17
Next Generation Quantum Annealing System Qubits North America Newport, RI Mark W Johnson D-Wave Systems Inc. September 24, 2019

Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

Next Generation Quantum Annealing System

Qubits North America

Newport, RI

Mark W Johnson

D-Wave Systems Inc.

September 24, 2019

Page 2: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

1/16 Copyright © D-Wave Systems Inc.

The Next Generation quantum annealing system will have

◮ A more powerful processor◮ 5000 qubits - to solve larger problems◮ Increased connectivity - to make easier posing of complex problems◮ Lower noise technology

– more accurate problem specification

– higher performance annealing

◮ Improved operating software

◮ A hybrid developer environment

Page 3: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

Quantum mechanics helps find the optimum

Page 4: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

3/16 Copyright © D-Wave Systems Inc.

The goal of quantum annealing (QA): model the Hamiltonian

HS(s) = −A(s)

2∑

i

σx,i +B(s)

2

[

−∑i

hiσz,i + ∑i<j

Jijσz,iσz,j

]

Φ 2

Φ 1

Josephsonjunction

a

"spin-down" circulating current

"spin-up" circulating currentΦ1X

Φ2X

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12

s

A/h

(GHz)

B/h

(GHz)

Energ

y (

GH

z)

◮ T. Kadowaki and H. Nishimori, PRE, 58(5), pp.

5355-5363, (1998)

◮ E. Farhi, et al., Science 292, 472 (2001)

◮ W. Kaminsky, S. Lloyd, T. Orlando,

arXiv:quant-ph/0403090, “Scalable

Superconducting Architecture for Adiabatic

Quantum Computation”

Page 5: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

4/16 Copyright © D-Wave Systems Inc.

Progression of processor scale over time

10

100

1000

10000

100000

2008 2012 2016 2020

qubits +

couple

rs

D-Wave One

D-Wave Two

2000Q

Next Gen

Page 6: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

D-Wave 2000Q quantum annealing processor

128,472 Josephson junctions

18,305 composite flux DACs

10,960 QFP shift register stages

Page 7: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

6/16 Copyright © D-Wave Systems Inc.

Advantage™ qubits are more connected

2000Q Advantage

2000 Qubits 5000

6000 Couplers 40000

128,000 Josephson Junctions 1,030,00

42 m Wiring 110 m

(5.5 mm)2 Active Area (8.4 mm)2

22 kiloByte On-chip memory 130 kiloByte

Page 8: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

7/16 Copyright © D-Wave Systems Inc.

A closer look ...

2000Q Advantage

6 Connections/Qubit 15

The new graph, and embeddings on it can be explored now in the Ocean tools:

♦❝❡❛♥✳❞✇❛✈❡s②s✳❝♦♠

Page 9: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

8/16 Copyright © D-Wave Systems Inc.

Basic graph embedding statistics

2000Q Advantage

Complete Graph 64 (17) 180 (17)

Complete Bipartite 64x64 (16) 172x172 (15)

Cubic Lattice 8x8x8 (4) 15x15x12 (2)

Factoring Circuit 16-bit (16) 30-bit (15)

(max chain length)

Page 10: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

9/16 Copyright © D-Wave Systems Inc.

Compare embedding of graphs with similar average degree

Chimera C16 - DW 2000Q Pegasus P6 - 680 Qubit Prototype

Logical Qubits 366 318

Average chain length 5.6 2.1

Average degree 24 25

Page 11: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

10/16 Copyright © D-Wave Systems Inc.

Why do we want to reduce device noise?

◮ Better control of problem and anneal specification

◮ Better performance of QA

“Quality” factor

Q = A(s)T1(s)/h̄

Page 12: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

11/16 Copyright © D-Wave Systems Inc.

In pursuit of a lower noise technology

Regularly measure:

◮ low frequency flux noise

◮ 0th order Macroscopic Resonant

Tunnelling (MRT) peak:

(a measure of integrated high

frequency SΦ(ω))

Ongoing program to reduce intrinsic noise:

◮ Test ∼ 250 samples per year

◮ monitor process stability

◮ modify processes and materials0

50

100

150

200

250

TunnelingLineWidth

(µΦ 0)

early R&D

DW1prod

DW2prod A

DW2prod B

R&DA

R&DB

Page 13: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

12/16 Copyright © D-Wave Systems Inc.

Quantum simulation

H3D(s) = −Γ(s)

2∑

i

σxi + J (s) ∑

〈i,j〉

Jijσzi σ

zj

0.16 0.18 0.2 0.220

0.5

1

1.5

2

2.5

s

χAFM×

105(Φ

−1

0)

p = 0p = 0.05p = 0.1p = 0.15p = 0.2

transverse field cubic Ising lattice

topological phase transition

0 0.5 1 1.5 20

0.1

0.2

0.3

s = 0.30

s = 0.25

s = 0.20

KT

Ordered

PM

Γ/J

T/J

QA @ 8.4 mK

Upper transition

Page 14: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

13/16 Copyright © D-Wave Systems Inc.

New operating software to provide better support for hybrid applications

NEW EXISTING

ElastiCache(Redis) DSS (Problem Store)

Client Tools & Application(s)

SAPI - WS

SAPI-WS Instance(s)

LEAP UI & Admin

Django 2.2 (upgrade)

Qubist Instance

(New) Scheduler

Scheduler Instance

Client Layer

AWSLayer

DWS Layer

Hardware Layer

WorkerWorker(s)

QPAPI

QPAPI2

QPPD

RDS

Quantum Server(s)

QPU (P16)

Electronics Server

Python 2 to 3 upgrade

Python 2 to 3 upgrade

New Quota Usage Service

Block Scheduling

MODIFIED

Redis

S3

Web Browser

Client Code

SAPI Client Libraries Ocean SDK

◮ architecture

◮ latency

◮ scheduling

We believe the first quantum application that will bring value to a customer will use a

hybrid of quantum and classical computational resources.

Page 15: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

14/16 Copyright © D-Wave Systems Inc.

Hybrid developer environment

How do we make it easier for users to develop hybrid applications?

stay tuned for the Ocean Update Wednesday morning ...

Page 16: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

15/16 Copyright © D-Wave Systems Inc.

Towards universal computation

HS(s) = −1

2∑

i=1,2

σx,i − ∑i=1,2

hiσz,i + Jzzσz,1σz,2 + Jyyσy,1σy,2 + Jxxσx,1σx,2

Ozfidan, et al., “Demonstration of nonstoquastic Hamiltonian in coupled supercond. flux qubits”, ❛r❳✐✈✿✶✾✵✸✳✵✻✶✸✾✈✶

Page 17: Qubits North America Newport, RI · D-Wave 2000Q quantum annealing processor 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages

16/16 Copyright © D-Wave Systems Inc.

Summary

The Advantage platform will feature a

◮ A more powerful process with more and better connected qubits

◮ Lower noise qubits to find better solutions more quickly

◮ New operating software designed for hybrid applications