_tt!glib

II'!!!_=_'!x: :

Bottomflap, inboard

' I:ii +_++,++_t_,+÷+

., _#Iilli

x/[

i[ !i ?

1.0

107

Page 112: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

P/Ptd

Top flap, centertine

NPR

0 1.99[] 2.50<_ 2.99

3.51[_ 4.00

5.01

Bottom flap, centerline

1.0Bottom flap, outboard Bottom flap, inboard

.8

.4

.2

00 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

xll xl[

(a) M = 0.

Figure 22. Effect of NPR on internal static pressure distributions for A/B power nozzle with 25-percentsidewalls, _v,p = 15°, and a = 0°.

108

Page 113: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

_'Pt,,

1.0

±:-!_{{I!i':i!!i .....

?i"i{l!{!......! :! [;

:_i' !!tL:!!!i i:: I{; :_i, _A:'

0 :A_I "tb :: }I;':

Top flap, centerline

' t*;_! ]ii;!!i

,., _li!I

_'>!_}ii!!iI_iliilI;li....i

_!iii!'_!__Li_[_iliii}!

li!ili_!i

'_!!i;_i!!AI!iii

_!Ii! [iiii! !:!,ii_[iv ,]1 --rl,:-{,

l_i]i'iii!iiiiili =;' iA t[_t*

: ili_* Ett*

i!ii!

NPR

• 0 1.99[] 3.00

© 3._o5.01

P/Pt.j

x/[

$+ii iiliiili

;;i{_:_ llI I!IIft t£ iiii_Ul _

44++4+4#-

N N

_t,_t .............

...... !'!{!_:iiiiiii

.2

Bottom flap, inboard!!:.:

++,44

',"H .....

.... _i

.4

IL d.

_+_..

x/[

(b) M = o.6o.

Figure 22. Continued.

109

Page 114: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

WPt,j

1.0

.8

.6

.4

.2

Top flap, centerline

......... _!f:

I_ff__:-_l__ _ Z__:' ............

NPR

0 2.03E] 3.00© _.0_

7.04_ ¢_ _:

_-+,+

iiii!

Bottomflap, centerline

Bottomflap, outboard1.0

"_t fi_]iii'.:]!

:zH

; ,rlFi!il]iiiiiifl]iiiii_ ........ :

P,

•4 _!i +_

_ittN

0 ,2 .4 .6 .8

x/[

1.0

Bottomflap, inboard

x/[

(c) M = 0.90.

Figure 22. Continued.

110

Page 115: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

PlPtj

],0-

.8 _!!?_i!:;

I:_ilf,_!i

•6 !j;i!:!;

.4 _!!iii!_i

-,!!7+!.2 C!!i!_!!!

HFPHF

ql:!!!

!!T"!fT

Top flap, centerline. . ..... . ii_,,;!,;_ ,_,1 !_iiiii_ .....

i iii .... :'"* . : i !i!!l_¢_i

!ii!!!i!'_!illiii i';l!iii ii i_ _, ........

::!f_;:!! _,_':_ ......... mm_;:

+,H ,L .......

NPR

© 3.02L_ 5.04

0 7.04L3 9.01 liJHHd

Bottom flap, cenferline

!lii'_!! :!.+ri

i:,tl,_, t

EKTF:!

P/Ptj

[7 ::

r_t'ff

:1 '1',1[7

*!!!i_

.2 )li!!ii_

0

I::_ I:

!T'!tttt

®

N_

'_F'!tt!

.2

Bottom flap, outboard

iN ':[ _,

_ :rW_ :::: ::

lfii_i i!IF;:.i!iF!!tl *_t

4 6

xlt

_iiili_!tiilltTltt_r

mtt!H

iii:':

fft_ifttthT_t

1.0

(d) M = 1.20.

Figure 22. Concluded.

Ill

Page 116: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Cp

I nboard

ii!i!_Li!_iii!ii_

0 ii}!i!+!!,?_!:hiiii:

'_ i_i_t_!_ i_!NgN_U_ !_

NPR

c_ 3.01[] 4.%©_.m

8.97

Centerline

M - 1.20

_i'; !i!i( "/_=" ......... ";_

;Z!_il_,;:_i$:!+(i!=:i!w!!_it!U_:,:i_;)il

Outboard

F_i))i)ilEt)i)i;r1+['A:llm_:t;_

i ii!iI{i!i!!i)[::i;)){li))::[))ii_tit)<_t))i:)_i

'. _:{t:ll;:l_;l:t;

!)i_!:::I_)fi!)!)_i)l_)_)i;Ii:(iiiii_!}iT};;;!ii_,{i!_¢_'7:!!{

iiii_iiiitiiii_i{]

:till:r;', !_i!ii': q:_. _:):I t_:t:*t_

!f!i!!i!i ....... i )I_ ii;i_;!_iiiii_! ........ '.....i_i_{!!{! :,..v_ll- "-b'-;:,:.l:Hi;:i:d*d

ii!ilil iiii_!!ili_!_:!__*)_i}i;{!e {;!!i!i{

CP

• 4 _f;_

0 _m_fl_il

-._g

_._ I_i

N

liiif!if_

t:t]:l:;

il)))

11_;E!i

!_E)E;ru v-,

iii!i;i_

">f-!"

._.II[L

h!):i)t!'t'ti_

h,l I_,

EI_IIEil))::L!l

CP

g_

-.2 _}+_

))_)I

-.4!!

ifiU:_:tl

);iT

0 5

X/L ×/L X/L

Figure 23. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle

with 100-percent sidewalls, 5v,p = 0°, and c_ = 0°.

112

Page 117: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

CP

I nboard

.4

_/F:ili :Nil>

!iii!iiK!]i i:

-.4

-.6

NPR

0 3.01D 5.000 7.06

9.03

Centerline

M - 1.20

Outboard

2:hb: ::n::h:: I : L;!:i:__i,:<i::! ii:i

r;;N _-:w-'

:2[Ni!i2 !i[h!Hi :_ :;:_

CP

,4

0 ;iiN!i;fi!Nili< ;;;:3!LJN_i!:!Ni;;!:_I!H ;.< .........I! t_'::_r:_:!j:H:l:;r K!ii!_iiii?__ !!:t!Hi .: iNi_

,_z_:_:,.......!i;;_i!il]!i!!l!::::_: i!i!:H-. 2 _:_:H;;:I:N:N;h _i;!_]ii] ii]!_t_;

N!i!i]iNISil !iiiiiii __.4 !;!ii!i{iiiiiiiiii

...._::,_tj<ilHiiiiiiii!!i_

......................!:,:N: !/;!:i: ih-i i:_¢_

h_!EN ....... ::::w :::::_:

oC}

0

d_

NPR

2.02

3.004.99

7.01

:;_:1:_ ;::_:;:r _ i

::F::IN!!Ruii [iH:Hi IiiHEN

Si!!fi

iiiiii!i_i_iiiiiiiii!_iili?i

Iiii:i!! !ifiii_i !ii ilil!ili

,;:,,,....., :_ii!i!!ii!_!iil_

_r:h:;- :n::;.uili[iili'::"..........:;]:t:i!;:r_

......... S?_i!;t mt:w:: "

CP

_i!:N ....FN:i ;!:!!:::iiiii_ii_[NW

o ii@i{!

',@ii!i-.4[!!!;Ii_"_if]i}i]!i!i!;]ff_ii

f:N:::;=N!_-.6 _i@_{:!iiN]i!

O l 5 ] , 0

x/[

00

©S

NPR

2.023.013.58

5.09

I_i[::iiii i i@i] f_ii

I::!i _; '_r_!l!it::........ ;!Nii

[i@{iit{!i:i:;_4<_:_:*,_i!itlii!i :!HH!

iiiiii!)_,;;!is_ii;ffi !i[il!Pl4ram F :H{I_ iti _i!!

!H_if :;liliW [Nil{'_}]_ [i!ii'/F ....i:'::<:!iiii!il '_!fiit]Iq;,+

-1.5 -1.0 -.5

M • 0.60

_kN:i!

!:!<;_ iiii:il!_i!!l:lq :.r:;_:_

!!ilN! ;

!1i!;!!i@II!Hi!!i'_':!'_:4!:#_......!i!i

Ith_:H _ li ii!!li !i!i!i!iii!i!!i!ilill_ii!ilillI:HNH'HN:_:;

iti!;li_] i; iii_!:

1fi!;[_h!;1!t_',y ] N ]l:]]!::_liEliiq:N!]P:F q :[:: :

l_,i!i!!i!I_,S_i;

5 10

:i:

0

_ii ii!!_i_ji_iii!!i:

ill Ji ]F,i[iil_[iill.J;q,..: :]_!

""**++tHtf;h*_

I< .........

tH; f-tFii!i-i::F!!H! :::

H+,i_HiHii_i!

_fi:H: :_:UHt

1!_Ii%81_f: :;p.ll:H:,:n;t:L:]:l]:i:;[.]'I!!]H£t!!r i!h:

: _iItli. !F1. .!., !.L.,i.

_HW|I i NiH

i_!i!}[ii:;/!:in;lu| : ; , :i

.5

X/L X/L

;;_:u;t

!* i}!!_

L!<

N::::I:t:t;;:':NH:b:151

:_<>:t

:i![i:illdi2F!

1.0

Figure 24. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzlewith 50-percent sidewalls, 5v,p = 0°, and a = 0°.

113

Page 118: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

I nboard Outboard

CP

.4

-.2

-.4

-.0

!ii_,!i=_i}tie

ff!!:Y) !!):!!

:,1:-5;N

JmiiH;

:__:!i_

AE!.I=,!t:dP/:

+,+-h*+.

i)ii'")!

HH"_H,

ii)fii)i_)

:i!:?ih:

CP

:"'_I (iilm

-.2 _liiR)_ :_ttLEt

reI_4_H -.

-0.90

....... _,_2.03 _,!_, ) !)}! ..... iF.il

-, -_, h iFi{i+--_+ _++.,V;t;_ttt; <> 5.03 i_t_i_ ........ ]i@h h_ff4# !##_

.......... biiH:l :vr

ii!i)i}ii: +:!')l:,il !÷iit_!:4:! :i," [_ _ -_ _)-IU

:!!_!!!!:! : ........... _i<_Jilliii -

....... ' ,:vt : I,÷_H

:=_=;_ _ iK ii}iiii_E;i;i )i)Hiiii::_*_,:_+m+k+, iil;]!tH :: : : ;:_id iH.iii_ :m_

..... U_.4)! ................ FF:Iq: :I};: ............... I <:t;: .... ,.,

.... khd

_Ji{igl_!i!il;t",,U

_*+?;i'Itti'i

I_b,]i ;i!<i iiii,ii

i)]iFqT_ :!TFi:;h;iTEii;,..,,. ,,.. h_HT:

:;til

-.h!

!Hi

:m_::

d:h;::_ :iiii6)} !};E)_

i:!!q

,.:iiiii!l

CP

+44h +

;ii[ili_

]:)]F:T_

_tR't

N

:.:.:..:.i :.:.

4+.++,+_:iFI;;ZF

IKh_F:

!))iji;_));

1.0

NPR

'2 1.99-_ 3.00

© 3.54,,,_4.9/

i-HH4-

N

_HHq_

*_N4*i!.+JI)H)))

: )

ITF ]:H

i:iii:::::: :

: ::::

:!'!7

-1.5

M -0.60

:11_ I:_;_;:i;i i: ".::':_!!_

,!+! H_r_HHI l,+i _*}H-; _-i

Fb:_ : ::: ::: ,I -v up, H _::: :

........... :t!:_:il i I:,,H ..............

-1.0 -.5 0-.6

0 .5

X/L ×/L X/t

bll;t

!i!tifl

bli!i:

.+_

!-_y.

:?i,i

!k_:)

:n;

1.0

Figure 25. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle

with 25-percent sidewalls, 5v,p = 0°, and a = 0 °.

114

Page 119: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

CP

I nboard

.4

!il!;iii _",i_::_,, i_ i:¢.:ii!iiy:_ill

?[:ili_:!l?:iqf:_ :iHil;iI_i!_ i:

:fill!i_i;i;iii!!_il:_ii:_-.2

-.4

-.6

NPR

O 3.00

5.00

© 6.98

8.91

Centerline

M " 1.20

:m:_:_: i_!]i',:! : :: :; :.: !H:::',i_l: _[! E_ ;1_!! :i/H !! !_ !

i_,:_1::,,,,, if! !!11+!:i:i!i:J!!i_!!!!!!! I !:i ii!illi....................

....... :i::l:i:r iili !:if!!:! -:<:}I_i! i :1 i ! _ : _! !i_

i] [ii:: iiii:i]i! .... ih::j:::l::i:_ _:ii:h_ |; i:iiii: ! _!_:H : _ : : :i_i!!l!:_'_':_'_:ili!iiii__.ii!ii ,.......I, -..... ,.....

i:1_i :I:H !:_ dq:_', 'W,4h:H I:,V!:!:I:H_I,I_

m ,._-_ q!i!'4!

i:ii i:!i !! ili :i!i.!ii!iiii!ii!iiiiiililli

Outboard

........iiiiiiiii........,.........ii!i!iiii ..........._....:m:l_ !:

_:!m'l :i!!_i]_f! i_:t:_:: ::tin:t;::l_:t:i ...... {_i!ilU!

i!)il;!ii!!i!!i!ii!ii_i;i:i_i_ii_ii i_)ii iiii_ :i:iriil iiiiii!;i

£Z:! : ;Y _:

:i![ii!_i!fiii!!ii;.!!!5!!!J!!::!!:!!f_!i?;!.ii;_!:Ti::_51":i:::isiti?>::r:i

i_i:illil........... !i!!/il ......!!!ii !:'!Ii:H:!:_IiJ!!]:K'!Y]_

!i!i!:iii iiii_ii:i_?i:i_iU'ljYji2::i

CP

.4iii_iii"'i!iLiliiii:i_ !i!ii!+

:ml,_t_.__f_::I:!_i!! :!i::1: :Hi!i!

iiiii?!ii!ii_ii;_":ii:i_i

-.2 !;_!iii?',r_;_:_:t:til!ii!!

_Fi:[:i*:i:::?_!

rt;i:t!:il!_

ii_l!ii_it!_iiNil,,..=i,i.i......T_:_:H:_ I:;::hh ii_i!!ili-.6 ....._4.........!i!!i!i_i

NPR

O 2.003.01

0 _.01,_ 6.98

M - 0.90

!{;!_!_ii!E!ii!!!i::!m:r _:;:;_:Ui;::lil:H;;::;;!:iii!i!iilUi!Z

i;tiHslim::m_

!i!_i!i_i::::_:i_:..... ifi!i!iii

ii :iiH:i: :H:Dri

i!iiii!!!ii!!l_Eiii!i!ii;i;i!:iil

....... _;_:n:t:_H?!!iI_

?_E!il:i; _!;_H!]

T_i_mrI_:[:ii i!iii,!T,_:i!sr!siiiiiii!if:._:i_;; _iJ!!i!'!Ci_iiil

CP

.4

.2

-.2

-,4

-.6

NPR

0 1.99[] 2.99

0 3.525.02

M • 0.60

i ..... ;_h_:k,t ...... i_il: ';i]:_ il:.iii

t:n:V _:i: Vl'i!: I _ t:1_;] I

, ;_,i_ii!il::Ii!i!!i!'_!ii?ti]!i!_]Iiitli:iIHi_f!!ii!i_ :,_..__*

_I :""" ii_!iiill:_!_I,_ i;tii! ........

Ii:!lr_:_.I:: .......:_il;ii

_ i ,!i:ii!:ii! _5_iri: i!_i:!:I,TIIU:_ !,i[ ! :i: ',i

-1.5 -1.0 -.5 0 .5 l.O

:if[ill

_!:!E!;

_:i q.IIH:

i iii

:tl!_: i:4:u:!::i?!:!i!

,:iv-:

!i! ,_ii

i::i:i!i!

0

::_:_ i !:!i [

i:i_!iiiiiilH:ii_i"

!_i_ H:_,,,....

!_t CH.i

;im ];_- ,

I,,,:::: :i!!q

!!i i,

" Gi{_

1;72 1!:1n11

::ql .:_n_!!F [ !:]!:

.5

X/L X/L X/L

:Wh:l

:;:f:_::!

ii!iI_[!H; -

!I:H_E

ii:ilil;i

,-_r i

0

Figure 26. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzlewith 100-percent sidewalls, 6v,p = 15 °, and a = 0°.

115

Page 120: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

I nboard 0 utboard

CP

.4

.2

-.2

-.4

-.6

.........i!ilb+44+i!i_m i i!t _ii_i

!zmii_:i!_!i!_iiH.,..7t

mm:_ _ ....,

!isA-

NPR

© 3.0_

1-j 4.97

C _ 6.969.02

iiw'i!!!i IIHHilI;I;I_:i

H_iiii_i!i!l_!ii!i!ii!¸i::ili_iulilli_i_

.._:,_,4!i;tilitii:iFiiiii_!lifiH_:,%lii!,i',!ii

_ !_i_m!t_il_!.................

Centerline

M - 1.20

.......L:liH-_!m:!_ iii!ii!ii_,J_.J_k

.......... ._.

'_+ ! H'_"_iICC_ ,, TH:ITT]lIl_,

!ff+'fffffttt!ff+t_

iQ!: 7¢TT.... :Fbm_ i'T!tt_ i

¢i _!!r,@li]_

!i:hi;;_!+!i_il

_i!¸!i":i![_f[_1_i;

cP

NPR

© 2.04D 2.990 5.04

7.02

i_I _R_.

: _hgHlN 'X*?_?

...........xxxh; ........

H÷+.++

"" }Hi _;I .......

NI -0._

H_i_#_l_!it;_:_!f.:_ : .......

::: :::::::::: :: ;u: il

:ul :LI'"' _trr_.

NN

:C:I;I'::: :::: xxx .....

'.i.hd-

!11!ii,Ii_14;

i!]!!:T:i_ii_i

........:!7i!17i'7/i i"

!!!i........

x:, ,, ;4x; ;,;

, .... ii_t!.m_il....

............._,!iH.... : !_!!! t!_'

!!H}! i1_i:i:......... 11"t_

i:i:i i=;Nm_m_ mm

::: :: mm;:_ ,t !iriS!!

:" i!!i!HIt;!;N :t_ IieL!! :::[_

nm_:

,H u_

x bx

,m-fff!f

CP

!i_i_¸ !_!_

0 _i:c.1

:711[_:,i_4i__;:._.¢_t¢..}iti

-- 6 0 ........... [ 5 ............. 1.O

NPR

r) 2.003.04

3.52._ 5.05

-0.60

:: ::::::::: .....:::::::

_ ::::::::::::

!T!if!!!i _+*_++

....... "'_;?+tl

t*'tt;_ !t ,,***t,_t

0

a_t

i_+]i

B_J'_tt'

!t!_!

ttP,_tt;) .........

1.0

;:tti iNSi:

Immmli!l{i...............;111145;:

itl!i!i!ta!t__!_! i_ ,i •

i ':ill F :::

!!T![!;1;!!:!:! i_i;_

_i_Ili!l!lllIil4,!

0 .5

X/L X/L XlL

_umx

,:x: ::

-@ttH++

N_<]tm[

PJ[II_

_ki?li[

].0

Figure 27. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle

with 50-percent sidewalls, 5v,p = 15°, and a = 0°.

116

Page 121: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

CP

I nboard

;m:u:1:H:;v: iv; im_;v::;_;i:_Fi:;i;_uqiSPm;:

i!!:!i:i!i!i!H:i!i_!:l!h:;i!!iii[!_]:!Li-i:H:i_i; i;:iK_!; ;i[ i_!:;c:c_ !i_F!!! i!!:!i]i_-ql;i.]

?iig!Fi'_:!:r--i : I_r::

0

iiiiilk!i iiiiiii; i:_: _>ri_i

ii:!i;iiii])!!2;il;itii:i!!i_;i!;_i_

-.6

©0

©

NPR

3.025. O47.04

9.01

ii !ili! ilili!:!.iiLi_ i{_iili

_i_iJ!iii!iiii

ii!ikiiiiii:i!_i

! +!; _;:il iill

:r::m: .......

iiiiiiiii.........

;::r;:;

i_mi:l 119!!iiiii!;! iw,i_i

Centerline

M - 1.20

iiiiiii_ll ii!:ii:!i_iiiii!ii: i1111111;ii_ii:ii"[_i;;i.il!i_!iii_H:i_r i I r_::_::l:_::'::: r_;:::_ :::i::

,,,,, 'iii!i Ii ;"" 'i!Li!ii ii:!!ill/i ;/ ::iii!!ili!iiiii _

i;_!i_iiiiiiiii!ii!!:!i:i !![iii _:

i_i!ii!!!iiii_

!ikl:iii_

iiii!iiii'_'"'i;ii:ilj

: :i_: i 'Li:im iii!Cfi"i I!_;! ''

]_ii!i]]l iill!_il !:;:i;h imq:;_: _H;!_I!!

dii:k _i!!!H _ _ .liii:;:_ ;_

w;h!!ii i_i'iF, m_:;;;

Outboard

.!_i:: :i :UI _iili!i1:;:91!::iil ]T_;;il;l:;ii:!;t !;:

=Li!il;,_il;ii!!k!!Z!i;i!i;i!

i;iiiii!;!iii__,:.,_i!iiii

:,,,_ !_iliJ!i'_iii:fi'i:iii9

CP

l i!ii:il

;i!iiiili!iiii!i::_ iii_:i

ii IE[I :Ti!|[ :6 ;]i ; :;:

-.2 " 2:A: d:

ii!: i:21: if!k::

-.4 _iiiiI;:iilLiil;:I _:i_:: !i:iF:!?!ir

r.;:, IL::L r:

!fii!i_!!i!;/! :i,:i::r!:'

NPR

© 2.030 3.00

0 _.01z_ 7.04

ii!iw_

_ililiiliiiii:iil!W!i:1:, :_:

2 :;_:! _ffl:i _

!ill:i; i i!!i:il _¸I!H!I!]i::r:u_imli:

Ilifilili!!__iii

ll_ili!;ii_iLiill/i

_ii!l:iii ii _t!!

il_!il!i:!i ;:i_i

i Tml:l

!_i_!E!imi!!

ii!ilii_!I::l:Jiii:l

4b_:HH

M - 0.90

:.ii!i_llii!/.'.i!_i!::::iiii:!i_i i:._i]_!!ii_:ii!::i'.

'!'! IH q: '.ii! IHH!!!!f!::!::tii !ili;i!il qjmm':Im :r,;!t ;.................

, _ iv: !']:[ t [ ; = h:[,f, .L "

iii:iI :';:!!mll_TH_ ..,h:MJi -'!_ ! J:

: :q;!!_$Ii:.!_ ,;!_li!i;ii;_ ii!iii!......_:

iiii}:!iii?i}ii!i i!!iili!itili !i'i'!'ii' !_liHi ! i'_t!1 !m" !*_l_i] ii::I _i :El.....! _,!

!mlt!_ :iit!l!_ :f_; I_;,l:l:,:,v,:_

!:I:L_ !ii_i_ii;i,_ii_!::!l!iii:;_il]:;!i._;i ii_!':i;ili_;'i;ii:i!i:

!ili! ii:i]!ii! i_iL!!: i+:]ii!ii

:i!m:; ifii!k ;:.:., _.........:.t rl I_:lt;c'._ ti:t ,.: ,_!:r _,:._;:i::i_.-',ii!i!i :ii U :i:i

CP

.4

-.4

NPR

0 1.99[] 3.00

© _._oz_ 5.01

!iilii:!!

i!i!_ii!i

!:!i_!;!i

_ili!i!!i__il!i_!::i

:iiiii!_!ii:ilYi i!

q !'Fq

• _i_ _ i!

i !T:;!

-l.5

M - 0.60

F rq_ Hi iii

i: :r:i

-.60 .5 1.0 0 ].0 0 .5 I0

X/L X/L X/L

Figure 28. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzlewith 25-percent sidewalls, 6v,p = 15°, and a = 0 °.

117

Page 122: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Cp

.4 Inboard

iii:![![iiii:[iiii[I[i!iiii!i"_:",_,=

_[]::]]!{[]H ;]][!]::[Ll]]:;::

........_i_iiii{!i!iiiI!![__T![[ilii: :[}H_

0 .5 1.0

X/L

NPR

i.97_ 3.01:'_ 3.55,_ 4.98

Hf_:;:tt

!iii

H!I

t!!i

-1,5

2_-percentsidewalls

Centerline

-.5 0 .5 1.0

XIL X/L

1.0

CP

.4

.2

0

-.4

-.6

h[:i U:' :: _ii!! }:!E_iEi_;L: !]:_ :!_ i_111 H:;'.,

[;;I?T i!1!!::I *:' _i

I_'::: ........ I ;H!II

}!i!iZ$ :'_

Him:: :!_ii

.;_;,. !iilI!ii!_ ;tlii;

iii_.:_!Hiiii!iili ii!ii!

iiii_,:: !_!!:,_!t_ii ;i_iti

_,J,,

® !!!!.5 l.O

XlL

NPR

0 2.023.053.51

5.01

ttH

_dJ

!ii_g

H_itti_

mh

_rSt:

-1.5

!!:!:;. 41; :m_

.......+'" Uh

.... !!_!!! r! ;, ;.....

:: : : _ii_

0 .5

X/L

;if

1.O

Figure 29. Effect of NPR on external static pressure distributions at M = 0.60 for A/B power nozzle withcutback sidewalls, 6,,,p = 0°, and a = 20°.

118

Page 123: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

CP

.2

-.2

-.4

-.6

-.8

Inboard

NPR

0 2.03[] 3.01

0 3.51L_ 5.00

-1.00 .5 1.0

XIL X/L

;Hf; -"

71_!!!ii_ i!!lx;V:

ii !tH

P4H_t_

tVT_itl

h ;,;

;HHtf_

-1.5

25-percent sidewalls

Centerline Outboard

!:!;_i!H!]..,! _ .:=:miii!_H!t

iiWii_il;i!i!!!! [ !=;_

]!!iHIt :::::m ::: :i _ i:i:::!l

i;i!iii?i_iiil!!_i _i!ii!!!......... H I ";;;iiii!i!il::_:'_:_iN!_!tii_iiiiii

!!!!m_i 17!

0 .5 1.0

ML

CP

i ., 0 3.00 _ ]F;'-W[:m:::: H!i_iiii

l i!ii ........'......;-.2 i1::i P 0 3.54 ......... u::;4t i;::Ii]i

!:::_.U iiiT!i7 iiHfiqi

]]:ili_'_ :i7 ,i:_;!;,,iii__ l,_q!lr!r!t ,£!i;iiii!I _:;: u P!!i! 7:i!!1H7i;i_i P =:=Hi_4:i_71111![i :;::_h:mu,.ril:_: EiE;!;]H

i;_i_iillT!! :.:m,:

ilqti_i iiiii;_; _j!iii!lmim_ .....

!!_i_i_! - ;m; H]HTil i i;;;7!i[

-'6 iHW!_}_!ii!t!Ii_tli.... _[!!!iHl!i_]_iIii+' m ,::: _*,!'1_::i_lil;ii........._;::;tr14 1ti i!H

m::'+ :'+::i _!:;im:: I l!ii!i!I ii!!!i! ........!

_1ii!1_: !11 ::;f] ................

i !::!i;

m!i_;:; _iiiiil!!1111!1-I.0 _![_;.',:_i !f!ili _! :'.:i:!:0 5 1.0 -1.5 -1.O

]O0.i}e rcent sidewalls

iH : iiii!!!!iiiii!il;

P, ;P: _ :::' : .P1

171_;F:u

-::=:;f !!u::-U Ni

!i!!iTiilH_IfY?Ii!!

iTi!!illi,97;iiT!i,i!i:.i!, :: .::::

ii_iiiii!i_iii!iIi7iiiiiN_immlifii!_Ii#i!l! !_!::;mi: !iiiil I!;;;:_; ::Mlt:x

0 .5 1.0

X/L XIL X/L

Figure 30. Effect of NPR on external static pressure distributions at M = 0.60 for A/B power nozzle withcutback sidewalls, &p = 15°, and a = 20 °.

119

Page 124: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf
Page 125: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

Report Documentation PageNall_r/_l _erunaubr s and

1. ReportNAsANO.TM_4155 ]2. Government Accession No. 3. Reeipient's Catalog No.

4. Title and Subtitle

An Experimental Investigation of Thrust Vectoring Two-Dimensional Convergent-Divergent Nozzles Installed in

a Twin-Engine Fighter Model at High Angles of Attack

7. Author(s)

Francis J. Capone, Mary L. Mason, and Laurence D. Leavitt

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. Report Date

February 1990

6. Performing Organization Code

8. Performing Organization Report No.

L-16563

10. Work Unit No.

505-62-71-01

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determinethe thrust vectoring capability of subscale, two-dimensional convergent-divergent exhaust nozzles

installed on a twin-engine general research fighter model. Pitch thrust vectoring was accomplished

by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback werestudied for both unvectored and pitch-vectored nozzles. A single cutback sidewall was employed

for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to

1.20 and at angles of attack from -2 ° to 35 ° . High-pressure air was used to simulate the jet

exhaust and provide values of nozzle pressure ratio up to 9.

17. Key Words (Suggested by Authors(s))

Longitudinal control powerDirectional control power

Thrust vectoring

Fighter aircraft

Twin engine

19. Security Cla_ssif. (of this report)

Unclassified

NASA FORM 1626 OCT s6

18. Distribution Statement

Unclassified--Unlimited

Subject Category 02

20. Security Cla.ssif. (of this page) 21. No. of Pages ] 22. Price

Unclassified 120 ] A06

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

i

NASA-Langley, 1990

Page 126: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf
Page 127: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf
Page 128: ?R=19900006568 2018-01-21T21:56:20+00:00Z · PDF fileA _mom FA,Sbal /Waft Fc tq FN Fs g L Lj Lt M NPR (NPR)des P pa Pes,1 (MACH) (NPR) momentum tare axial force due to bellows, lbf

BULK RATEPOSTAGE & FEES PAID

N ASAPermit No. G-2 7

If Undetiverabte (Section ! $8

Posts! Manual) Do Not Return

l

J

i I¸ __