21
 7/ 27/2015 I ntro duct io n to quant um me chanic s - Wikip edia , t he fre e encyclo pedia ht tps:/ /en.wi ki pedia.org/ wi ki/Introducti on to quant um_mechani cs 1/21 Introduction to quantum mechanics From Wik ipedia, the free encyclopedia Quantum mechanics is the science of the very small: the body of scientific principles that explains the behaviour of matter and its interactions with energy on the scale of atoms and subatomic particles. Classical physics explains matter and energ y on a scale familiar to human experience, including the behaviour of astronomical bodies. It remains the key to measurement for much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. [1]  As Thomas Kuhn explains in his analysis of the philosophy of science, The S tructure of Scientific Revolutions , coming to terms with these limitations led to two major revolutions in  physics which created a shift in the original scientific paradigm: the theory of relativity and the development of quantum mechanics. [2]  This article describes how physicists discovered the limitations of classical physics and developed the main concepts of the quantum theory that replaced it in the early decades of the 20th century. These concepts are described in roughly the order in which they were first discovered. For a more complete history of the subject, see History of quantum mechanics . In this sense, the word quantum means the minimum amount of any physical entity involved in an interaction. Certain characteristics of matter  can take only discrete values. Light behaves in some respects like particles and in other respects like waves. Matter—particles such as electrons and atoms—exhibits wavelike  behaviour too. Some light sources , including neon lights, give off only certain discrete frequencies of light. Quantum mechanics shows that ligh t, along with all other forms of electromagnetic radiation, comes in discrete units, called photons, and predicts its energies, colours, and sp ectral intensities. Some aspects of quantum mechanics can seem counterintuitive or even paradoxical, because they describe behaviour quite different from that seen at larger length scales. In the words of Richard Feynman, quantum mechanics deals with "nature as She is – absurd". [3]  For example, the uncertainty principle of quantum mechanics means that the more closely one pins down one measurement (such as the position of a particle), the less precise another measurement  pertaining to the same particle (such as its momentum) must become. Contents 1 The first quantum theor y: Max Planck and black-body radiation 2 Photons: the quantisation of light 2.1 The photoelectric effect 2.2 Consequences of the light being quantised 3 The quantisation of matter: the Bohr model of the atom 4 Wave-particle duality 4.1 The double-slit experiment 4.2 Application to the Bohr model 5 Spin 6 Development of modern quantum mechanics 7 Copenhagen interpretation 7.1 Uncertainty principle 7.2 Wave function collapse 7.3 Eigenstates and eigenvalues 7.4 The Pauli exclusion principle 7.5 Application to the hydrogen atom 8 Dirac wave equation 9 Quantum entanglement

Quantum Mechanics

Embed Size (px)

DESCRIPTION

A detailed look into the exciting field of quantum mechanics that provides the necessary introduction for aspiring learners.

Citation preview

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 1/21

    IntroductiontoquantummechanicsFromWikipedia,thefreeencyclopedia

    Quantummechanicsisthescienceoftheverysmall:thebodyofscientificprinciplesthatexplainsthebehaviourofmatteranditsinteractionswithenergyonthescaleofatomsandsubatomicparticles.

    Classicalphysicsexplainsmatterandenergyonascalefamiliartohumanexperience,includingthebehaviourofastronomicalbodies.Itremainsthekeytomeasurementformuchofmodernscienceandtechnology.However,towardstheendofthe19thcentury,scientistsdiscoveredphenomenainboththelarge(macro)andthesmall(micro)worldsthatclassicalphysicscouldnotexplain.[1]AsThomasKuhnexplainsinhisanalysisofthephilosophyofscience,TheStructureofScientificRevolutions,comingtotermswiththeselimitationsledtotwomajorrevolutionsinphysicswhichcreatedashiftintheoriginalscientificparadigm:thetheoryofrelativityandthedevelopmentofquantummechanics.[2]Thisarticledescribeshowphysicistsdiscoveredthelimitationsofclassicalphysicsanddevelopedthemainconceptsofthequantumtheorythatreplaceditintheearlydecadesofthe20thcentury.Theseconceptsaredescribedinroughlytheorderinwhichtheywerefirstdiscovered.Foramorecompletehistoryofthesubject,seeHistoryofquantummechanics.

    Inthissense,thewordquantummeanstheminimumamountofanyphysicalentityinvolvedinaninteraction.Certaincharacteristicsofmattercantakeonlydiscretevalues.

    Lightbehavesinsomerespectslikeparticlesandinotherrespectslikewaves.Matterparticlessuchaselectronsandatomsexhibitswavelikebehaviourtoo.Somelightsources,includingneonlights,giveoffonlycertaindiscretefrequenciesoflight.Quantummechanicsshowsthatlight,alongwithallotherformsofelectromagneticradiation,comesindiscreteunits,calledphotons,andpredictsitsenergies,colours,andspectralintensities.

    Someaspectsofquantummechanicscanseemcounterintuitiveorevenparadoxical,becausetheydescribebehaviourquitedifferentfromthatseenatlargerlengthscales.InthewordsofRichardFeynman,quantummechanicsdealswith"natureasSheisabsurd".[3]Forexample,theuncertaintyprincipleofquantummechanicsmeansthatthemorecloselyonepinsdownonemeasurement(suchasthepositionofaparticle),thelesspreciseanothermeasurementpertainingtothesameparticle(suchasitsmomentum)mustbecome.

    Contents

    1Thefirstquantumtheory:MaxPlanckandblackbodyradiation2Photons:thequantisationoflight

    2.1Thephotoelectriceffect2.2Consequencesofthelightbeingquantised

    3Thequantisationofmatter:theBohrmodeloftheatom4Waveparticleduality

    4.1Thedoubleslitexperiment4.2ApplicationtotheBohrmodel

    5Spin6Developmentofmodernquantummechanics7Copenhageninterpretation

    7.1Uncertaintyprinciple7.2Wavefunctioncollapse7.3Eigenstatesandeigenvalues7.4ThePauliexclusionprinciple7.5Applicationtothehydrogenatom

    8Diracwaveequation9Quantumentanglement

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 2/21

    Hotmetalwork.Theyelloworangeglowisthevisiblepartofthethermalradiationemittedduetothehightemperature.Everythingelseinthepictureisglowingwiththermalradiationaswell,butlessbrightlyandatlongerwavelengthsthanthehumaneyecandetect.Afarinfraredcameracanobservethisradiation.

    10Quantumfieldtheory11Quantumelectrodynamics12StandardModel13Interpretations14Applications15Seealso16Notes17References18Bibliography19Furtherreading20Externallinks

    Thefirstquantumtheory:MaxPlanckandblackbodyradiation

    Thermalradiationiselectromagneticradiationemittedfromthesurfaceofanobjectduetotheobject'sinternalenergy.Ifanobjectisheatedsufficiently,itstartstoemitlightattheredendofthespectrum,asitbecomesredhot.

    Heatingitfurthercausesthecolourtochangefromredtoyellow,white,andblue,aslightatshorterwavelengths(higherfrequencies)beginstobeemitted.Aperfectemitterisalsoaperfectabsorber:whenitiscold,suchanobjectlooksperfectlyblack,becauseitabsorbsallthelightthatfallsonitandemitsnone.Consequently,anidealthermalemitterisknownasablackbody,andtheradiationitemitsiscalledblackbodyradiation.

    Inthelate19thcentury,thermalradiationhadbeenfairlywellcharacterizedexperimentally.[note1]However,classicalphysicswasunabletoexplaintherelationshipbetweentemperaturesandpredominantfrequenciesofradiation.Physicistssearchedforasingletheorythatexplainedalltheexperimentalresults.

    ThefirstmodelthatwasabletoexplainthefullspectrumofthermalradiationwasputforwardbyMaxPlanckin1900.[4]Heproposedamathematicalmodelinwhichthethermalradiationwasinequilibriumwithasetofharmonicoscillators.Toreproducetheexperimentalresults,hehadtoassumethateachoscillatorproducedanintegernumberofunitsofenergyatitssinglecharacteristicfrequency,ratherthanbeingabletoemitanyarbitraryamountofenergy.Inotherwords,theenergyofeachoscillatorwasquantized.[note2]Thequantumofenergyforeachoscillator,accordingtoPlanck,wasproportionaltothefrequencyoftheoscillatortheconstantofproportionalityisnowknownasthePlanckconstant.ThePlanckconstant,usuallywrittenash,hasthevalueof6.63 1034Js.So,theenergyEofanoscillatoroffrequencyfisgivenby

    [5]

    Tochangethecolourofsucharadiatingbody,itisnecessarytochangeitstemperature.Planck'slawexplainswhy:increasingthetemperatureofabodyallowsittoemitmoreenergyoverall,andmeansthatalargerproportionoftheenergyistowardsthevioletendofthespectrum.

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 3/21

    Predictionsoftheamountofthermalradiationofdifferentfrequenciesemittedbyabody.CorrectvaluespredictedbyPlanck'slaw(green)contrastedagainsttheclassicalvaluesofRayleighJeanslaw(red)andWienapproximation(blue).

    AlbertEinsteininaround1905.

    Light(redarrows,left)isshoneuponametal.Ifthelightisofsufficientfrequency(i.e.sufficientenergy),electronsareejected(bluearrows,right).

    Planck'slawwasthefirstquantumtheoryinphysics,andPlanckwontheNobelPrizein1918"inrecognitionoftheservicesherenderedtotheadvancementofPhysicsbyhisdiscoveryofenergyquanta".[6]Atthetime,however,Planck'sviewwasthatquantizationwaspurelyamathematicalconstruct,ratherthan(asisnowbelieved)afundamentalchangeinourunderstandingoftheworld.[7]

    Photons:thequantisationoflight

    In1905,AlbertEinsteintookanextrastep.Hesuggestedthatquantisationwasnotjustamathematicalconstruct,butthattheenergyinabeamoflightactuallyoccursinindividualpackets,whicharenowcalledphotons.[8]TheenergyofasinglephotonisgivenbyitsfrequencymultipliedbyPlanck'sconstant:

    Forcenturies,scientistshaddebatedbetweentwopossibletheoriesoflight:wasitawaveordiditinsteadcompriseastreamoftinyparticles?Bythe19thcentury,thedebatewasgenerallyconsideredtohavebeensettledinfavourofthewavetheory,asitwasabletoexplainobservedeffectssuchasrefraction,diffraction,interferenceandpolarization.JamesClerkMaxwellhadshownthatelectricity,magnetismandlightareallmanifestationsofthesamephenomenon:theelectromagneticfield.Maxwell'sequations,whicharethecompletesetoflawsofclassicalelectromagnetism,describelightaswaves:acombinationofoscillatingelectricandmagneticfields.Becauseofthepreponderanceofevidenceinfavourofthewavetheory,Einstein'sideasweremetinitiallywithgreatskepticism.Eventually,however,thephotonmodelbecamefavoured.Oneofthemostsignificantpiecesofevidenceinitsfavourwasitsabilitytoexplainseveralpuzzlingpropertiesofthephotoelectriceffect,describedinthefollowingsection.Nonetheless,thewaveanalogyremainedindispensableforhelpingtounderstandothercharacteristicsoflight:diffraction,refractionandinterference.

    Thephotoelectriceffect

    In1887,HeinrichHertzobservedthatwhenlightwithsufficientfrequencyhitsametallicsurface,itemitselectrons.[9]In1902,PhilippLenarddiscoveredthatthemaximumpossibleenergyofanejectedelectronisrelatedtothefrequencyofthelight,nottoitsintensity:ifthefrequencyistoolow,noelectronsareejectedregardlessoftheintensity.Strongbeamsoflighttowardtheredendofthespectrummightproducenoelectricalpotentialatall,whileweakbeamsoflighttowardthevioletendofthespectrumwouldproducehigherandhighervoltages.Thelowestfrequencyoflightthatcancauseelectronstobeemitted,calledthethresholdfrequency,isdifferentfordifferentmetals.Thisobservationisatoddswithclassicalelectromagnetism,whichpredictsthattheelectron'senergyshouldbeproportionaltotheintensityoftheradiation.[10]:24Sowhenphysicistsfirstdiscovereddevicesexhibitingthephotoelectriceffect,theyinitiallyexpectedthatahigherintensityoflightwouldproduceahighervoltagefromthephotoelectricdevice.

    Einsteinexplainedtheeffectbypostulatingthatabeamoflightisastreamofparticles("photons")andthat,ifthebeamisoffrequencyf,theneachphotonhasanenergyequaltohf.[9]Anelectronislikelytobestruckonlybyasinglephoton,whichimpartsatmostanenergyhftotheelectron.[9]Therefore,theintensityofthebeamhasnoeffect[note3]

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 4/21

    andonlyitsfrequencydeterminesthemaximumenergythatcanbeimpartedtotheelectron.[9]

    Toexplainthethresholdeffect,Einsteinarguedthatittakesacertainamountofenergy,calledtheworkfunctionanddenotedby,toremoveanelectronfromthemetal.[9]Thisamountofenergyisdifferentforeachmetal.Iftheenergyofthephotonislessthantheworkfunction,thenitdoesnotcarrysufficientenergytoremovetheelectronfromthemetal.Thethresholdfrequency,f0,isthefrequencyofaphotonwhoseenergyisequaltotheworkfunction:

    Iffisgreaterthanf0,theenergyhfisenoughtoremoveanelectron.Theejectedelectronhasakineticenergy,EK,whichis,atmost,equaltothephoton'senergyminustheenergyneededtodislodgetheelectronfromthemetal:

    Einstein'sdescriptionoflightasbeingcomposedofparticles,extendedPlanck'snotionofquantisedenergy,whichisthatasinglephotonofagivenfrequency,f,deliversaninvariantamountofenergy,hf.Inotherwords,individualphotonscandelivermoreorlessenergy,butonlydependingontheirfrequencies.Innature,singlephotonsarerarelyencountered.TheSunandemissionsourcesavailableinthe19thcenturyemitvastnumbersofphotonseverysecond,andsotheimportanceoftheenergycarriedbyeachindividualphotonwasnotobvious.Einstein'sideathattheenergycontainedinindividualunitsoflightdependsontheirfrequencymadeitpossibletoexplainexperimentalresultsthathadhithertoseemedquitecounterintuitive.However,althoughthephotonisaparticle,itwasstillbeingdescribedashavingthewavelikepropertyoffrequency.Onceagain,theparticleaccountoflightwasbeingcompromised[11][note4].

    Consequencesofthelightbeingquantised

    Therelationshipbetweenthefrequencyofelectromagneticradiationandtheenergyofeachindividualphotoniswhyultravioletlightcancausesunburn,butvisibleorinfraredlightcannot.Aphotonofultravioletlightwilldeliverahighamountofenergyenoughtocontributetocellulardamagesuchasoccursinasunburn.Aphotonofinfraredlightwilldeliveraloweramountofenergyonlyenoughtowarmone'sskin.So,aninfraredlampcanwarmalargesurface,perhapslargeenoughtokeeppeoplecomfortableinacoldroom,butitcannotgiveanyoneasunburn.

    Allphotonsofthesamefrequencyhaveidenticalenergy,andallphotonsofdifferentfrequencieshaveproportionallydifferentenergies.However,althoughtheenergyimpartedbyphotonsisinvariantatanygivenfrequency,theinitialenergystateoftheelectronsinaphotoelectricdevicepriortoabsorptionoflightisnotnecessarilyuniform.Anomalousresultsmayoccurinthecaseofindividualelectrons.Forinstance,anelectronthatwasalreadyexcitedabovetheequilibriumlevelofthephotoelectricdevicemightbeejectedwhenitabsorbeduncharacteristicallylowfrequencyillumination.Statistically,however,thecharacteristicbehaviourofaphotoelectricdevicewillreflectthebehaviourofthevastmajorityofitselectrons,whichwillbeattheirequilibriumlevel.Thispointishelpfulincomprehendingthedistinctionbetweenthestudyofindividualparticlesinquantumdynamicsandthestudyofmassedparticlesinclassicalphysics.

    Thequantisationofmatter:theBohrmodeloftheatom

    Bythedawnofthe20thcentury,evidencerequiredamodeloftheatomwithadiffusecloudofnegativelychargedelectronssurroundingasmall,dense,positivelychargednucleus.Thesepropertiessuggestedamodelinwhichtheelectronscirclearoundthenucleuslikeplanetsorbitingasun.[note5]However,itwasalsoknownthattheatominthismodelwouldbeunstable:accordingtoclassicaltheoryorbitingelectronsareundergoingcentripetalacceleration,andshouldthereforegiveoffelectromagneticradiation,thelossofenergyalsocausingthemtospiraltowardthenucleus,collidingwithitinafractionofasecond.

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 5/21

    Asecond,related,puzzlewastheemissionspectrumofatoms.Whenagasisheated,itgivesofflightonlyatdiscretefrequencies.Forexample,thevisiblelightgivenoffbyhydrogenconsistsoffourdifferentcolours,asshowninthepicturebelow.Theintensityofthelightatdifferentfrequenciesisalsodifferent.Bycontrast,whitelightconsistsofacontinuousemissionacrossthewholerangeofvisiblefrequencies.Bytheendofthenineteenthcentury,asimpleruleknownasBalmer'sformulahadbeenfoundwhichshowedhowthefrequenciesofthedifferentlineswererelatedtoeachother,thoughwithoutexplainingwhythiswas,ormakinganypredictionabouttheintensities.Theformulaalsopredictedsomeadditionalspectrallinesinultravioletandinfraredlightwhichhadnotbeenobservedatthetime.Theselineswerelaterobservedexperimentally,raisingconfidenceinthevalueoftheformula.

    Emissionspectrumofhydrogen.Whenexcited,hydrogengasgivesofflightinfourdistinctcolours(spectrallines)inthevisiblespectrum,aswellasanumberoflinesintheinfraredandultraviolet.

    In1885theSwissmathematicianJohannBalmerdiscoveredthateachwavelength(lambda)inthevisiblespectrumofhydrogenisrelatedtosomeintegernbytheequation

    whereBisaconstantwhichBalmerdeterminedtobeequalto364.56nm.

    In1888JohannesRydberggeneralizedandgreatlyincreasedtheexplanatoryutilityofBalmer'sformula.HepredictedthatisrelatedtotwointegersnandmaccordingtowhatisnowknownastheRydbergformula:[13]

    whereRistheRydbergconstant,equalto0.0110nm1,andnmustbegreaterthanm.

    Rydberg'sformulaaccountsforthefourvisiblewavelengthsofhydrogenbysettingm=2andn=3,4,5,6.Italsopredictsadditionalwavelengthsintheemissionspectrum:form=1andforn>1,theemissionspectrumshouldcontaincertainultravioletwavelengths,andform=3andn>3,itshouldalsocontaincertaininfraredwavelengths.Experimentalobservationofthesewavelengthscametwodecadeslater:in1908LouisPaschenfoundsomeofthepredictedinfraredwavelengths,andin1914TheodoreLymanfoundsomeofthepredictedultravioletwavelengths.[13]

    NotethatbothBalmerandRydberg'sformulasinvolveintegers:inmodernterms,theyimplythatsomepropertyoftheatomisquantised.Understandingexactlywhatthispropertywas,andwhyitwasquantised,wasamajorpartinthedevelopmentofquantummechanics,aswillbeshownintherestofthisarticle.

    In1913NielsBohrproposedanewmodeloftheatomthatincludedquantizedelectronorbits:electronsstillorbitthenucleusmuchasplanetsorbitaroundthesun,buttheyareonlypermittedtoinhabitcertainorbits,nottoorbitatanydistance.[14]Whenanatomemitted(orabsorbed)energy,theelectrondidnotmoveinacontinuoustrajectoryfromoneorbitaroundthenucleustoanother,asmightbeexpectedclassically.Instead,theelectronwouldjumpinstantaneously

    Themathematicalformuladescribinghydrogen'semissionspectrum.

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 6/21

    TheBohrmodeloftheatom,showinganelectrontransitioningfromoneorbittoanotherbyemittingaphoton.

    NielsBohrasayoungman

    fromoneorbittoanother,givingofftheemittedlightintheformofaphoton.[15]Thepossibleenergiesofphotonsgivenoffbyeachelementweredeterminedbythedifferencesinenergybetweentheorbits,andsotheemissionspectrumforeachelementwouldcontainanumberoflines.[16]

    Startingfromonlyonesimpleassumptionabouttherulethattheorbitsmustobey,theBohrmodelwasabletorelatetheobservedspectrallinesintheemissionspectrumofhydrogentopreviouslyknownconstants.InBohr'smodelthe

    electronsimplywasn'tallowedtoemitenergycontinuouslyandcrashintothenucleus:onceitwasintheclosestpermittedorbit,itwasstableforever.Bohr'smodeldidn'texplainwhytheorbitsshouldbequantisedinthatway,norwasitabletomakeaccuratepredictionsforatomswithmorethanoneelectron,ortoexplainwhysomespectrallinesarebrighterthanothers.

    AlthoughsomeofthefundamentalassumptionsoftheBohrmodelweresoonfoundtobewrong,thekeyresultthatthediscretelinesinemissionspectraareduetosomepropertyoftheelectronsinatomsbeingquantisediscorrect.Thewaythattheelectrons

    actuallybehaveisstrikinglydifferentfromBohr'satom,andfromwhatweseeintheworldofoureverydayexperiencethismodernquantummechanicalmodeloftheatomisdiscussedbelow.

    Bohrtheorisedthattheangularmomentum,L,ofanelectronisquantised:

    wherenisanintegerandhisthePlanckconstant.Startingfromthisassumption,Coulomb'slawandtheequationsofcircularmotionshowthatanelectronwithnunitsofangularmomentumwillorbitaprotonatadistancergivenby

    ,

    wherekeistheCoulombconstant,misthemassofanelectron,andeisthechargeonanelectron.Forsimplicitythisiswrittenas

    wherea0,calledtheBohrradius,isequalto0.0529nm.TheBohrradiusistheradiusofthesmallestallowedorbit.

    Theenergyoftheelectron[note6]canalsobecalculated,andisgivenby

    .

    AmoredetailedexplanationoftheBohrmodel.

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 7/21

    LouisdeBrogliein1929.DeBrogliewontheNobelPrizeinPhysicsforhispredictionthatmatteractsasawave,madeinhis1924PhDthesis.

    ThusBohr'sassumptionthatangularmomentumisquantisedmeansthatanelectroncanonlyinhabitcertainorbitsaroundthenucleus,andthatitcanhaveonlycertainenergies.Aconsequenceoftheseconstraintsisthattheelectronwillnotcrashintothenucleus:itcannotcontinuouslyemitenergy,anditcannotcomeclosertothenucleusthana0(theBohrradius).

    Anelectronlosesenergybyjumpinginstantaneouslyfromitsoriginalorbittoalowerorbittheextraenergyisemittedintheformofaphoton.Conversely,anelectronthatabsorbsaphotongainsenergy,henceitjumpstoanorbitthatisfartherfromthenucleus.

    Eachphotonfromglowingatomichydrogenisduetoanelectronmovingfromahigherorbit,withradiusrn,toalowerorbit,rm.TheenergyEofthisphotonisthedifferenceintheenergiesEnandEmoftheelectron:

    SincePlanck'sequationshowsthatthephoton'senergyisrelatedtoitswavelengthbyE=hc/,thewavelengthsoflightthatcanbeemittedaregivenby

    ThisequationhasthesameformastheRydbergformula,andpredictsthattheconstantRshouldbegivenby

    Therefore,theBohrmodeloftheatomcanpredicttheemissionspectrumofhydrogenintermsoffundamentalconstants.[note7]However,itwasnotabletomakeaccuratepredictionsformultielectronatoms,ortoexplainwhysomespectrallinesarebrighterthanothers.

    Waveparticleduality

    Justaslighthasbothwavelikeandparticlelikeproperties,matteralsohaswavelikeproperties.[17]

    Matterbehavingasawavewasfirstdemonstratedexperimentallyforelectrons:abeamofelectronscanexhibitdiffraction,justlikeabeamoflightorawaterwave.[note8]Similarwavelikephenomenawerelatershownforatomsandevensmallmolecules.

    Thewavelength,,associatedwithanyobjectisrelatedtoitsmomentum,p,throughthePlanckconstant,h:[18][19]

    Therelationship,calledthedeBrogliehypothesis,holdsforalltypesofmatter:allmatterexhibitspropertiesofbothparticlesandwaves.

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 8/21

    Thediffractionpatternproducedwhenlightisshonethroughoneslit(top)andtheinterferencepatternproducedbytwoslits(bottom).Themuchmorecomplexpatternfromtwoslits,withitssmallscaleinterferencefringes,demonstratesthewavelikepropagationoflight.

    Thedoubleslitexperimentforaclassicalparticle,awave,andaquantumparticledemonstratingwaveparticleduality

    Theconceptofwaveparticledualitysaysthatneithertheclassicalconceptof"particle"norof"wave"canfullydescribethebehaviourofquantumscaleobjects,eitherphotonsormatter.Waveparticledualityisanexampleoftheprincipleofcomplementarityinquantumphysics.[20][21][22][23][24]Anelegantexampleofwaveparticleduality,thedoubleslitexperiment,isdiscussedinthesectionbelow.

    Thedoubleslitexperiment

    Inthedoubleslitexperiment,asoriginallyperformedbyThomasYoungandAugustinFresnelin1827,abeamoflightisdirectedthroughtwonarrow,closelyspacedslits,producinganinterferencepatternoflightanddarkbandsonascreen.Ifoneoftheslitsiscoveredup,onemightnaivelyexpectthattheintensityofthefringesduetointerferencewouldbehalvedeverywhere.Infact,amuchsimplerpatternisseen,asimplediffractionpattern.Closingoneslitresultsinamuchsimplerpatterndiametricallyoppositetheopenslit.Exactlythesamebehaviourcanbedemonstratedinwaterwaves,andsothedoubleslitexperimentwasseenasademonstrationofthewavenatureoflight.

    Thedoubleslitexperimenthasalsobeenperformedusingelectrons,atoms,andevenmolecules,andthesametypeofinterferencepatternisseen.Thusithasbeendemonstratedthatallmatterpossessesbothparticleandwavecharacteristics.

    Evenifthesourceintensityisturneddown,sothatonlyoneparticle(e.g.photonorelectron)ispassingthroughtheapparatusatatime,thesame

    interferencepatterndevelopsovertime.Thequantumparticleactsasawavewhenpassingthroughthedoubleslits,butasaparticlewhenitisdetected.Thisisatypicalfeatureofquantumcomplementarity:aquantumparticlewillactasawaveinanexperimenttomeasureitswavelikeproperties,andlikeaparticleinanexperimenttomeasureitsparticlelikeproperties.Thepointonthedetectorscreenwhereanyindividualparticleshowsupwillbetheresultofarandomprocess.However,thedistributionpatternofmanyindividualparticleswillmimicthediffractionpatternproducedbywaves.

    ApplicationtotheBohrmodel

    DeBroglieexpandedtheBohrmodeloftheatombyshowingthatanelectroninorbitaroundanucleuscouldbethoughtofashavingwavelikeproperties.Inparticular,anelectronwillbeobservedonlyinsituationsthatpermitastandingwavearoundanucleus.Anexampleofastandingwaveisaviolinstring,whichisfixedatbothendsandcanbemadetovibrate.Thewavescreatedbyastringedinstrumentappeartooscillateinplace,movingfromcresttotroughinanupanddownmotion.Thewavelengthofastandingwaveisrelatedtothelengthofthevibratingobjectandtheboundaryconditions.Forexample,becausetheviolinstringisfixedatbothends,itcancarrystandingwavesofwavelengths2l/n,wherelisthelengthandnisapositiveinteger.DeBrogliesuggestedthattheallowedelectronorbitswerethoseforwhichthecircumferenceoftheorbitwouldbeanintegernumberofwavelengths.Theelectron'swavelengththereforedeterminesthatonlyBohrorbitsofcertaindistancesfromthenucleusarepossible.Inturn,atanydistancefromthenucleussmallerthanacertainvalueitwouldbeimpossibletoestablishanorbit.TheminimumpossibledistancefromthenucleusiscalledtheBohrradius.[25]

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 9/21

    QuantumspinversusclassicalmagnetintheSternGerlachexperiment.

    DeBroglie'streatmentofquantumeventsservedasastartingpointforSchrdingerwhenhesetouttoconstructawaveequationtodescribequantumtheoreticalevents.

    Spin

    In1922,OttoSternandWaltherGerlachshotsilveratomsthroughan(inhomogeneous)magneticfield.Inclassicalmechanics,amagnetthrownthroughamagneticfieldmaybe,dependingonitsorientation(ifitispointingwithitsnorthernpoleupwardsordown,orsomewhereinbetween),deflectedasmallorlargedistanceupwardsordownwards.TheatomsthatSternandGerlachshotthroughthemagneticfieldactedinasimilarway.However,whilethemagnetscouldbedeflectedvariabledistances,theatomswouldalwaysbedeflectedaconstantdistanceeitherupordown.Thisimpliedthatthepropertyoftheatomwhichcorrespondstothemagnet'sorientationmustbequantised,takingoneoftwovalues(eitherupordown),asopposedtobeingchosenfreelyfromanyangle.

    RalphKronigoriginatedtheideathatparticlessuchasatomsorelectronsbehaveasiftheyrotate,or"spin",aboutanaxis.Spinwouldaccountforthemissingmagneticmoment,andallowtwoelectronsinthesameorbitaltooccupydistinctquantumstatesifthey"spun"inoppositedirections,thussatisfyingtheexclusionprinciple.Thequantumnumberrepresentedthesense(positiveornegative)ofspin.

    ThechoiceoforientationofthemagneticfieldusedintheSternGerlachexperimentisarbitrary.Intheanimationshownhere,thefieldisverticalandsotheatomsaredeflectedeitherupordown.Ifthemagnetisrotatedaquarterturn,theatomswillbedeflectedeitherleftorright.Usingaverticalfieldshowsthatthespinalongtheverticalaxisisquantised,andusingahorizontalfieldshowsthatthespinalongthehorizontalaxisisquantised.

    If,insteadofhittingadetectorscreen,oneofthebeamsofatomscomingoutoftheSternGerlachapparatusispassedintoanother(inhomogeneous)magneticfieldorientedinthesamedirection,alloftheatomswillbedeflectedthesamewayinthissecondfield.However,ifthesecondfieldisorientedat90tothefirst,thenhalfoftheatomswillbedeflectedonewayandhalftheother,sothattheatom'sspinaboutthehorizontalandverticalaxesareindependentofeachother.However,ifoneofthesebeams(e.g.theatomsthatweredeflectedupthenleft)ispassedintoathirdmagneticfield,orientedthesamewayasthefirst,halfoftheatomswillgoonewayandhalftheother.Theactionofmeasuringtheatoms'spinwithrespecttoahorizontalfieldhaschangedtheirspinwithrespecttoaverticalfield.

    TheSternGerlachexperimentdemonstratesanumberofimportantfeaturesofquantummechanics:

    afeatureofthenaturalworldhasbeendemonstratedtobequantised,andonlyabletotakecertaindiscretevaluesparticlespossessanintrinsicangularmomentumthatiscloselyanalogoustotheangularmomentumofaclassicallyspinningobjectmeasurementchangesthesystembeingmeasuredinquantummechanics.Onlythespinofanobjectinonedirectioncanbeknown,andobservingthespininanotherdirectionwilldestroytheoriginalinformationaboutthespin.quantummechanicsisprobabilistic:whetherthespinofanyindividualatomsentintotheapparatusispositiveornegativeisrandom.

    Developmentofmodernquantummechanics

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 10/21

    TheNielsBohrInstituteinCopenhagen,whichwasafocalpointforresearchersinquantummechanicsandrelatedsubjectsinthe1920sand1930s.Mostoftheworld'sbestknowntheoreticalphysicistsspenttimethere.

    In1925,WernerHeisenbergattemptedtosolveoneoftheproblemsthattheBohrmodelleftunanswered,explainingtheintensitiesofthedifferentlinesinthehydrogenemissionspectrum.Throughaseriesofmathematicalanalogies,hewroteoutthequantummechanicalanaloguefortheclassicalcomputationofintensities.[26]Shortlyafterwards,Heisenberg'scolleagueMaxBornrealisedthatHeisenberg'smethodofcalculatingtheprobabilitiesfortransitionsbetweenthedifferentenergylevelscouldbestbeexpressedbyusingthemathematicalconceptofmatrices.[note9]

    Inthesameyear,buildingondeBroglie'shypothesis,ErwinSchrdingerdevelopedtheequationthatdescribesthebehaviourofaquantummechanicalwave.[27]Themathematicalmodel,calledtheSchrdingerequationafteritscreator,iscentraltoquantummechanics,definesthepermittedstationarystatesofaquantumsystem,anddescribeshowthequantumstateofaphysicalsystemchangesintime.[28]Thewaveitselfisdescribedbyamathematicalfunctionknownasa"wavefunction".Schrdingersaidthatthewavefunctionprovidesthe"meansforpredictingprobabilityofmeasurementresults".[29]

    Schrdingerwasabletocalculatetheenergylevelsofhydrogenbytreatingahydrogenatom'selectronasaclassicalwave,movinginawellofelectricalpotentialcreatedbytheproton.ThiscalculationaccuratelyreproducedtheenergylevelsoftheBohrmodel.

    InMay1926,SchrdingerprovedthatHeisenberg'smatrixmechanicsandhisownwavemechanicsmadethesamepredictionsaboutthepropertiesandbehaviouroftheelectronmathematically,thetwotheorieswereidentical.Yetthetwomendisagreedontheinterpretationoftheirmutualtheory.Forinstance,Heisenbergsawnoprobleminthetheoreticalpredictionofinstantaneoustransitionsofelectronsbetweenorbitsinanatom,butSchrdingerhopedthatatheorybasedoncontinuouswavelikepropertiescouldavoidwhathecalled(asparaphrasedbyWilhelmWien)"thisnonsenseaboutquantumjumps."[30]

    Copenhageninterpretation

    Bohr,Heisenbergandotherstriedtoexplainwhattheseexperimentalresultsandmathematicalmodelsreallymean.Theirdescription,knownastheCopenhageninterpretationofquantummechanics,aimedtodescribethenatureofrealitythatwasbeingprobedbythemeasurementsanddescribedbythemathematicalformulationsofquantummechanics.

    ThemainprinciplesoftheCopenhageninterpretationare:

    1. Asystemiscompletelydescribedbyawavefunction,usuallyrepresentedbytheGreekletter ("psi").(Heisenberg)

    2. How changesovertimeisgivenbytheSchrdingerequation.3. Thedescriptionofnatureisessentiallyprobabilistic.Theprobabilityof

    aneventforexample,whereonthescreenaparticlewillshowupinthetwoslitexperimentisrelatedtothesquareoftheabsolutevalueoftheamplitudeofitswavefunction.(Bornrule,duetoMaxBorn,whichgivesaphysicalmeaningtothewavefunctionintheCopenhageninterpretation:theprobabilityamplitude)

    4. Itisnotpossibletoknowthevaluesofallofthepropertiesofthesystematthesametimethosepropertiesthatarenotknownwithprecisionmustbedescribedbyprobabilities.(Heisenberg'suncertaintyprinciple)

    5. Matter,likeenergy,exhibitsawaveparticleduality.Anexperimentcandemonstratetheparticlelikepropertiesofmatter,oritswavelikepropertiesbutnotbothatthesametime.(ComplementarityprincipleduetoBohr)

    6. Measuringdevicesareessentiallyclassicaldevices,andmeasureclassicalpropertiessuchaspositionandmomentum.

    7. Thequantummechanicaldescriptionoflargesystemsshouldcloselyapproximatetheclassicaldescription.(CorrespondenceprincipleofBohrandHeisenberg)

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 11/21

    WernerHeisenbergattheageof26.HeisenbergwontheNobelPrizeinPhysicsin1932fortheworkthathedidataroundthistime.[31]

    Variousconsequencesoftheseprinciplesarediscussedinmoredetailinthefollowingsubsections.

    Uncertaintyprinciple

    Supposeitisdesiredtomeasurethepositionandspeedofanobjectforexampleacargoingthrougharadarspeedtrap.Itcanbeassumedthatthecarhasadefinitepositionandspeedataparticularmomentintime.Howaccuratelythesevaluescanbemeasureddependsonthequalityofthemeasuringequipmentiftheprecisionofthemeasuringequipmentisimproved,itwillprovidearesultthatisclosertothetruevalue.Inparticular,itwouldbeassumedthattheprecisionofmeasuringthespeedofthecardoesnotaffectitsposition,andviceversa.

    In1927,Heisenbergprovedthattheseassumptionsarenotcorrect.[32]Quantummechanicsshowsthatcertainpairsofphysicalproperties,likepositionandspeed,cannotbothbeknowntoarbitraryprecision:themorepreciselyonepropertyisknown,thelesspreciselytheothercanbeknown.Thisstatementisknownastheuncertaintyprinciple.Theuncertaintyprincipleisn'tastatementabouttheaccuracyofourmeasuringequipment,butaboutthenatureofthesystemitselfourassumptionthatthecarhadadefinitepositionandspeedwasincorrect.Onascaleofcarsandpeople,theseuncertaintiesaretoosmalltonotice,butwhendealingwithatomsandelectronstheybecomecritical.[33]

    Heisenberggave,asanillustration,themeasurementofthepositionandmomentumofanelectronusingaphotonoflight.Inmeasuringtheelectron'sposition,thehigherthefrequencyofthephoton,themoreaccurateisthemeasurementofthepositionoftheimpact,butthegreateristhedisturbanceoftheelectron,whichabsorbsarandomamountofenergy,renderingthemeasurementobtainedofitsmomentumincreasinglyuncertain(momentumisvelocitymultipliedbymass),foroneisnecessarilymeasuringitspostimpactdisturbedmomentumfromthecollisionproductsandnotitsoriginalmomentum.Withaphotonoflowerfrequency,thedisturbance(andhenceuncertainty)inthemomentumisless,butsoistheaccuracyofthemeasurementofthepositionoftheimpact.[34]

    Theuncertaintyprincipleshowsmathematicallythattheproductoftheuncertaintyinthepositionandmomentumofaparticle(momentumisvelocitymultipliedbymass)couldneverbelessthanacertainvalue,andthatthisvalueisrelatedtoPlanck'sconstant.

    Wavefunctioncollapse

    Wavefunctioncollapseisaforcedexpressionforwhateverjusthappenedwhenitbecomesappropriatetoreplacethedescriptionofanuncertainstateofasystembyadescriptionofthesysteminadefinitestate.Explanationsforthenatureoftheprocessofbecomingcertainarecontroversial.Atanytimebeforeaphoton"showsup"onadetectionscreenitcanonlybedescribedbyasetofprobabilitiesforwhereitmightshowup.Whenitdoesshowup,forinstanceintheCCDofanelectroniccamera,thetimeandthespacewhereitinteractedwiththedeviceareknownwithinverytightlimits.However,thephotonhasdisappeared,andthewavefunctionhasdisappearedwithit.Initsplacesomephysicalchangeinthedetectionscreenhasappeared,e.g.,anexposedspotinasheetofphotographicfilm,orachangeinelectricpotentialinsomecellofaCCD.

    Eigenstatesandeigenvalues

    Foramoredetailedintroductiontothissubject,see:Introductiontoeigenstates

    Becauseoftheuncertaintyprinciple,statementsaboutboththepositionandmomentumofparticlescanonlyassignaprobabilitythatthepositionormomentumwillhavesomenumericalvalue.Therefore,itisnecessarytoformulateclearlythedifferencebetweenthestateofsomethingthatisindeterminate,suchasanelectroninaprobabilitycloud,

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 12/21

    WolfgangPauli

    andthestateofsomethinghavingadefinitevalue.Whenanobjectcandefinitelybe"pinneddown"insomerespect,itissaidtopossessaneigenstate.

    IntheSternGerlachexperimentdiscussedabove,thespinoftheatomabouttheverticalaxishastwoeigenstates:upanddown.Beforemeasuringit,wecanonlysaythatanyindividualatomhasequalprobabilityofbeingfoundtohavespinuporspindown.Themeasurementprocesscausesthewavefunctiontocollapseintooneofthetwostates.

    Theeigenstatesofspinabouttheverticalaxisarenotsimultaneouslyeigenstatesofspinaboutthehorizontalaxis,sothisatomhasequalprobabilityofbeingfoundtohaveeithervalueofspinaboutthehorizontalaxis.Asdescribedinthesectionabove,measuringthespinaboutthehorizontalaxiscanallowanatomwhichwasspinuptobecomespindown:measuringitsspinaboutthehorizontalaxiscollapsesitswavefunctionintooneoftheeigenstatesofthismeasurement,whichmeansitisnolongerinaneigenstateofspinabouttheverticalaxis,socantakeeithervalue.

    ThePauliexclusionprinciple

    In1924,WolfgangPauliproposedanewquantumdegreeoffreedom(orquantumnumber),withtwopossiblevalues,toresolveinconsistenciesbetweenobservedmolecularspectraandthepredictionsofquantummechanics.Inparticular,thespectrumofatomichydrogenhadadoublet,orpairoflinesdifferingbyasmallamount,whereonlyonelinewasexpected.Pauliformulatedhisexclusionprinciple,statingthat"Therecannotexistanatominsuchaquantumstatethattwoelectronswithin[it]havethesamesetofquantumnumbers."[35]

    Ayearlater,UhlenbeckandGoudsmitidentifiedPauli'snewdegreeoffreedomwiththepropertycalledspinwhoseeffectswereobservedintheSternGerlachexperiment.

    Applicationtothehydrogenatom

    Bohr'smodeloftheatomwasessentiallyaplanetaryone,withtheelectronsorbitingaroundthenuclear"sun."However,theuncertaintyprinciplestatesthatanelectroncannotsimultaneouslyhaveanexactlocationandvelocityinthewaythataplanetdoes.Insteadofclassicalorbits,electronsaresaidtoinhabitatomicorbitals.Anorbitalisthe"cloud"ofpossiblelocationsinwhichanelectronmightbefound,adistributionofprobabilitiesratherthanapreciselocation.[35]Eachorbitalisthreedimensional,ratherthanthetwodimensionalorbit,andisoftendepictedasathreedimensionalregionwithinwhichthereisa95percentprobabilityoffindingtheelectron.[36]

    Schrdingerwasabletocalculatetheenergylevelsofhydrogenbytreatingahydrogenatom'selectronasawave,representedbythe"wavefunction",inanelectricpotentialwell,V,createdbytheproton.ThesolutionstoSchrdinger'sequationaredistributionsofprobabilitiesforelectronpositionsandlocations.Orbitalshavearangeofdifferentshapesinthreedimensions.Theenergiesofthedifferentorbitalscanbecalculated,andtheyaccuratelymatchtheenergylevelsoftheBohrmodel.

    WithinSchrdinger'spicture,eachelectronhasfourproperties:

    1. An"orbital"designation,indicatingwhethertheparticlewaveisonethatisclosertothenucleuswithlessenergyoronethatisfartherfromthenucleuswithmoreenergy

    2. The"shape"oftheorbital,sphericalorotherwise3. The"inclination"oftheorbital,determiningthemagneticmomentoftheorbitalaroundthezaxis.4. The"spin"oftheelectron.

    Thecollectivenameforthesepropertiesisthequantumstateoftheelectron.Thequantumstatecanbedescribedbygivinganumbertoeachofthesepropertiestheseareknownastheelectron'squantumnumbers.Thequantumstateoftheelectronisdescribedbyitswavefunction.ThePauliexclusionprincipledemandsthatnotwoelectronswithinanatommayhavethesamevaluesofallfournumbers.

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 13/21

    Theshapesofthefirstfiveatomicorbitals:1s,2s,2px,2py,and2pz.Thecoloursshowthephaseofthewavefunction.

    Thefirstpropertydescribingtheorbitalistheprincipalquantumnumber,n,whichisthesameasinBohr'smodel.ndenotestheenergylevelofeachorbital.Thepossiblevaluesfornareintegers:

    Thenextquantumnumber,theazimuthalquantumnumber,denotedl,describestheshapeoftheorbital.Theshapeisaconsequenceoftheangularmomentumoftheorbital.Theangularmomentumrepresentstheresistanceofaspinningobjecttospeedinguporslowingdownundertheinfluenceofexternalforce.Theazimuthalquantumnumberrepresentstheorbitalangularmomentumofanelectronarounditsnucleus.Thepossiblevaluesforlareintegersfrom0ton1:

    Theshapeofeachorbitalhasitsownletteraswell.Thefirstshapeisdenotedbytheletters(amnemonicbeing"sphere").Thenextshapeisdenotedbytheletterpandhastheformofadumbbell.Theotherorbitalshavemorecomplicatedshapes(seeatomicorbital),andaredenotedbythelettersd,f,andg.

    Thethirdquantumnumber,themagneticquantumnumber,describesthemagneticmomentoftheelectron,andisdenotedbyml(orsimplym).Thepossiblevaluesformlareintegersfromltol:

    Themagneticquantumnumbermeasuresthecomponentoftheangularmomentuminaparticulardirection.Thechoiceofdirectionisarbitrary,conventionallythezdirectionischosen.

    Thefourthquantumnumber,thespinquantumnumber(pertainingtothe"orientation"oftheelectron'sspin)isdenotedms,withvalues+12or12.

    ThechemistLinusPaulingwrote,bywayofexample:

    Inthecaseofaheliumatomwithtwoelectronsinthe1sorbital,thePauliExclusionPrinciplerequiresthatthetwoelectronsdifferinthevalueofonequantumnumber.Theirvaluesofn,l,andmlarethesame.Accordinglytheymustdifferinthevalueofms,whichcanhavethevalueof+12foroneelectronand12fortheother."[35]

    Itistheunderlyingstructureandsymmetryofatomicorbitals,andthewaythatelectronsfillthem,thatleadstotheorganisationoftheperiodictable.Thewaytheatomicorbitalsondifferentatomscombinetoformmolecularorbitalsdeterminesthestructureandstrengthofchemicalbondsbetweenatoms.

    Diracwaveequation

    In1928,PaulDiracextendedthePauliequation,whichdescribedspinningelectrons,toaccountforspecialrelativity.Theresultwasatheorythatdealtproperlywithevents,suchasthespeedatwhichanelectronorbitsthenucleus,occurringatasubstantialfractionofthespeedoflight.Byusingthesimplestelectromagneticinteraction,Diracwasabletopredictthevalueofthemagneticmomentassociatedwiththeelectron'sspin,andfoundtheexperimentally

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 14/21

    PaulDirac(19021984)

    Superpositionoftwoquantumcharacteristics,andtworesolutionpossibilities.

    observedvalue,whichwastoolargetobethatofaspinningchargedspheregovernedbyclassicalphysics.Hewasabletosolveforthespectrallinesofthehydrogenatom,andtoreproducefromphysicalfirstprinciplesSommerfeld'ssuccessfulformulaforthefinestructureofthehydrogenspectrum.

    Dirac'sequationssometimesyieldedanegativevalueforenergy,forwhichheproposedanovelsolution:hepositedtheexistenceofanantielectronandofadynamicalvacuum.Thisledtothemanyparticlequantumfieldtheory.

    Quantumentanglement

    ThePauliexclusionprinciplesaysthattwoelectronsinonesystemcannotbeinthesamestate.Natureleavesopenthepossibility,however,thattwoelectronscanhavebothstates"superimposed"overeachofthem.Recallthatthewavefunctionsthatemergesimultaneouslyfromthedoubleslitsarriveatthedetectionscreeninastateofsuperposition.Nothingiscertainuntilthesuperimposedwaveforms"collapse",Atthatinstantanelectronshowsupsomewhereinaccordancewiththeprobabilitythatisthesquareoftheabsolutevalueofthesumofthecomplexvaluedamplitudesofthetwosuperimposedwaveforms.Thesituationthereisalreadyveryabstract.Aconcretewayofthinkingaboutentangledphotons,photonsinwhichtwocontrarystatesaresuperimposedoneachoftheminthesameevent,isasfollows:

    Imaginethatthesuperpositionofastatethatcanbementallylabeledasblueandanotherstatethatcanbementallylabeledasredwillthenappear(inimagination,ofcourse)asapurplestate.Twophotonsareproducedastheresultofthesameatomicevent.Perhapstheyareproducedbytheexcitationofacrystalthatcharacteristicallyabsorbsaphotonofacertainfrequencyandemitstwophotonsofhalftheoriginalfrequency.Sothetwophotonscomeout"purple."Iftheexperimenternowperformssomeexperimentthatwilldeterminewhetheroneofthephotonsiseitherblueorred,thenthatexperimentchangesthephotoninvolvedfromonehavingasuperpositionof"blue"and"red"characteristicstoaphotonthathasonlyoneofthosecharacteristics.TheproblemthatEinsteinhadwithsuchanimaginedsituationwasthatifoneofthesephotonshadbeenkeptbouncingbetweenmirrorsinalaboratoryonearth,andtheotheronehadtraveledhalfwaytotheneareststar,whenitstwinwasmadetorevealitselfaseitherblueorred,thatmeantthatthedistantphotonnowhadtoloseits"purple"statustoo.Sowheneveritmightbeinvestigatedafteritstwinhadbeenmeasured,itwouldnecessarilyshowupintheoppositestatetowhateveritstwinhadrevealed.

    Intryingtoshowthatquantummechanicswasnotacompletetheory,Einsteinstartedwiththetheory'spredictionthattwoormoreparticlesthathaveinteractedinthepastcanappearstronglycorrelatedwhentheirvariouspropertiesarelatermeasured.Hesoughttoexplainthisseeminginteractioninaclassicalway,throughtheircommonpast,andpreferablynotbysome"spookyactionatadistance."Theargumentisworkedoutinafamouspaper,Einstein,Podolsky,andRosen(1935abbreviatedEPR),settingoutwhatisnowcalledtheEPRparadox.Assumingwhatisnowusuallycalledlocalrealism,EPRattemptedtoshowfromquantumtheorythataparticlehasbothpositionandmomentumsimultaneously,whileaccordingtotheCopenhageninterpretation,onlyoneofthosetwopropertiesactuallyexistsandonlyatthemomentthatitisbeingmeasured.EPRconcludedthatquantumtheoryisincompleteinthatitrefusestoconsiderphysicalpropertieswhichobjectivelyexistinnature.(Einstein,Podolsky,&Rosen1935iscurrentlyEinstein'smostcitedpublicationinphysicsjournals.)Inthesameyear,ErwinSchrdingerusedtheword

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 15/21

    "entanglement"anddeclared:"Iwouldnotcallthatonebutratherthecharacteristictraitofquantummechanics."[37]

    Thequestionofwhetherentanglementisarealconditionisstillindispute.[38]TheBellinequalitiesarethemostpowerfulchallengetoEinstein'sclaims.

    Quantumfieldtheory

    Theideaofquantumfieldtheorybeganinthelate1920swithBritishphysicistPaulDirac,whenheattemptedtoquantisetheelectromagneticfieldaprocedureforconstructingaquantumtheorystartingfromaclassicaltheory.

    Afieldinphysicsis"aregionorspaceinwhichagiveneffect(suchasmagnetism)exists."[39]Othereffectsthatmanifestthemselvesasfieldsaregravitationandstaticelectricity.[40]In2008,physicistRichardHammondwrotethat

    Sometimeswedistinguishbetweenquantummechanics(QM)andquantumfieldtheory(QFT).QMreferstoasysteminwhichthenumberofparticlesisfixed,andthefields(suchastheelectromechanicalfield)arecontinuousclassicalentities.QFT...goesastepfurtherandallowsforthecreationandannihilationofparticles....

    Headded,however,thatquantummechanicsisoftenusedtoreferto"theentirenotionofquantumview."[41]:108

    In1931,Diracproposedtheexistenceofparticlesthatlaterbecameknownasantimatter.[42]DiracsharedtheNobelPrizeinPhysicsfor1933withSchrdinger,"forthediscoveryofnewproductiveformsofatomictheory."[43]

    Onitsface,quantumfieldtheoryallowsinfinitenumbersofparticles,andleavesituptothetheoryitselftopredicthowmanyandwithwhichprobabilitiesornumberstheyshouldexist.Whendevelopedfurther,thetheoryoftencontradictsobservation,sothatitscreationandannihilationoperatorscanbeempiricallytieddown.Furthermore,empiricalconservationlawslikethatofmassenergysuggestcertainconstraintsonthemathematicalformofthetheory,whicharemathematicallyspeakingfinicky.Thelatterfactbothservestomakequantumfieldtheoriesdifficulttohandle,buthasalsoleadtofurtherrestrictionsonadmissibleformsofthetheorythecomplicationsarementionedbelowundertherubrikofrenormalization.

    Quantumelectrodynamics

    Quantumelectrodynamics(QED)isthenameofthequantumtheoryoftheelectromagneticforce.UnderstandingQEDbeginswithunderstandingelectromagnetism.Electromagnetismcanbecalled"electrodynamics"becauseitisadynamicinteractionbetweenelectricalandmagneticforces.Electromagnetismbeginswiththeelectriccharge.

    Electricchargesarethesourcesof,andcreate,electricfields.Anelectricfieldisafieldwhichexertsaforceonanyparticlesthatcarryelectriccharges,atanypointinspace.Thisincludestheelectron,proton,andevenquarks,amongothers.Asaforceisexerted,electricchargesmove,acurrentflowsandamagneticfieldisproduced.Thechangingmagneticfield,inturncauseselectriccurrent(oftenmovingelectrons).Thephysicaldescriptionofinteractingchargedparticles,electricalcurrents,electricalfields,andmagneticfieldsiscalledelectromagnetism.

    In1928PaulDiracproducedarelativisticquantumtheoryofelectromagnetism.Thiswastheprogenitortomodernquantumelectrodynamics,inthatithadessentialingredientsofthemoderntheory.However,theproblemofunsolvableinfinitiesdevelopedinthisrelativisticquantumtheory.Yearslater,renormalizationlargelysolvedthisproblem.Initiallyviewedasasuspect,provisionalprocedurebysomeofitsoriginators,renormalizationeventuallywasembracedasanimportantandselfconsistenttoolinQEDandotherfieldsofphysics.Also,inthelate1940sFeynman'sdiagramsdepictedallpossibleinteractionspertainingtoagivenevent.Thediagramsshowedthattheelectromagneticforceistheinteractionsofphotonsbetweeninteractingparticles.

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 16/21

    AnexampleofapredictionofquantumelectrodynamicswhichhasbeenverifiedexperimentallyistheLambshift.Thisreferstoaneffectwherebythequantumnatureoftheelectromagneticfieldcausestheenergylevelsinanatomoriontodeviateslightlyfromwhattheywouldotherwisebe.Asaresult,spectrallinesmayshiftorsplit.

    Similarly,withinafreelypropagatingelectromagneticwave,thecurrentcanalsobejustanabstractdisplacementcurrent,insteadofinvolvingchargecarriers.InQED,itsfulldescriptionmakesessentialuseofshortlivedvirtualparticles.There,QEDagainvalidatesanearlier,rathermysteriousconcept.

    StandardModel

    Inthe1960sphysicistsrealizedthatQEDbrokedownatextremelyhighenergies.FromthisinconsistencytheStandardModelofparticlephysicswasdiscovered,whichremediedthehigherenergybreakdownintheory.Itisanother,extendedquantumfieldtheorywhichunifiestheelectromagneticandweakinteractionsintoonetheory.Thisiscalledtheelectroweaktheory.

    AdditionallytheStandardModelcontainsahighenergyunificationoftheelectroweaktheorywiththestrongforce,describedbyquantumchromodynamics.Italsopostulatesaconnectionwithgravityasyetanothergaugetheory,buttheconnectionisasof2015stillpoorlyunderstood.Thetheory'spredictionoftheHiggsparticletoexplaininertialmasshasstoodrecentempiricaltestsattheLargehadroncollider,andthustheStandardmodelisnowconsideredthebasicandmoreorlesscompletedescriptionofparticlephysicsasweknowit.

    Interpretations

    Thephysicalmeasurements,equations,andpredictionspertinenttoquantummechanicsareallconsistentandholdaveryhighlevelofconfirmation.However,thequestionofwhattheseabstractmodelssayabouttheunderlyingnatureoftherealworldhasreceivedcompetinganswers.

    Applications

    Applicationsofquantummechanicsincludethelaser,thetransistor,theelectronmicroscope,andmagneticresonanceimaging.Aspecialclassofquantummechanicalapplicationsisrelatedtomacroscopicquantumphenomenasuchassuperfluidheliumandsuperconductors.Thestudyofsemiconductorsledtotheinventionofthediodeandthetransistor,whichareindispensableformodernelectronics.

    Ineventhesimplelightswitch,quantumtunnellingisabsolutelyvital,asotherwisetheelectronsintheelectriccurrentcouldnotpenetratethepotentialbarriermadeupofalayerofoxide.FlashmemorychipsfoundinUSBdrivesalsousequantumtunnelling,toerasetheirmemorycells.[44]

    Seealso

    MacroscopicquantumphenomenaPhilosophyofphysics

    QuantumcomputerVirtualparticle

    Notes1. Anumberofformulaehadbeencreatedwhichwereabletodescribesomeoftheexperimentalmeasurementsofthermal

    radiation:howthewavelengthatwhichtheradiationisstrongestchangeswithtemperatureisgivenbyWien'sdisplacementlaw,theoverallpoweremittedperunitareaisgivenbytheStefanBoltzmannlaw.ThebesttheoreticalexplanationoftheexperimentalresultswastheRayleighJeanslaw,whichagreeswithexperimentalresultswellatlargewavelengths(or,

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 17/21

    equivalently,lowfrequencies),butstronglydisagreesatshortwavelengths(orhighfrequencies).Infact,atshortwavelengths,classicalphysicspredictedthatenergywillbeemittedbyahotbodyataninfiniterate.Thisresult,whichisclearlywrong,isknownastheultravioletcatastrophe.

    2. ThewordquantumcomesfromtheLatinwordfor"howmuch"(asdoesquantity).Somethingwhichisquantized,liketheenergyofPlanck'sharmonicoscillators,canonlytakespecificvalues.Forexample,inmostcountriesmoneyiseffectivelyquantized,withthequantumofmoneybeingthelowestvaluecoinincirculation.Mechanicsisthebranchofsciencethatdealswiththeactionofforcesonobjects.So,quantummechanicsisthepartofmechanicsthatdealswithobjectsforwhichparticularpropertiesarequantized.

    3. Actually,therecanbeintensitydependenteffects,butatintensitiesachievablewithnonlasersources,theseeffectsareunobservable.

    4. Einstein'sphotoelectriceffectequationcanbederivedandexplainedwithoutrequiringtheconceptof"photons".Thatis,theelectromagneticradiationcanbetreatedasaclassicalelectromagneticwave,aslongastheelectronsinthematerialaretreatedbythelawsofquantummechanics.Theresultsarequantitativelycorrectforthermallightsources(thesun,incandescentlamps,etc)bothfortherateofelectronemissionaswellastheirangulardistribution.Formoreonthispoint,see[12]

    5. Theclassicalmodeloftheatomiscalledtheplanetarymodel,orsometimestheRutherfordmodelafterErnestRutherfordwhoproposeditin1911,basedontheGeigerMarsdengoldfoilexperimentwhichfirstdemonstratedtheexistenceofthenucleus.

    6. Inthiscase,theenergyoftheelectronisthesumofitskineticandpotentialenergies.Theelectronhaskineticenergybyvirtueofitsactualmotionaroundthenucleus,andpotentialenergybecauseofitselectromagneticinteractionwiththenucleus.

    7. Themodelcanbeeasilymodifiedtoaccountfortheemissionspectrumofanysystemconsistingofanucleusandasingleelectron(thatis,ionssuchasHe+orO7+whichcontainonlyoneelectron)butcannotbeextendedtoanatomwithtwoelectronslikeneutralhelium.

    8. ElectrondiffractionwasfirstdemonstratedthreeyearsafterdeBrogliepublishedhishypothesis.AttheUniversityofAberdeen,GeorgeThomsonpassedabeamofelectronsthroughathinmetalfilmandobserveddiffractionpatterns,aswouldbepredictedbythedeBrogliehypothesis.AtBellLabs,DavissonandGermerguidedanelectronbeamthroughacrystallinegrid.DeBrogliewasawardedtheNobelPrizeinPhysicsin1929forhishypothesisThomsonandDavissonsharedtheNobelPrizeforPhysicsin1937fortheirexperimentalwork.

    9. ForasomewhatmoresophisticatedlookathowHeisenbergtransitionedfromtheoldquantumtheoryandclassicalphysicstothenewquantummechanics,seeHeisenberg'sentrywaytomatrixmechanics.

    References1. QuantumMechanics(http://www.pbs.org/transistor/science/info/quantum.html)fromNationalPublicRadio2. Kuhn,ThomasS.TheStructureofScientificRevolutions.Fourthed.ChicagoLondon:TheUniversityofChicagoPress,

    2012.Print.3. Feynman,RichardP.(1988).QED:thestrangetheoryoflightandmatter(1stPrincetonpbk.,seventhprintingwith

    corrections.ed.).Princeton,N.J.:PrincetonUniversityPress.p.10.ISBN9780691024172.4. Thisresultwaspublished(inGerman)asPlanck,Max(1901)."UeberdasGesetzderEnergieverteilungimNormalspectrum"

    (http://www.physik.uniaugsburg.de/annalen/history/historicpapers/1901_309_553563.pdf)(PDF).Ann.Phys.309(3):55363.Bibcode:1901AnP...309..553P(http://adsabs.harvard.edu/abs/1901AnP...309..553P).doi:10.1002/andp.19013090310(https://dx.doi.org/10.1002%2Fandp.19013090310)..Englishtranslation:"OntheLawofDistributionofEnergyintheNormalSpectrum(http://dbhs.wvusd.k12.ca.us/webdocs/ChemHistory/Planck1901/Planck1901.html)".

    5. FrancisWestonSears(1958).Mechanics,WaveMotion,andHeat(http://books.google.com/books?q=%22Mechanics%2C+Wave+Motion%2C+and+Heat%22+%22where+n+%3D+1%2C%22&btnG=Search+Books).AddisonWesley.p.537.

    6. "TheNobelPrizeinPhysics1918"(http://nobelprize.org/nobel_prizes/physics/laureates/1918/).NobelFoundation.Retrieved20090801.

    7. Kragh,Helge(1December2000)."MaxPlanck:thereluctantrevolutionary"(http://physicsworld.com/cws/article/print/373).PhysicsWorld.com.

    8. Einstein,Albert(1905)."bereinendieErzeugungundVerwandlungdesLichtesbetreffendenheuristischenGesichtspunkt"(http://www.zbp.univie.ac.at/dokumente/einstein1.pdf)(PDF).AnnalenderPhysik17(6):132148.Bibcode:1905AnP...322..132E(http://adsabs.harvard.edu/abs/1905AnP...322..132E).doi:10.1002/andp.19053220607(https://dx.doi.org/10.1002%2Fandp.19053220607).,translatedintoEnglishasOnaHeuristicViewpointConcerningtheProductionandTransformationofLight(http://lorentz.phl.jhu.edu/AnnusMirabilis/AeReserveArticles/eins_lq.pdf).Theterm"photon"wasintroducedin1926.

    9. Taylor,J.R.Zafiratos,C.D.Dubson,M.A.(2004).ModernPhysicsforScientistsandEngineers.PrenticeHall.pp.1279.ISBN0135897890.

    10. StephenHawking,TheUniverseinaNutshell,Bantam,2001.11. DickeandWittke,IntroductiontoQuantumMechanics,p.12

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 18/21

    12. NTRS.NASA.gov(http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680009569_1968009569.pdf)13. Taylor,J.R.Zafiratos,C.D.Dubson,M.A.(2004).ModernPhysicsforScientistsandEngineers.PrenticeHall.pp.147

    8.ISBN0135897890.14. McEvoy,J.P.Zarate,O.(2004).IntroducingQuantumTheory.Totem\Books.pp.7089,especiallyp.89.ISBN184046

    5778.15. WorldBookEncyclopedia,page6,2007.16. DickeandWittke,IntroductiontoQuantumMechanics,p.10f.17. J.P.McEvoyandOscarZarate(2004).IntroducingQuantumTheory.TotemBooks.p.110f.ISBN1840465778.18. Aczel,AmirD.,Entanglement,p.51f.(Penguin,2003)ISBN978155192647619. J.P.McEvoyandOscarZarate(2004).IntroducingQuantumTheory.TotemBooks.p.114.ISBN1840465778.20. Zettili,Nouredine(2009).QuantumMechanics:ConceptsandApplications(https://books.google.com/books?

    id=6jXlpJCSz98C&pg=PA26&dq=%22complementarity+principle%22+%22waveparticle+duality%22).JohnWileyandSons.pp.2627.ISBN0470026782.

    21. Selleri,Franco(2012).WaveParticleDuality(https://books.google.com/books?id=r8bkBwAAQBAJ&pg=PA41&dq=%22complementarity+principle%22+%22waveparticle+duality%22).SpringerScienceandBusinessMedia.p.41.ISBN1461533325.

    22. Podgorsak,ErvinB.(2013).CompendiumtoRadiationPhysicsforMedicalPhysicists(https://books.google.com/books?id=7zfBBAAAQBAJ&pg=PA88&dq=%22complementarity+principle%22+%22waveparticle+duality%22).SpringerScienceandBusinessMedia.p.88.ISBN3642201865.

    23. Halliday,DavidResnick,Robert(2013).FundamentalsofPhysics,10thEd.(https://books.google.com/books?id=nQZyAgAAQBAJ&pg=SL9PA21&dq=%22complementarity+principle%22+%22waveparticle+duality%22)JohnWileyandSons.p.1272.ISBN1118230612.

    24. Myers,RustyL.(2006).TheBasicsofPhysics(https://books.google.com/books?id=KnynjL44pI4C&pg=PA172&dq=%22complementarity+principle%22+%22waveparticle+duality%22).GreenwoodPublishingGroup.p.172.ISBN0313328579.

    25. IntroducingQuantumTheory,p.8726. VanderWaerden,B.L.(1967).SourcesofQuantumMechanics(inGermantranslatedtoEnglish).Mineola,NewYork:

    DoverPublications.pp.261276."ReceivedJuly29,1925"SeeWernerHeisenberg'spaper,"QuantumTheoreticalReinterpretationofKinematicandMechanicalRelations"pp.261276

    27. NobelPrizeOrganization."ErwinSchrdingerBiographical"(http://www.nobelprize.org/nobel_prizes/physics/laureates/1933/schrodingerbio.html).Retrieved28March2014."Hisgreatdiscovery,Schrdinger'swaveequation,wasmadeattheendofthisepochduringthefirsthalfof1926."

    28. "SchrodingerEquation(Physics),"EncyclopdiaBritannica(http://www.britannica.com/EBchecked/topic/528298/Schrodingerequation)

    29. ErwinSchrdinger,"ThePresentSituationinQuantumMechanics",p.9."ThistranslationwasoriginallypublishedinProceedingsoftheAmericanPhilosophicalSociety,124,32338,andthenappearedasSectionI.11ofPartIofQuantumTheoryandMeasurement(J.A.WheelerandW.H.Zurek,eds.,PrincetonuniversityPress,NewJersey1983).Thispapercanbedownloadedfromhttp://www.tuharburg.de/rzt/rzt/it/QM/cat.html."

    30. W.Moore,Schrdinger:LifeandThought,CambridgeUniversityPress(1989),p.222.Seep.227forSchrdinger'sownwords.

    31. Heisenberg'sNobelPrizecitation(http://nobelprize.org/nobel_prizes/physics/laureates/1932/)32. HeisenbergfirstpublishedhisworkontheuncertaintyprincipleintheleadingGermanphysicsjournalZeitschriftfrPhysik:

    Heisenberg,W.(1927)."berdenanschaulichenInhaltderquantentheoretischenKinematikundMechanik".Z.Phys.43(34):172198.Bibcode:1927ZPhy...43..172H(http://adsabs.harvard.edu/abs/1927ZPhy...43..172H).doi:10.1007/BF01397280(https://dx.doi.org/10.1007%2FBF01397280).

    33. NobelPrizeinPhysicspresentationspeech,1932(http://nobelprize.org/nobel_prizes/physics/laureates/1932/press.html)34. "Uncertaintyprinciple,"EncyclopdiaBritannica(http://www.britannica.com/EBchecked/topic/614029/uncertaintyprinciple)35. LinusPauling,TheNatureoftheChemicalBond,p.4736. "Orbital(chemistryandphysics),"EncyclopdiaBritannica(http://www.britannica.com/EBchecked/topic/431159/orbital)37. E.Schrdinger,ProceedingsoftheCambridgePhilosophicalSociety,31(1935),p.555,says:"Whentwosystems,ofwhich

    weknowthestatesbytheirrespectiverepresentation,enterintoatemporaryphysicalinteractionduetoknownforcesbetweenthemandwhenafteratimeofmutualinfluencethesystemsseparateagain,thentheycannolongerbedescribedasbefore,viz.,byendowingeachofthemwitharepresentativeofitsown.Iwouldnotcallthatonebutratherthecharacteristictraitofquantummechanics."

    38. "QuantumNonlocalityandthePossibilityofSuperluminalEffects",JohnG.Cramer,npl.washington.edu(http://www.npl.washington.edu/npl/int_rep/qm_nl.html)

    39. "Mechanics,"MerriamWebsterOnlineDictionary(http://www.merriamwebster.com/dictionary/field)40. "Field"(http://www.britannica.com/EBchecked/topic/206162/field),EncyclopdiaBritannica41. RichardHammond,TheUnknownUniverse,NewPageBooks,2008.ISBN9781601630032

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 19/21

    Bibliography

    Bernstein,Jeremy(2005)."MaxBornandthequantumtheory".AmericanJournalofPhysics73(11):999.Bibcode:2005AmJPh..73..999B(http://adsabs.harvard.edu/abs/2005AmJPh..73..999B).doi:10.1119/1.2060717(https://dx.doi.org/10.1119%2F1.2060717).Beller,Mara(2001).QuantumDialogue:TheMakingofaRevolution.UniversityofChicagoPress.Bohr,Niels(1958).AtomicPhysicsandHumanKnowledge.JohnWiley&Sons].ASINB00005VGVF(https://www.amazon.com/dp/B00005VGVF).ISBN0486479285.OCLC530611(https://www.worldcat.org/oclc/530611).deBroglie,Louis(1953).TheRevolutioninPhysics.NoondayPress.LCCN53010401(http://lccn.loc.gov/53010401).Bronner,PatrickStrunz,AndreasSilberhorn,ChristineMeyn,JanPeter(2009)."Demonstratingquantumrandomwithsinglephotons".EuropeanJournalofPhysics30(5):11891200.Bibcode:2009EJPh...30.1189B(http://adsabs.harvard.edu/abs/2009EJPh...30.1189B).doi:10.1088/01430807/30/5/026(https://dx.doi.org/10.1088%2F01430807%2F30%2F5%2F026).Einstein,Albert(1934).EssaysinScience.PhilosophicalLibrary.ISBN0486470113.LCCN55003947(http://lccn.loc.gov/55003947).Feigl,HerbertBrodbeck,May(1953).ReadingsinthePhilosophyofScience.AppletonCenturyCrofts.ISBN0390304883.LCCN53006438(http://lccn.loc.gov/53006438).Feynman,RichardP.(1949)."SpaceTimeApproachtoQuantumElectrodynamics"(http://www.physics.princeton.edu/~mcdonald/examples/QED/feynman_pr_76_769_49.pdf)(PDF).PhysicalReview76(6):769789.Bibcode:1949PhRv...76..769F(http://adsabs.harvard.edu/abs/1949PhRv...76..769F).doi:10.1103/PhysRev.76.769(https://dx.doi.org/10.1103%2FPhysRev.76.769).Feynman,RichardP.(1990).QED,TheStrangeTheoryofLightandMatter.PenguinBooks.ISBN9780140125054.Fowler,Michael(1999).TheBohrAtom.UniversityofVirginia.Heisenberg,Werner(1958).PhysicsandPhilosophy.HarperandBrothers.ISBN0061305499.LCCN99010404(http://lccn.loc.gov/99010404).Lakshmibala,S.(2004)."Heisenberg,MatrixMechanicsandtheUncertaintyPrinciple".Resonance,JournalofScienceEducation9(8).Liboff,RichardL.(1992).IntroductoryQuantumMechanics(2nded.).Lindsay,RobertBruceMargenau,Henry(1957).FoundationsofPhysics.Dover.ISBN0918024188.LCCN57014416(http://lccn.loc.gov/57014416).McEvoy,J.P.Zarate,Oscar.IntroducingQuantumTheory.ISBN1874166374.Nave,CarlRod(2005)."QuantumPhysics"(http://hyperphysics.phyastr.gsu.edu/hbase/quacon.html#quacon).HyperPhysics.GeorgiaStateUniversity.Peat,F.David(2002).FromCertaintytoUncertainty:TheStoryofScienceandIdeasintheTwentyFirstCentury.JosephHenryPress.Reichenbach,Hans(1944).PhilosophicFoundationsofQuantumMechanics.UniversityofCaliforniaPress.ISBN0486404595.LCCNa44004471(http://lccn.loc.gov/a44004471).Schlipp,PaulArthur(1949).AlbertEinstein:PhilosopherScientist.TudorPublishingCompany.LCCN50005340(http://lccn.loc.gov/50005340).ScientificAmericanReader,1953.Sears,FrancisWeston(1949).Optics(3rded.).AddisonWesley.ISBN0195046013.LCCN51001018(http://lccn.loc.gov/51001018).Shimony,A.(1983)."(titlenotgivenincitation)".FoundationsofQuantumMechanicsintheLightofNewTechnology(S.Kamefuchietal.,eds.).Tokyo:JapanPhysicalSociety.p.225.citedin:Popescu,SanduDanielRohrlich(1996)."ActionandPassionataDistance:AnEssayinHonorofProfessorAbnerShimony".arXiv:quantph/9605004(https://arxiv.org/abs/quantph/9605004)[quantph(https://arxiv.org/archive/quantph)].

    42. ThePhysicalWorldwebsite(http://www.physicalworld.org/restless_universe/html/ru_dira.html)43. "TheNobelPrizeinPhysics1933"(http://nobelprize.org/nobel_prizes/physics/laureates/1933/).NobelFoundation.Retrieved

    20071124.44. Durrani,Z.A.K.Ahmed,H.(2008).VijayKumar,ed.Nanosilicon.Elsevier.p.345.ISBN9780080445281.

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 20/21

    TheWikibookQuantumMechanicshasapageonthetopicof:IntroductiontoQuantumMechanics

    Tavel,MortonTavel,Judith(illustrations)(2002).Contemporaryphysicsandthelimitsofknowledge(http://books.google.com/?id=SELS0HbIhjYC&pg=PA200&dq=Wave+function+collapse).RutgersUniversityPress.ISBN9780813530772.VanVleck,J.H.,1928,"TheCorrespondencePrincipleintheStatisticalInterpretationofQuantumMechanics",Proc.Nat.Acad.Sci.14:179.WestmorelandBenjaminSchumacher(1998)."QuantumEntanglementandtheNonexistenceofSuperluminalSignals".arXiv:quantph/9801014(https://arxiv.org/abs/quantph/9801014)[quantph(https://arxiv.org/archive/quantph)].Wheeler,JohnArchibaldFeynman,RichardP.(1949)."ClassicalElectrodynamicsinTermsofDirectInterparticleAction".ReviewsofModernPhysics21(3):425433.Bibcode:1949RvMP...21..425W(http://adsabs.harvard.edu/abs/1949RvMP...21..425W).doi:10.1103/RevModPhys.21.425(https://dx.doi.org/10.1103%2FRevModPhys.21.425).

    Wieman,CarlPerkins,Katherine(2005)."TransformingPhysicsEducation".PhysicsToday58(11):36.Bibcode:2005PhT....58k..36W(http://adsabs.harvard.edu/abs/2005PhT....58k..36W).doi:10.1063/1.2155756(https://dx.doi.org/10.1063%2F1.2155756).

    Furtherreading

    Thefollowingtitles,allbyworkingphysicists,attempttocommunicatequantumtheorytolaypeople,usingaminimumoftechnicalapparatus.

    JimAlKhalili(2003)Quantum:AGuideforthePerplexed.Weidenfield&Nicholson.ISBN9781780225340Chester,Marvin(1987)PrimerofQuantumMechanics.JohnWiley.ISBN0486428788BrianCoxandJeffForshaw(2011)TheQuantumUniverse.AllenLane.ISBN9781846144325RichardFeynman(1985)QED:TheStrangeTheoryofLightandMatter.PrincetonUniversityPress.ISBN0691083886Ford,Kenneth(2005)TheQuantumWorld.HarvardUniv.Press.Includeselementaryparticlephysics.Ghirardi,GianCarlo(2004)SneakingaLookatGod'sCards,GeraldMalsbary,trans.PrincetonUniv.Press.Themosttechnicaloftheworkscitedhere.Passagesusingalgebra,trigonometry,andbraketnotationcanbepassedoveronafirstreading.TonyHeyandWalters,Patrick(2003)TheNewQuantumUniverse.CambridgeUniv.Press.Includesmuchaboutthetechnologiesquantumtheoryhasmadepossible.ISBN9780521564571VladimirG.Ivancevic,TijanaT.Ivancevic(2008)Quantumleap:fromDiracandFeynman,acrosstheuniverse,tohumanbodyandmind.WorldScientificPublishingCompany.Providesanintuitiveintroductioninnonmathematicaltermsandanintroductionincomparativelybasicmathematicalterms.ISBN9789812819277N.DavidMermin(1990)"Spookyactionsatadistance:mysteriesoftheQT"inhisBoojumsallthewaythrough.CambridgeUniv.Press:110176.Theauthorisararephysicistwhotriestocommunicatetophilosophersandhumanists.ISBN9780521388801RolandOmns(1999)UnderstandingQuantumMechanics.PrincetonUniv.Press.ISBN9780691004358VictorStenger(2000)TimelessReality:Symmetry,Simplicity,andMultipleUniverses.BuffaloNY:PrometheusBooks.Chpts.58.ISBN9781573928595MartinusVeltman(2003)FactsandMysteriesinElementaryParticlePhysics.WorldScientificPublishingCompany.ISBN9789812381491J.P.McEvoyandOscarZarate(2004).IntroducingQuantumTheory.TotemBooks.ISBN1840465778

    Externallinks

    "MicroscopicWorldIntroductiontoQuantumMechanics.(http://www.kutl.kyushuu.ac.jp/seminar/MicroWorld1_E/MicroWorld_1_E.html)"byTakada,Kenjiro,EmeritusprofessoratKyushuUniversityQuantumTheory.(http://www.encyclopedia.com/doc/1E1quantumt.html)atencyclopedia.comThespookyquantum

  • 7/27/2015 IntroductiontoquantummechanicsWikipedia,thefreeencyclopedia

    https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics 21/21

    (http://www.imamu.edu.sa/Scientific_selections/abstracts/Physics/THE%20SPOOKY%20QUANTUM.pdf)TheQuantumExchange(http://www.compadre.org/quantum)(tutorialsandopensourcelearningsoftware).AtomsandthePeriodicTable(http://www.chem1.com/acad/webtext/atoms/)Singleanddoubleslitinterference(http://intro.phys.psu.edu/class/251Labs/10_Interference_&_Diffraction/Single_and_DoubleSlit_Interference.pdf)TimeEvolutionofaWavepacketinaSquareWell(http://demonstrations.wolfram.com/TimeEvolutionOfAWavepacketInASquareWell/)Ananimateddemonstrationofawavepacketdispersionovertime.Experimentswithsinglephotons(http://www.didaktik.physik.unierlangen.de/quantumlab/english/)AnintroductionintoquantumphysicswithinteractiveexperimentsCarroll,SeanM.."QuantumMechanics(anembarrassment)"(http://www.sixtysymbols.com/videos/quantum_mechanics.htm).SixtySymbols.BradyHaranfortheUniversityofNottingham.Comprehensiveanimations(http://www.embd.be/quantummechanics/default.html)

    Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Introduction_to_quantum_mechanics&oldid=672417736"

    Categories: Quantummechanics

    Thispagewaslastmodifiedon21July2015,at12:25.TextisavailableundertheCreativeCommonsAttributionShareAlikeLicenseadditionaltermsmayapply.Byusingthissite,youagreetotheTermsofUseandPrivacyPolicy.WikipediaisaregisteredtrademarkoftheWikimediaFoundation,Inc.,anonprofitorganization.