81
Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Coffee, Heidelberg University, 23. October 2019 CP 3 -Origins, SDU Odense, Denmark MR, Juri Smirnov: arXiv:1910.xxxxx

Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quantum Gravity meets Dark Matter

Manuel Reichert

Cold Quantum Coffee, Heidelberg University, 23. October 2019

CP3-Origins, SDU Odense, Denmark

MR, Juri Smirnov: arXiv:1910.xxxxx

Page 2: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Couplings of the Standard Model

-

-

-

-

μ

λ τ

|λ|

τ

[Pelaggi, Sannino, Strumia, Vigiani ’17]

Phenomenology

• Baryogenesis

• Dark matter

• . . .

Potentially UV complete theories

• Asymptotically safe QG

• Large N gauge theories

• . . .

1

Page 3: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Couplings of the Standard Model

-

-

-

-

μ

λ τ

|λ|

τ

[Pelaggi, Sannino, Strumia, Vigiani ’17]

Phenomenology

• Baryogenesis

• Dark matter

• . . .

Potentially UV complete theories

• Asymptotically safe QG

• Large N gauge theories

• . . .

1

Page 4: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Couplings of the Standard Model

-

-

-

-

μ

λ τ

|λ|

τ

[Pelaggi, Sannino, Strumia, Vigiani ’17]

Phenomenology

• Baryogenesis

• Dark matter

• . . .

Potentially UV complete theories

• Asymptotically safe QG

• Large N gauge theories

• . . .

1

Page 5: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Couplings of the Standard Model

-

-

-

-

μ

λ τ

|λ|

τ

[Pelaggi, Sannino, Strumia, Vigiani ’17]

Phenomenology

• Baryogenesis

• Dark matter

• . . .

Potentially UV complete theories

• Asymptotically safe QG

• Large N gauge theories

• . . .

1

Page 6: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Asymptotically Safe

Quantum Gravity

Page 7: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quantum gravity in perturbation theory

Einstein-Hilbert action with gµν = ηµν +√GNhµν

SEH =1

16πGN

∫x

√det gµν(2Λ− R(gµν))

Perturbatively non-renormalisable

[GN] = −2

Actual evidence by two-loop Goroff-Sagnotti counter term

SGS ∼∫x

√det gµνC

κλµν C ρσ

κλ C µνρσ

[’t Hooft, Veltmann ’74; Goroff, Sagnotti ’85]

Start of an infinite series of counter terms: No predictivity

2

Page 8: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quantum gravity in perturbation theory

Einstein-Hilbert action with gµν = ηµν +√GNhµν

SEH =1

16πGN

∫x

√det gµν(2Λ− R(gµν))

Perturbatively non-renormalisable

[GN] = −2

Actual evidence by two-loop Goroff-Sagnotti counter term

SGS ∼∫x

√det gµνC

κλµν C ρσ

κλ C µνρσ

[’t Hooft, Veltmann ’74; Goroff, Sagnotti ’85]

Start of an infinite series of counter terms: No predictivity

2

Page 9: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quantum gravity in perturbation theory

Higher-derivative gravity

SHD =

∫x

√det gµν

(1

2λC 2 − w

3λR2

)+ SEH

Perturbatively renormalisable

[w ] = 0 [λ] = 0

Asymptotically free

λ∗ = 0

But perturbatively non-unitary

Ggraviton ∼1

p2 + p4/M2Pl

=1

p2− 1

M2Pl + p2

[Stelle ’74]

3

Page 10: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quantum gravity in perturbation theory

Higher-derivative gravity

SHD =

∫x

√det gµν

(1

2λC 2 − w

3λR2

)+ SEH

Perturbatively renormalisable

[w ] = 0 [λ] = 0

Asymptotically free

λ∗ = 0

But perturbatively non-unitary

Ggraviton ∼1

p2 + p4/M2Pl

=1

p2− 1

M2Pl + p2

[Stelle ’74]

3

Page 11: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quantum gravity in perturbation theory

Higher-derivative gravity

SHD =

∫x

√det gµν

(1

2λC 2 − w

3λR2

)+ SEH

Perturbatively renormalisable

[w ] = 0 [λ] = 0

Asymptotically free

λ∗ = 0

But perturbatively non-unitary

Ggraviton ∼1

p2 + p4/M2Pl

=1

p2− 1

M2Pl + p2

[Stelle ’74]

3

Page 12: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Asymptotically safe quantum gravity

Weinberg’s proposal ’76

Non-perturbative UV fixed point of the renormalisation group flow

• Metric carries fundamental degrees of freedom

• Diffeomorphism invariance is the symmetry of the theory

SEH =1

16πGN

∫x

√g(2Λ− R)

k∂kg ≡ βg k→∞−−−→ 0

k∂kλ ≡ βλ k→∞−−−→ 0

−0.2 −0.1 0.1 0.2 0.3 0.4 0.5

−0.75

−0.5

−0.25

0.25

0.5

0.75

1

λ

g

[Reuter ’96; Reuter, Saueressig ’01]

Predictivity ⇔ UV critical hypersurface is finite dimensional

Unitarity ⇔ Properties of the spectral function

4

Page 13: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Asymptotically safe quantum gravity

Weinberg’s proposal ’76

Non-perturbative UV fixed point of the renormalisation group flow

• Metric carries fundamental degrees of freedom

• Diffeomorphism invariance is the symmetry of the theory

SEH =1

16πGN

∫x

√g(2Λ− R)

k∂kg ≡ βg k→∞−−−→ 0

k∂kλ ≡ βλ k→∞−−−→ 0

−0.2 −0.1 0.1 0.2 0.3 0.4 0.5

−0.75

−0.5

−0.25

0.25

0.5

0.75

1

λ

g

[Reuter ’96; Reuter, Saueressig ’01]

Predictivity ⇔ UV critical hypersurface is finite dimensional

Unitarity ⇔ Properties of the spectral function

4

Page 14: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Asymptotically safe quantum gravity

Weinberg’s proposal ’76

Non-perturbative UV fixed point of the renormalisation group flow

• Metric carries fundamental degrees of freedom

• Diffeomorphism invariance is the symmetry of the theory

SEH =1

16πGN

∫x

√g(2Λ− R)

k∂kg ≡ βg k→∞−−−→ 0

k∂kλ ≡ βλ k→∞−−−→ 0

−0.2 −0.1 0.1 0.2 0.3 0.4 0.5

−0.75

−0.5

−0.25

0.25

0.5

0.75

1

λ

g

[Reuter ’96; Reuter, Saueressig ’01]

Predictivity ⇔ UV critical hypersurface is finite dimensional

Unitarity ⇔ Properties of the spectral function4

Page 15: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 16: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ [Reuter ’96; . . . ]

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 17: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ [Lauscher, Reuter ’02; . . . ]

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 18: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ [Codello, Percacci, Rahmede ’07; Machado, Saueressig ’07;. . . ]

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 19: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ [Codello, Percacci ’07; . . . ]

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 20: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ [Gies, Knorr, Lippoldt, Saueressig ’16]

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 21: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ [Bosma, Knorr, Saueressig ’19; Knorr, Ripken, Saueressig ’19]

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 22: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ [Bosma, Knorr, Saueressig ’19; Knorr, Ripken, Saueressig ’19]

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 23: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Expansion in curvature invariants

• O(R0): Λ Let’s zoom into EH truncation!

• O(R1): R

• O(R2): R2, RµνRµν , CµνρσC

µνρσ

• O(R3): R3, RR, CµνρσCµνρσ, RRµνRµν , R ν

µ R ρν R µ

ρ ,

RµνRσρCµνρσ, RCµνρσC

µνρσ, C κλµν C ρσ

κλ C µνρσ

• O(R4): . . .

Aims at apparent convergence

5

Page 24: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Challenge: keeping track of diffeomorphism invariance

Metric split

gµν = gµν +√ZhGNhµν

Gauge-fixed Einstein-Hilbert action with regulator

S = SEH[g = g + h] + Sgf[g , h] + Sgh[g , h, c , c] + Sreg[g , h]

Effective action depends separately on gµν and hµν

Γk ≡ Γk [g , h]

The dynamics are carried by the correlators of hµν

δnΓk

δhn≡ Γ

(nh)k ≡ 〈h1 . . . hn〉

6

Page 25: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Vertex expansion of the effective action

∂tΓk =1

2−

∂tΓ(h)k = −1

2+

∂tΓ(2h)k = −1

2+ − 2

∂tΓ(cc)k = +

∂tΓ(3h)k = −1

2+ 3 − 3 + 6

∂tΓ(4h)k = −1

2+ 3 + 4 − 6

− 12 + 12 − 24

Infinite tower

of coupled functional

differential equations

= graviton

= ghost

∂tΓ(n)k depends on

Γ(2)k , . . . , Γ

(n+2)k

Background-field approximation: g , λ

[Reuter ’96; . . . ]

g , λ

Level-one approximation: g1, λ1

[Manrique, Reuter, Saueressig ’11; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

[Christiansen, Litim, Pawlowski, Rodigast ’14; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

[Christiansen, Knorr, Meibohm, Pawlowski, MR ’15; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

g4, λ4

[Denz, Pawlowski, MR ’16]

≈ 4 · 1012 terms

7

Page 26: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Vertex expansion of the effective action

∂tΓk =1

2−

∂tΓ(h)k = −1

2+

∂tΓ(2h)k = −1

2+ − 2

∂tΓ(cc)k = +

∂tΓ(3h)k = −1

2+ 3 − 3 + 6

∂tΓ(4h)k = −1

2+ 3 + 4 − 6

− 12 + 12 − 24

Infinite tower

of coupled functional

differential equations

= graviton

= ghost

∂tΓ(n)k depends on

Γ(2)k , . . . , Γ

(n+2)k

Background-field approximation: g , λ

[Reuter ’96; . . . ]

g , λ

Level-one approximation: g1, λ1

[Manrique, Reuter, Saueressig ’11; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

[Christiansen, Litim, Pawlowski, Rodigast ’14; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

[Christiansen, Knorr, Meibohm, Pawlowski, MR ’15; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

g4, λ4

[Denz, Pawlowski, MR ’16]

≈ 4 · 1012 terms

7

Page 27: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Vertex expansion of the effective action

∂tΓk =1

2−

∂tΓ(h)k = −1

2+

∂tΓ(2h)k = −1

2+ − 2

∂tΓ(cc)k = +

∂tΓ(3h)k = −1

2+ 3 − 3 + 6

∂tΓ(4h)k = −1

2+ 3 + 4 − 6

− 12 + 12 − 24

Infinite tower

of coupled functional

differential equations

= graviton

= ghost

∂tΓ(n)k depends on

Γ(2)k , . . . , Γ

(n+2)k

Background-field approximation: g , λ

[Reuter ’96; . . . ]

g , λ

Level-one approximation: g1, λ1

[Manrique, Reuter, Saueressig ’11; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

[Christiansen, Litim, Pawlowski, Rodigast ’14; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

[Christiansen, Knorr, Meibohm, Pawlowski, MR ’15; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

g4, λ4

[Denz, Pawlowski, MR ’16]

≈ 4 · 1012 terms

7

Page 28: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Vertex expansion of the effective action

∂tΓk =1

2−

∂tΓ(h)k = −1

2+

∂tΓ(2h)k = −1

2+ − 2

∂tΓ(cc)k = +

∂tΓ(3h)k = −1

2+ 3 − 3 + 6

∂tΓ(4h)k = −1

2+ 3 + 4 − 6

− 12 + 12 − 24

Infinite tower

of coupled functional

differential equations

= graviton

= ghost

∂tΓ(n)k depends on

Γ(2)k , . . . , Γ

(n+2)k

Background-field approximation: g , λ

[Reuter ’96; . . . ]

g , λ

Level-one approximation: g1, λ1

[Manrique, Reuter, Saueressig ’11; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

[Christiansen, Litim, Pawlowski, Rodigast ’14; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

[Christiansen, Knorr, Meibohm, Pawlowski, MR ’15; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

g4, λ4

[Denz, Pawlowski, MR ’16]

≈ 4 · 1012 terms

7

Page 29: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Vertex expansion of the effective action

∂tΓk =1

2−

∂tΓ(h)k = −1

2+

∂tΓ(2h)k = −1

2+ − 2

∂tΓ(cc)k = +

∂tΓ(3h)k = −1

2+ 3 − 3 + 6

∂tΓ(4h)k = −1

2+ 3 + 4 − 6

− 12 + 12 − 24

Infinite tower

of coupled functional

differential equations

= graviton

= ghost

∂tΓ(n)k depends on

Γ(2)k , . . . , Γ

(n+2)k

Background-field approximation: g , λ

[Reuter ’96; . . . ]

g , λ

Level-one approximation: g1, λ1

[Manrique, Reuter, Saueressig ’11; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

[Christiansen, Litim, Pawlowski, Rodigast ’14; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

[Christiansen, Knorr, Meibohm, Pawlowski, MR ’15; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

g4, λ4

[Denz, Pawlowski, MR ’16]

≈ 4 · 1012 terms

7

Page 30: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Vertex expansion of the effective action

∂tΓk =1

2−

∂tΓ(h)k = −1

2+

∂tΓ(2h)k = −1

2+ − 2

∂tΓ(cc)k = +

∂tΓ(3h)k = −1

2+ 3 − 3 + 6

∂tΓ(4h)k = −1

2+ 3 + 4 − 6

− 12 + 12 − 24

Infinite tower

of coupled functional

differential equations

= graviton

= ghost

∂tΓ(n)k depends on

Γ(2)k , . . . , Γ

(n+2)k

Background-field approximation: g , λ

[Reuter ’96; . . . ]

g , λ

Level-one approximation: g1, λ1

[Manrique, Reuter, Saueressig ’11; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

[Christiansen, Litim, Pawlowski, Rodigast ’14; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

[Christiansen, Knorr, Meibohm, Pawlowski, MR ’15; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

g4, λ4

[Denz, Pawlowski, MR ’16]

≈ 4 · 1012 terms

7

Page 31: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Vertex expansion of the effective action

∂tΓk =1

2−

∂tΓ(h)k = −1

2+

∂tΓ(2h)k = −1

2+ − 2

∂tΓ(cc)k = +

∂tΓ(3h)k = −1

2+ 3 − 3 + 6

∂tΓ(4h)k = −1

2+ 3 + 4 − 6

− 12 + 12 − 24

Infinite tower

of coupled functional

differential equations

= graviton

= ghost

∂tΓ(n)k depends on

Γ(2)k , . . . , Γ

(n+2)k

Background-field approximation: g , λ

[Reuter ’96; . . . ]

g , λ

Level-one approximation: g1, λ1

[Manrique, Reuter, Saueressig ’11; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

[Christiansen, Litim, Pawlowski, Rodigast ’14; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

[Christiansen, Knorr, Meibohm, Pawlowski, MR ’15; . . . ]

g , λ

g1, λ1

Zh(p2), µ = −2λ2

Zc(p2)

g3, λ3

g4, λ4

[Denz, Pawlowski, MR ’16]

≈ 4 · 1012 terms

7

Page 32: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

UV fixed point

IR behaviour

General relativity

10−2 10−1 100 101 102

10−3

10−1

101

k/MPl

1 − 2λ g

1 + µ g3

1 − 2λ3 g4

1 − 2λ4

UV fixed point

Asymptotic safety

(µ∗, λ∗3 , λ∗4 , g

∗3 , g

∗4 ) = (−0.45, 0.12, 0.028, 0.83, 0.57)

θi = (4.7, 2.0± 3.1 i, −2.9, −8.0)

Three relevant directions: Λ, R and R2

[Denz, Pawlowski, MR ’16]

8

Page 33: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Towards a Standard-Model–gravity system

S =1

16πGN

∫d4x√g (2Λ− R) Gravity

+1

2

Ns∑i=1

∫d4x√ggµν∂µϕ

i∂νϕi Scalars

+

Nf∑j=1

∫d4x√g ψj /∇ψj Fermions

+1

2

∫d4x√g gµνgρσ trFµρFνσ Yang-Mills

9

Page 34: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

UV fixed point with matter

Scalars Fermions Yang-Mills

0 20 40 60−1

0

1

2

3

Ns

g∗3 λ∗3 µ∗

0 50 100 150−1

−0.5

0

0.5

1

Nf

g∗3 λ∗3 µ∗

0 100 200 300−1

−0.5

0

0.5

1

N2c − 1

g∗3 λ∗3 µ∗

[Meibohm, Pawlowski, MR ’16] [Christiansen, Litim, Pawlowski, MR ’17]

Gravity dominates the UV behaviour: Geff ∼ g3

1+µ

One force to rule them all

10

Page 35: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

UV fixed point with matter

Scalars Fermions Yang-Mills

0 20 40 60−1

0

1

2

3

Ns

g∗3 λ∗3 µ∗

0 50 100 150−1

−0.5

0

0.5

1

Nf

g∗3 λ∗3 µ∗

0 100 200 300−1

−0.5

0

0.5

1

N2c − 1

g∗3 λ∗3 µ∗

[Meibohm, Pawlowski, MR ’16] [Christiansen, Litim, Pawlowski, MR ’17]

Gravity dominates the UV behaviour: Geff ∼ g3

1+µ

One force to rule them all

10

Page 36: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter

Page 37: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter

Dark Matter evidence from

• Rotation curves

• CMB

• Structure formation

• . . .

Dark Energy

68.7%

Dark Matter

26.4%Baryonic Matter

4.9%

We want to use quantum gravity to constrain a given dark matter model

11

Page 38: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter

Dark Matter can be

• a particle

• a modified gravitational interaction

• primordial black holes

• . . .

Dark Energy

68.7%

Dark Matter

26.4%Baryonic Matter

4.9%

We want to use quantum gravity to constrain a given dark matter model

11

Page 39: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter

Dark Matter can be

• a particle

• a modified gravitational interaction

• primordial black holes

• . . .

Dark Energy

68.7%

Dark Matter

26.4%Baryonic Matter

4.9%

We want to use quantum gravity to constrain a given dark matter model

11

Page 40: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter

A dark matter candidate

• is stable or long-lived on

cosmic time scales

• has a portal interaction

with the SM fields

λp

Example: Higgs portal λp H†H S S∗

Various production mechanisms

• Thermal production (freeze out)

• Non-thermal production

(decay from heavier particle, during reheating)

12

Page 41: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter

A dark matter candidate

• is stable or long-lived on

cosmic time scales

• has a portal interaction

with the SM fields

λp

Example: Higgs portal λp H†H S S∗

Various production mechanisms

• Thermal production (freeze out)

• Non-thermal production

(decay from heavier particle, during reheating)

12

Page 42: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter

A dark matter candidate

• is stable or long-lived on

cosmic time scales

• has a portal interaction

with the SM fields

λp

Example: Higgs portal λp H†H S S∗

Various production mechanisms

• Thermal production (freeze out)

• Non-thermal production

(decay from heavier particle, during reheating)

12

Page 43: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter

A dark matter candidate

• is stable or long-lived on

cosmic time scales

• has a portal interaction

with the SM fields

λp

Example: Higgs portal λp H†H S S∗

Various production mechanisms

• Thermal production (freeze out)

• Non-thermal production

(decay from heavier particle, during reheating)

12

Page 44: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Freeze out

Number density of DM candidate is described by the Bolzmann equation

dnχdt

+ 3H nχ = −〈σ(χχ→ SM)vrel.〉(n2χ − n2

χ,eq)

1 10 100

equilibrium

relativistic non-relativistic

freeze-out

relic density

[Picture: Baumann ’19]

Smaller portal coupling −→ earlier decoupling −→ larger relic density

13

Page 45: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Freeze out

Number density of DM candidate is described by the Bolzmann equation

dnχdt

+ 3H nχ = −〈σ(χχ→ SM)vrel.〉(n2χ − n2

χ,eq)

1 10 100

equilibrium

relativistic non-relativistic

freeze-out

relic density

[Picture: Baumann ’19]

Smaller portal coupling −→ earlier decoupling −→ larger relic density

13

Page 46: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Freeze out

Number density of DM candidate is described by the Bolzmann equation

dnχdt

+ 3H nχ = −〈σ(χχ→ SM)vrel.〉(n2χ − n2

χ,eq)

1 10 100

equilibrium

relativistic non-relativistic

freeze-out

relic density

[Picture: Baumann ’19]

Smaller portal coupling −→ earlier decoupling −→ larger relic density

13

Page 47: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Scalar Higgs portal

λp

MS [GeV]

ΩS ≥ ΩDM

BR(h → SS) ≥ 58%BR(h → SS) ≥ 16%

Fermi-LAT bb

LUX 2015

XENON1T projected10−4

10−3

10−2

10−1

100

45 100 1000

[Duerr, Perez, Smirnov ’15]

• Higgs resonance at mS ≈ mh/2 allows for smaller coupling values

• Quantum gravity prediction λp(MPl) = 0

• Portal coupling remains zero also below MPl [Eichhorn, Hamada, Lumma, Yamada ’18]

14

Page 48: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Scalar Higgs portal

λp

MS [GeV]

ΩS ≥ ΩDM

BR(h → SS) ≥ 58%BR(h → SS) ≥ 16%

Fermi-LAT bb

LUX 2015

XENON1T projected10−4

10−3

10−2

10−1

100

45 100 1000

[Duerr, Perez, Smirnov ’15]

• Higgs resonance at mS ≈ mh/2 allows for smaller coupling values

• Quantum gravity prediction λp(MPl) = 0

• Portal coupling remains zero also below MPl [Eichhorn, Hamada, Lumma, Yamada ’18]

14

Page 49: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

How can we generate the portal coupling?

Yukawa interaction can generate λp

S

S

H

H

But also allows decay (breaks the stabilising Z2 symmetry)

S

H

H

Yukawa interaction is fine as long as ψ cannot decay into light particles

15

Page 50: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

How can we generate the portal coupling?

Yukawa interaction can generate λp

S

S

H

H

But also allows decay (breaks the stabilising Z2 symmetry)

S

H

H

Yukawa interaction is fine as long as ψ cannot decay into light particles

15

Page 51: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

How can we generate the portal coupling?

Gauge interaction U(1)X

S

S

H

H

• Stability: interaction preserves Z2 symmetry

• Kinetic mixing: no charge of Higgs boson under U(1)X needed

16

Page 52: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Kinetic mixing

Lagrangian of U(1)X and U(1)Y

L ∼ 1

4FXµνF

µνX +

1

4FYµνF

µνY +

ε

2FXµνF

µνY

• Eliminate FXµνF

µνY by rotations and rescalings of the gauge fields

• Price to pay: non-diagonal covariant derivative

Dµ = ∂µ + i (gY nY )Bµ + i (gDnX + gεnY )Z ′µ

• New gauge couplings gD and gε

17

Page 53: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Kinetic mixing

Lagrangian of U(1)X and U(1)Y

L ∼ 1

4FXµνF

µνX +

1

4FYµνF

µνY +

ε

2FXµνF

µνY

• Eliminate FXµνF

µνY by rotations and rescalings of the gauge fields

• Price to pay: non-diagonal covariant derivative

Dµ = ∂µ + i (gY nY )Bµ + i (gDnX + gεnY )Z ′µ

• New gauge couplings gD and gε

17

Page 54: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark sector

Lagrangian of the dark sector

LD ∼ Lscalar + Lfermion + Lgauge

∼ 1

2DµSD

µS∗ + λpH†HSS∗ + λS(SS∗)2 +

m2S

2SS∗

+ iψD/ψ + Mψψψ + yψ Sψψc

+1

4FXµνF

µνX +

ε

2FYµνF

µνX +

M2Z ′

2

(Z ′µ − ∂µζ

)2

• Stueckelberg mechanism to give mass to Z ′

• Vector-like fermion ψ for vacuum stability of S

• S or ψ is dark matter candidate depending on mass hierarchy

18

Page 55: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Dark Matter meets

Quantum Gravity

Page 56: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Philosophy

• Standard Model extension that allows for a Dark Matter candidate

• Simple dark matter models preferred

• Demand that the model is UV complete with quantum gravity

• Assume no further particle content

19

Page 57: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Boundary conditions from asymptotically safety

If matter couplings become too large, they run into a Landau pole

1 1010 1020 1030 10400.2

0.4

0.6

0.8

1.0

1.2

1.4

RG scale k in GeV

gy(k)

predictive trajectory

free trajectories

UV unsafe trajectories

[Picture: Eichhorn, Versteegen ’17]

Notice difference between

• UV attractive (relevant) direction

• UV repulsive (irrelevant) direction

20

Page 58: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Boundary conditions from asymptotically safety

If matter couplings become too large, they run into a Landau pole

1 1010 1020 1030 10400.2

0.4

0.6

0.8

1.0

1.2

1.4

RG scale k in GeV

gy(k)

predictive trajectory

free trajectories

UV unsafe trajectories

[Picture: Eichhorn, Versteegen ’17]

Notice difference between

• UV attractive (relevant) direction

• UV repulsive (irrelevant) direction

20

Page 59: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quartic scalar coupling

Beta function of quartic scalar coupling

βλ = βλ,matter + fλ

with UV repulsive fixed point λ∗ = 0 [Pawlowski, MR, Wetterich, Yamada ’18]

Boundary condition: λ(MPl) ≈ 0

Application to Higgs mass [Shaposhnikov, Wetterich ’09]

mh = 126− 136 GeV

21

Page 60: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quartic scalar coupling

Beta function of quartic scalar coupling

βλ = βλ,matter + fλ

with UV repulsive fixed point λ∗ = 0 [Pawlowski, MR, Wetterich, Yamada ’18]

Boundary condition: λ(MPl) ≈ 0

Application to Higgs mass [Shaposhnikov, Wetterich ’09]

mh = 126− 136 GeV

21

Page 61: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Quartic scalar coupling

Beta function of quartic scalar coupling

βλ = βλ,matter + fλ

with UV repulsive fixed point λ∗ = 0 [Pawlowski, MR, Wetterich, Yamada ’18]

Boundary condition: λ(MPl) ≈ 0

Application to Higgs mass [Shaposhnikov, Wetterich ’09]

mh = 126− 136 GeV

21

Page 62: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

U(1) gauge coupling

U(1) gauge beta function

βg = βg ,matter − fgg

fg is positive [Christiansen, Litim, Pawlowski, MR ’17]

fg =G

16π

(8

1− 2Λ− 4

(1− 2Λ)2

)Boundary condition at one loop (βg ,matter = βg ,1-loopg

3)

g(MPl) ≤√

fgβg ,1-loop

We use fg ≤ 0.04

22

Page 63: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

U(1) gauge coupling

U(1) gauge beta function

βg = βg ,matter − fgg

fg is positive [Christiansen, Litim, Pawlowski, MR ’17]

fg =G

16π

(8

1− 2Λ− 4

(1− 2Λ)2

)

Boundary condition at one loop (βg ,matter = βg ,1-loopg3)

g(MPl) ≤√

fgβg ,1-loop

We use fg ≤ 0.04

22

Page 64: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

U(1) gauge coupling

U(1) gauge beta function

βg = βg ,matter − fgg

fg is positive [Christiansen, Litim, Pawlowski, MR ’17]

fg =G

16π

(8

1− 2Λ− 4

(1− 2Λ)2

)Boundary condition at one loop (βg ,matter = βg ,1-loopg

3)

g(MPl) ≤√

fgβg ,1-loop

We use fg ≤ 0.04

22

Page 65: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Yukawa coupling

Yukawa beta function at one loop

βy = βy ,1-loop-yukaway3 − βy ,1-loop-gaugey − fyy

Boundary condition

y(MPl) ≤√

fy + βy ,1-loop-gauge

βy ,1-loop-yukawa

Application: top mass and difference between top & bottom mass

[Eichhorn, Held ’17; ’18]

23

Page 66: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Compatibility with SM

When is the SM compatible with Asymptotic Safety?

• For U(1)Y we need fg ≥ 9.8 · 10−3

• For top and bottom mass we need fy ≥ 10−4[Eichhorn, Held ’18]

• The Higgs mass is slightly wrong mh ≈ 130 GeV [Shaposhnikov, Wetterich ’09]

Two perspectives on the Higgs mass

• Accept small difference

• Use freedom of SM extension to adjust Higgs mass

24

Page 67: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Scalar dark matter model

Properties

• U(1)X is identified with U(1)B-L

• Right-handed neutrinos to make B-L anomaly free

• Dark fermions for vacuum stability; decay via neutrino channel

Predictivity from

• λp(MPl) ≈ 0

• λp induced by gD and gε, which are bounded as well

• Vacuum stability of S is crucial

25

Page 68: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Scalar dark matter model

Properties

• U(1)X is identified with U(1)B-L

• Right-handed neutrinos to make B-L anomaly free

• Dark fermions for vacuum stability; decay via neutrino channel

Predictivity from

• λp(MPl) ≈ 0

• λp induced by gD and gε, which are bounded as well

• Vacuum stability of S is crucial

25

Page 69: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Allowed range for gD and gε

-

-

-

-

-

ϵ

Asymptotically free couplings, if their values are in the green area at MPl

26

Page 70: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Example running

• Choose gD(MPl)

• Adjust gε(MPl) to match Higgs mass

• Add fermions for vacuum stability

-

-

[]

ϵ

|λ|

|λ|

λ

-

-

-

-

[]

27

Page 71: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Example running

• Choose gD(MPl)

• Adjust gε(MPl) to match Higgs mass

• Add fermions for vacuum stability

-

-

[]

ϵ

|λ|

|λ|

λ

-

-

-

-

[]

27

Page 72: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Prediction for portal coupling

Use gε to fix Higgs mass and fg ≤ 0.04

|λp(TeV)| ≤ 0.08

Accepting a small difference in the Higgs mass

|λp(TeV)| . 1.1 fg + 54 f 2g

mh,min ≈ (136− 382 fg ) GeV

For fg = 0.04 we find |λp| ≤ 0.13

28

Page 73: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Prediction for portal coupling

Use gε to fix Higgs mass and fg ≤ 0.04

|λp(TeV)| ≤ 0.08

Accepting a small difference in the Higgs mass

|λp(TeV)| . 1.1 fg + 54 f 2g

mh,min ≈ (136− 382 fg ) GeV

For fg = 0.04 we find |λp| ≤ 0.13

28

Page 74: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Favoured mass range scalar dark matter

-

-

-

-

[]

λ

Ω>

λ

56 GeV < MDM < 63 GeV

29

Page 75: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Fermionic dark matter model

Properties

• U(1)X with free quantum number nψ for fermion

• Scalar Higgs portal optional

Predictivity from

• Upper bound on nψgD

• Annihilation cross section ∼ nψgD

• nψ drops out

30

Page 76: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Fermionic dark matter model

Properties

• U(1)X with free quantum number nψ for fermion

• Scalar Higgs portal optional

Predictivity from

• Upper bound on nψgD

• Annihilation cross section ∼ nψgD

• nψ drops out

30

Page 77: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Allowed range for gD and gε

-

ψ

ϵ

Asymptotically free couplings, if their values are in the green area at MPl

31

Page 78: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Favoured mass range fermionic dark matter

103 104 10510-2

10-1

1

10

102

103

[]

Ω/Ω

<

=

=

=

• non-resonant MZ ′ < MDM: MDM < 2 TeV

• resonant MZ ′ > MDM: MDM < 40 TeV

32

Page 79: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Favoured mass range fermionic dark matter

103 104 10510-2

10-1

1

10

102

103

[]

Ω/Ω

<

=

=

=

• non-resonant MZ ′ < MDM: MDM < 2 TeV

• resonant MZ ′ > MDM: MDM < 40 TeV32

Page 80: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Summary

• Dark matter models guided by simplicity

• Demand asymptotic safety or freedom of all couplings

• Boundary conditions at MPl leads to constraints on the mass

• Scalar Higgs portal

56 GeV < MDM < 63 GeV

• Fermionic dark matter

MDM < 40 TeV

Thank you for your attention

33

Page 81: Quantum Gravity meets Dark Mattercqc/Slides/2019-10-23_Manue… · Quantum Gravity meets Dark Matter Manuel Reichert Cold Quantum Co ee, Heidelberg University, 23. October 2019 CP3-Origins,

Summary

• Dark matter models guided by simplicity

• Demand asymptotic safety or freedom of all couplings

• Boundary conditions at MPl leads to constraints on the mass

• Scalar Higgs portal

56 GeV < MDM < 63 GeV

• Fermionic dark matter

MDM < 40 TeV

Thank you for your attention33