21
Cédric Lorcé IPN Orsay - IFPA Liège Quark spin-orbit correlations May 14th 2014, Santa Fe, New Mexico, USA [C.L., arXiv:1401.7784] [C.L., Pasquini (in preparation)] Based on :

Quark spin-orbit correlations - Jefferson Lab...Energy-momentum tensor A lot of interesting physics is contained in the EM tensor Energy density Momentum density Energy flux Momentum

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Cédric Lorcé

    IPN Orsay - IFPA Liège

    Quark spin-orbit correlations

    May 14th 2014, Santa Fe, New Mexico, USA

    [C.L., arXiv:1401.7784]

    [C.L., Pasquini (in preparation)]

    Based on :

  • Outline

    • Energy-momentum tensor

    • Quark spin-orbit correlations

    • Phase-space transverse modes

    • Conclusions

  • Energy-momentum tensor

    A lot of interesting physics is contained in the EM tensor

    Energy density

    Momentum density

    Energy flux

    Momentum flux

    Shear stress

    Normal stress (pressure)

    E.g.

    [Polyakov, Shuvaev (2002)]

    [Polyakov (2003)]

    [Goeke et al. (2007)]

    [Cebulla et al. (2007)]

  • Energy-momentum tensor

    Momentum-space expression

    General parametrization

    Non-conservation

    Asymmetry

    [Ji (1997)]

    [Shore, White (2000)]

    Angular momentum

  • Link with GPDs

    « Trick »

    Local Non-local

    GPD operator

    [Penttinen et al. (2000)]

    [Kiptily, Polyakov (2004)]

    [Hatta, Yoshida (2012)]

    Twist-2

    Twist-3

    [Ji (1997)]

  • Proton spin structure

    « Quark spin »

    « Quark OAM »

    Quark spin-orbit correlation

    [C.L., Pasquini (2011)] [C.L. (2014)]

    Not involved in proton spin sum rule !

  • Proton spin structure

    « Quark spin »

    « Quark OAM »

    Quark spin-orbit correlation

    [C.L., Pasquini (2011)] [C.L. (2014)]

    Quark number

    UU

    LL

    LU

    UL

    Spin OAM

  • P-odd energy-momentum tensor

    Chiral decomposition

    General parametrization

    Twist-2

    Twist-3

    [C.L. (2014)]

  • Some figures

    [C.L. (2014)]

    Valence number

    Spin and kinetic OAM of valence quarks are anti-correlated !

  • Phase-space transverse modes

    Parametrization of a correlator is not unique Natural modes ?

    [C.L., Pasquini (in preparation)]

  • Phase-space transverse modes

    Parametrization of a correlator is not unique Natural modes ?

    [C.L., Pasquini (in preparation)]

  • Phase-space transverse modes

    Properties under

    parity and time-reversal

    Parametrization of a correlator is not unique Natural modes ?

    [C.L., Pasquini (in preparation)]

  • Phase-space transverse modes

    Unpolarized quark in unpolarized target

    [C.L., Pasquini (in preparation)]

    UU

  • Phase-space transverse modes

    Unpolarized quark in longitudinally polarized target

    [C.L., Pasquini (in preparation)]

    LU

  • Phase-space transverse modes

    Unpolarized quark in transversely polarized target (1)

    [C.L., Pasquini (in preparation)]

    TU

  • Phase-space transverse modes

    Unpolarized quark in transversely polarized target (2)

    [C.L., Pasquini (in preparation)]

    TU

  • Phase-space transverse modes

    Unpolarized quark in transversely polarized target (1+2)

    [C.L., Pasquini (in preparation)]

    TU

  • Conclusions

    • Complete characterization of spin structure requires spin-orbit correlation

    • Like quark OAM, quark spin-orbit correlation is given by moments of measurable parton distributions

    • Natural phase-space transverse modes help to understand the physics contained in parton distributions

  • Backup slides

  • Energy-momentum tensor

    In presence of spin density

    In rest frame

    No « spin » contribution !

    Belinfante « improvement »

    Spin density gradient Four-momentum circulation

  • Light-front quark models Wigner rotation

    Light-front overlap representation

    [C.L., Pasquini, Vanderhaeghen (2011)]

    GTMDs ~

    Momentum Polarization