22
Quantum Field Theory I: Basics in Mathematics and Physics

Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Embed Size (px)

Citation preview

Page 1: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Quantum Field Theory I:Basics in Mathematics and Physics

Page 2: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Eberhard Zeidler

Quantum Field Theory I:Basics in Mathematicsand Physics

A Bridge between Mathematiciansand Physicists

Page 3: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Eberhard ZeidlerMax Planck Institutefor Mathematics in the SciencesInselstr. 22-2604103 LeipzigGermany

ISBN 978-3-540-34762-0 e-ISBN 978-3-540-34764-4DOI 10.1007/978-3-540-34764-4Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2006929535

Mathematics Subject Classification (2000): 35QXX, 58-XX, 81TXX, 82-XX, 83CXX

c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009This work is subject to copyright. All rights are reserved, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publicationor parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer. Violations areliable to prosecution under the German Copyright Law.The use of general descriptive names, registered names, trademarks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelaws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 4: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

TO THE MEMORY OF JURGEN MOSER

(1928–1999)

Page 5: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Preface

Daß ich erkenne, was die Welt im Innersten zusammenhalt.1

Faust

Concepts without intuition are empty, intuition without concepts is blind.Immanuel Kant (1724–1804)

The greatest mathematicians like Archimedes, Newton, and Gauss havealways been able to combine theory and applications into one.

Felix Klein (1849–1925)

The present comprehensive introduction to the mathematical and physicalaspects of quantum field theory consists of the following six volumes:

Volume I: Basics in Mathematics and PhysicsVolume II: Quantum ElectrodynamicsVolume III: Gauge TheoryVolume IV: Quantum MathematicsVolume V: The Physics of the Standard ModelVolume VI: Quantum Gravity and String Theory.

Since ancient times, both physicists and mathematicians have tried to under-stand the forces acting in nature. Nowadays we know that there exist fourfundamental forces in nature:

• Newton’s gravitational force,• Maxwell’s electromagnetic force,• the strong force between elementary particles, and• the weak force between elementary particles (e.g., the force responsible for

the radioactive decay of atoms).

In the 20th century, physicists established two basic models, namely,

• the Standard Model in cosmology based on Einstein’s theory of generalrelativity, and

• the Standard Model in elementary particle physics based on gauge theory.1 So that I may perceive whatever holds the world together in its inmost folds.

The alchemist Georg Faust (1480–1540) is the protagonist of Goethe’s dramaFaust written in 1808.

Page 6: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

VIII Preface

One of the greatest challenges of the human intellect is the discovery ofa unified theory for the four fundamental forces in nature based on firstprinciples in physics and rigorous mathematics. For many years, I have beenfascinated by this challenge. When talking about this challenge to colleagues,I have noticed that many of my colleagues in mathematics complain about thefact that it is difficult to understand the thinking of physicists and to followthe pragmatic, but frequently non-rigorous arguments used by physicists. Onthe other hand, my colleagues in physics complain about the abstract levelof the modern mathematical literature and the lack of explicitly formulatedconnections to physics. This has motivated me to write the present book andthe volumes to follow.

It is my intention to build a bridge between mathematicians andphysicists.

The main ideas of this treatise are described in the Prologue to this book.The six volumes address a broad audience of readers, including both under-graduate students and graduate students as well as experienced scientistswho want to become familiar with the mathematical and physical aspects ofthe fascinating field of quantum field theory. In some sense, we will start fromscratch:

• For students of mathematics, I would like to show that detailed knowledgeof the physical background helps to motivate the mathematical subjectsand to discover interesting interrelationships between quite different math-ematical questions.

• For students of physics, I would like to introduce fairly advanced mathe-matics which is beyond the usual curriculum in physics.

For historical reasons, there exists a gap between the language of mathemati-cians and the language of physicists. I want to bridge this gap.2 I will try tominimize the preliminaries such that undergraduate students after two yearsof studies should be able to understand the main body of the text. In writingthis monograph, it was my goal to follow the advise given by the poet JohannWolfgang von Goethe (1749–1832):

Textbooks should be attractive by showing the beauty of the subject.

Ariadne’s thread. In the author’s opinion, the most important preludeto learning a new subject is strong motivation. Experience shows that highlymotivated students are willing to take great effort to learn sophisticated sub-jects.

I would like to put the beginning of Ariadne’s thread into the handsof the reader.

2 On November 7th 1940, there was a famous accident in the U.S.A. which wasrecorded on film. The Tacoma Narrows Bridge broke down because of unexpectednonlinear resonance effects. I hope that my bridge between mathematicians andphysicists is not of Tacoma type.

Page 7: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Preface IX

Remember the following myth. On the Greek island of Crete in ancient times,there lived the monster Minotaur, half human and half bull, in a labyrinth.Every nine years, seven virgins and seven young men had to be sacrificed tothe Minotaur. Ariadne, the daughter of King Minos of Crete and Pasiphaefell in love with one of the seven young men – the Athenian Prince Theseus.To save his life, Ariadne gave Theseus a thread of yarn, and he fixed thebeginning of the thread at the entrance of the labyrinth. After a hard fight,Theseus killed the Minotaur, and he escaped from the labyrinth by the helpof Ariadne’s thread.3 For hard scientific work, it is nice to have a kind ofAriadne’s thread at hand. The six volumes cover a fairly broad spectrum ofmathematics and physics. In particular, in the present first volume the readergets information about

• the physics of the Standard Model of particle physics and• the magic formulas in quantum field theory,

and we touch the following mathematical subjects:

• finite-dimensional Hilbert spaces and a rigorous approach to the basic ideasof quantum field theory,

• elements of functional differentiation and functional integration,• elements of probability theory,• calculus of variations and the principle of critical action,• harmonic analysis and the Fourier transform, the Laplace transform, and

the Mellin transform,• Green’s functions, partial differential equations, and distributions (gener-

alized functions),• Green’s functions, the Fourier method, and functional integrals (path in-

tegrals),• the Lebesgue integral, general measure integrals, and Hilbert spaces,• elements of functional analysis and perturbation theory,• the Dirichlet principle as a paradigm for the modern Hilbert space approach

to partial differential equations,• spectral theory and rigorous Dirac calculus,• analyticity,• calculus for Grassmann variables,• many-particle systems and number theory,• Lie groups and Lie algebras,• basic ideas of differential and algebraic topology (homology, cohomology,

and homotopy; topological quantum numbers and quantum states).

We want to show the reader that many mathematical methods used in quan-tum field theory can be traced back to classical mathematical problems. In3 Unfortunately, Theseus was not grateful to Ariadne. He deserted her on the Is-

land of Naxos, and she became the bride of Dionysus. Richard Strauss composedthe opera Ariadne on Naxos in 1912.

Page 8: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

X Preface

particular, we will thoroughly study the relation of the procedure of renor-malization in physics to the following classical mathematical topics:

• singular perturbations, resonances, and bifurcation in oscillating systems(renormalization in a nutshell on page 628),

• the regularization of divergent infinite series, divergent infinite products,and divergent integrals,

• divergent integrals and distributions (Hadamard’s finite part of divergentintegrals),

• the passage from a finite number of degrees of freedom to an infinite numberof degrees of freedom and the method of counterterms in complex analysis(the Weierstrass theorem and the Mittag–Leffler theorem),

• analytic continuation and the zeta function in number theory,• Poincare’s asymptotic series and the Ritt theorem in complex analysis,• the renormalization group and Lie’s theory of dynamical systems (one-

parameter Lie groups),• rigorous theory of finite-dimensional functional integrals (path integrals).

The following volumes will provide the reader with important additional ma-terial. A summary can be found in the Prologue on pages 11 through 15.

Additional material on the Internet. The interested reader may findadditional material on my homepage:

Internet: www.mis.mpg.de/ezeidler/

This concerns a carefully structured panorama of important literature inmathematics, physics, history of the sciences and philosophy, along with acomprehensive bibliography. One may also find a comprehensive list of math-ematicians, physicists, and philosophers (from ancient until present time)mentioned in the six volumes. My homepage also allows links to the lead-ing centers in elementary particle physics: CERN (Geneva, Switzerland),DESY (Hamburg, Germany), FERMILAB (Batavia, Illinois, U.S.A.), KEK(Tsukuba, Japan), and SLAC (Stanford University, California, U.S.A.). Onemay also find links to the following Max Planck Institutes in Germany: As-tronomy (Heidelberg), Astrophysics (Garching), Complex Systems in Physics(Dresden), Albert Einstein Institute for Gravitational Physics (Golm), Math-ematics (Bonn), Nuclear Physics (Heidelberg), Werner Heisenberg Institutefor Physics (Munich), and Plasmaphysics (Garching).

Apology. The author apologizes for his imperfect English style. In thepreface to his monograph The Classical Groups, Princeton University Press,1946, Hermann Weyl writes the following:

The gods have imposed upon my writing the yoke of a foreign tongue thatwas not sung at my cradle.

“Was das heissen will, weiss jeder,Der im Traum pferdlos geritten ist,”4

4 Everyone who has dreamt of riding free, without the need of a horse, will knowwhat I mean.

Page 9: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Preface XI

I am tempted to say with the Swiss poet Gottfried Keller (1819–1890).Nobody is more aware than myself of the attendant loss in vigor, ease andlucidity of expression.

Acknowledgements. First of all I would like to thank the Max Planck So-ciety in Germany for founding the Max Planck Institute for Mathematicsin the Sciences (MIS) in Leipzig in 1996 and for creating a superb scientificenvironment here. This treatise would have been impossible without the ex-tensive contacts of the institute to mathematicians and physicists all over theworld and without the excellent library of the institute. My special thanks goto the intellectual fathers of the institute, Friedrich Hirzebruch (chairman ofthe Founder’s Committee) and Stefan Hildebrandt in Bonn, Karl-Heinz Hoff-mann and Julius Wess in Munich, and the late Jurgen Moser in Zurich whowas an external scientific member of the institute. I would like to dedicatethis volume to the memory of Jurgen Moser who was a great mathemati-cian and an amiable man. Moreover, I would like to thank Don Zagier (MaxPlanck Institute for Mathematics in Bonn and College de France in Paris),one of the greatest experts in number theory, for the kindness of writing abeautiful section on useful techniques of number theory in physics.

I am very grateful to numerous colleagues in mathematics and physicsfrom all over the world for illuminating discussions. It is not possible to men-tion the names of all of them, since the list is very long. In particular, Iwould like to thank the professors from the Institute of Theoretical Physicsat Leipzig University, Bodo Geyer, Wolfhard Janke, Gerd Rudolph, ManfredSalmhofer, Klaus Sibold, Armin Uhlmann, and Rainer Verch for nice cooper-ation. For many stimulating discussions on a broad spectrum of mathematicalproblems, I would like to thank the co-directors of the MIS, Wolfgang Hack-busch, Jurgen Jost, and Stefan Muller.

For getting information about new research topics, I am very gratefulto my former and present collaborators: Gunther Berger, Ludmilla Bordag,Friedemann Brandt, Friedemann Brock, Chand Devchand, Bertfried Fauser,Felix Finster, Christian Fleischhack, Jorg Frauendiener, Hans-Peter Gittel,Matthias Gunther, Bruce Hunt, Konrad Kaltenbach, Satyanad Kichenas-samy, Klaus Kirsten, Christian Klein, Andreas Knauf, Alexander Lange,Rainer Matthes, Johannes Maul†, Erich Miersemann, Mario Paschke, HoangXuan Phu, Karin Quasthoff, Olaf Richter†, Alexander Schmidt, Rainer Schu-mann, Friedemann Schuricht, Peter Senf†, Martin Speight, Jurgen Tolksdorf,Dimitri Vassilevich, Hartmut Wachter, and Raimar Wulkenhaar.

For experienced assistance in preparing this book, I would like to thankKerstin Folting (graphics, tables, and a meticulous proof-reading of my entirelatex-file together with Rainer Munck), Micaela Krieger–Hauwede (graphics,tables, and layout), and Jeffrey Ovall (checking and improving my Englishstyle). For supporting me kindly in various aspects and for helping me tosave time, I am also very grateful to my secretary, Regine Lubke, and to thestaff of the institute including the librarians directed by Ingo Bruggemann,

Page 10: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

XII Preface

the computer group directed by Rainer Kleinrensing, and the administra-tion directed by Dietmar Rudzik. Finally, I would like to thank the staff ofthe Springer publishing house in Heidelberg, Ruth Allewelt, Angela Schulze-Thomin, Joachim Heinze, and Martin Peters, for a harmonious collaboration.

I hope that the reader of this book enjoys getting a feel for the unityof mathematics and physics by discovering interrelations between apparentlycompletely different subjects.

Leipzig, Fall 2005 Eberhard Zeidler

Preface to the Corrected Second Printing

I am very pleased that Springer at Heidelberg is publishing a corrected reprintof Volume I. In this edition, I made minor revisions and updated the refer-ences. In particular, the panorama of literature in Chapter 17 was changedsubstantially. I would like to thank the readers for their words of encour-agement and for their useful suggestions. Volume II appeared in 2008, andVolume III is in preparation.

Leipzig, Spring 2009 Eberhard Zeidler

Page 11: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Contents

Part I. Introduction

Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. Historical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.1 The Revolution of Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.2 Quantization in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.1 Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301.2.2 The Fundamental Role of the Harmonic Oscillator

in Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 461.2.3 Quantum Fields and Second Quantization . . . . . . . . . . 521.2.4 The Importance of Functional Integrals . . . . . . . . . . . . 57

1.3 The Role of Gottingen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601.4 The Gottingen Tragedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671.5 Highlights in the Sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.5.1 The Nobel Prize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691.5.2 The Fields Medal in Mathematics . . . . . . . . . . . . . . . . . 711.5.3 The Nevanlinna Prize in Computer Sciences . . . . . . . . 721.5.4 The Gauss Prize in Mathematics . . . . . . . . . . . . . . . . . . 731.5.5 The Wolf Prize in Physics . . . . . . . . . . . . . . . . . . . . . . . . 731.5.6 The Wolf Prize in Mathematics . . . . . . . . . . . . . . . . . . . 741.5.7 The Abel Prize in Mathematics . . . . . . . . . . . . . . . . . . . 75

1.6 The Emergence of Physical Mathematics – a New Dimensionof Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

1.7 The Seven Millennium Prize Problems of the ClayMathematics Institute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2. Phenomenology of the Standard Model for ElementaryParticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812.1 The System of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822.2 Waves in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.2.1 Harmonic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832.2.2 Wave Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842.2.3 Standing Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862.2.4 Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Page 12: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

XIV Contents

2.2.5 Superposition of Waves and the Fourier Transform . . 882.2.6 Damped Waves, the Laplace Transform, and Disper-

sion Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912.2.7 The Response Function, the Feynman Propagator, and

Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962.3 Historical Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.3.1 Planck’s Radiation Law . . . . . . . . . . . . . . . . . . . . . . . . . . 1032.3.2 The Boltzmann Statistics and Planck’s Quantum

Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082.3.3 Einstein’s Theory of Special Relativity . . . . . . . . . . . . . 1112.3.4 Einstein’s Theory of General Relativity . . . . . . . . . . . . 1132.3.5 Einstein’s Light Particle Hypothesis . . . . . . . . . . . . . . . 1142.3.6 Rutherford’s Particle Scattering . . . . . . . . . . . . . . . . . . . 1152.3.7 The Cross Section for Compton Scattering . . . . . . . . . . 1172.3.8 Bohr’s Model of the Hydrogen Atom . . . . . . . . . . . . . . . 1222.3.9 Einstein’s Radiation Law and Laser Beams . . . . . . . . . 1262.3.10 Quantum Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2.4 The Standard Model in Particle Physics . . . . . . . . . . . . . . . . . . 1292.4.1 The Four Fundamental Forces in Nature . . . . . . . . . . . 1292.4.2 The Fundamental Particles in Nature . . . . . . . . . . . . . . 132

2.5 Magic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1422.6 Quantum Numbers of Elementary Particles . . . . . . . . . . . . . . . 145

2.6.1 The Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1462.6.2 Conservation of Quantum Numbers . . . . . . . . . . . . . . . . 156

2.7 The Fundamental Role of Symmetry in Physics . . . . . . . . . . . 1642.7.1 Classical Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1702.7.2 The CPT Symmetry Principle for Elementary Particles 1722.7.3 Local Gauge Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 1762.7.4 Permutations and Pauli’s Exclusion Principle . . . . . . . 1782.7.5 Crossing Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1782.7.6 Forbidden Spectral Lines in Molecules . . . . . . . . . . . . . 179

2.8 Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1802.8.1 Parity Violation and CP Violation . . . . . . . . . . . . . . . . . 1802.8.2 Irreversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1812.8.3 Splitting of Spectral Lines in Molecules . . . . . . . . . . . . 1812.8.4 Spontaneous Symmetry Breaking and Particles . . . . . . 1822.8.5 Bifurcation and Phase Transitions . . . . . . . . . . . . . . . . . 184

2.9 The Structure of Interactions in Nature . . . . . . . . . . . . . . . . . . 1852.9.1 The Electromagnetic Field as Generalized Curvature . 1852.9.2 Physics and Modern Differential Geometry . . . . . . . . . 186

Page 13: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Contents XV

3. The Challenge of Different Scales in Nature . . . . . . . . . . . . . 1893.1 The Trouble with Scale Changes . . . . . . . . . . . . . . . . . . . . . . . . 1893.2 Wilson’s Renormalization Group in Physics . . . . . . . . . . . . . . . 191

3.2.1 A New Paradigm in Physics . . . . . . . . . . . . . . . . . . . . . . 1933.2.2 Screening of the Coulomb Field and the Renormaliza-

tion Group of Lie Type . . . . . . . . . . . . . . . . . . . . . . . . . . 1953.2.3 The Running Coupling Constant and the Asymptotic

Freedom of Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2033.2.4 The Quark Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . 2063.2.5 Proton Decay and Supersymmetric Grand Unification 2073.2.6 The Adler–Bell–Jackiw Anomaly . . . . . . . . . . . . . . . . . . 207

3.3 Stable and Unstable Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 2083.4 A Glance at Conformal Field Theories . . . . . . . . . . . . . . . . . . . 209

Part II. Basic Techniques in Mathematics

4. Analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2114.1 Power Series Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2124.2 Deformation Invariance of Integrals . . . . . . . . . . . . . . . . . . . . . . 2144.3 Cauchy’s Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2144.4 Cauchy’s Residue Formula and Topological Charges . . . . . . . . 2154.5 The Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2164.6 Gauss’ Fundamental Theorem of Algebra . . . . . . . . . . . . . . . . . 2174.7 Compactification of the Complex Plane . . . . . . . . . . . . . . . . . . 2194.8 Analytic Continuation and the Local-Global Principle . . . . . . 2204.9 Integrals and Riemann Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 2214.10 Domains of Holomorphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2254.11 A Glance at Analytic S-Matrix Theory . . . . . . . . . . . . . . . . . . . 2264.12 Important Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

5. A Glance at Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2295.1 Local and Global Properties of the Universe . . . . . . . . . . . . . . 2295.2 Bolzano’s Existence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 2305.3 Elementary Geometric Notions . . . . . . . . . . . . . . . . . . . . . . . . . . 2325.4 Manifolds and Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 2365.5 Topological Spaces, Homeomorphisms, and Deformations . . . 2375.6 Topological Quantum Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.6.1 The Genus of a Surface . . . . . . . . . . . . . . . . . . . . . . . . . . 2435.6.2 The Euler Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . 2445.6.3 Platonic Solids and Fullerenes . . . . . . . . . . . . . . . . . . . . . 2465.6.4 The Poincare–Hopf Theorem for Velocity Fields . . . . . 2475.6.5 The Gauss–Bonnet Theorem . . . . . . . . . . . . . . . . . . . . . . 2485.6.6 The Morse Theorem on Critical Points of Energy

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Page 14: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

XVI Contents

5.6.7 Magnetic Fields, the Gauss Integral, and the LinkingNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

5.6.8 Electric Fields, the Kronecker Integral, and theMapping Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5.6.9 The Heat Kernel and the Atiyah–Singer IndexTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

5.6.10 Knots and Topological Quantum Field Theory . . . . . . 2645.7 Quantum States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

5.7.1 The Topological Character of the Electron Spin . . . . . 2675.7.2 The Hopf Fibration of the 3-Dimensional Sphere . . . . 2705.7.3 The Homotopy Functor . . . . . . . . . . . . . . . . . . . . . . . . . . 2735.7.4 Grassmann Manifolds and Projective Geometry . . . . . 276

5.8 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

6. Many-Particle Systems in Mathematics and Physics . . . . . 2796.1 Partition Function in Statistical Physics . . . . . . . . . . . . . . . . . . 2816.2 Euler’s Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2856.3 Discrete Laplace Transformation . . . . . . . . . . . . . . . . . . . . . . . . 2876.4 Integral Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2916.5 The Riemann Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

6.5.1 The Prime Number Theorem – a Pearl of Mathematics 2936.5.2 The Riemann Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 2986.5.3 Dirichlet’s L-Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

6.6 The Casimir Effect in Quantum Field Theory and the EpsteinZeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

6.7 Appendix: The Mellin Transformation and Other UsefulAnalytic Techniques by Don Zagier . . . . . . . . . . . . . . . . . . . . . . 3076.7.1 The Generalized Mellin Transformation . . . . . . . . . . . . 3076.7.2 Dirichlet Series and their Special Values . . . . . . . . . . . . 3116.7.3 Application: the Casimir Effect . . . . . . . . . . . . . . . . . . . . 3146.7.4 Asymptotics of Series of the Form

∑f(nt) . . . . . . . . . 319

7. Rigorous Finite-Dimensional Magic Formulas of QuantumField Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3277.1 Geometrization of Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3277.2 Ariadne’s Thread in Quantum Field Theory . . . . . . . . . . . . . . 3287.3 Linear Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3307.4 Finite-Dimensional Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . 3377.5 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3427.6 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3447.7 Lie’s Logarithmic Trick for Matrix Groups . . . . . . . . . . . . . . . . 3477.8 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3497.9 Basic Notions in Quantum Physics . . . . . . . . . . . . . . . . . . . . . . . 351

7.9.1 States, Costates, and Observables . . . . . . . . . . . . . . . . . 3527.9.2 Observers and Coordinates . . . . . . . . . . . . . . . . . . . . . . . 356

Page 15: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Contents XVII

7.10 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3577.11 Dirac Calculus in Finite-Dimensional Hilbert Spaces . . . . . . . 3617.12 The Trace of a Linear Operator . . . . . . . . . . . . . . . . . . . . . . . . . 3657.13 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3687.14 Probability and Hilbert’s Spectral Family of an Observable . 3707.15 Transition Probabilities, S-Matrix, and Unitary Operators . . 3727.16 The Magic Formulas for the Green’s Operator . . . . . . . . . . . . . 374

7.16.1 Non-Resonance and Resonance . . . . . . . . . . . . . . . . . . . . 3757.16.2 Causality and the Laplace Transform . . . . . . . . . . . . . . 379

7.17 The Magic Dyson Formula for the Retarded Propagator . . . . 3837.17.1 Lagrange’s Variation of the Parameter . . . . . . . . . . . . . 3857.17.2 Duhamel’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3877.17.3 The Volterra Integral Equation . . . . . . . . . . . . . . . . . . . . 3887.17.4 The Dyson Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

7.18 The Magic Dyson Formula for the S-Matrix . . . . . . . . . . . . . . 3927.19 Canonical Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

7.19.1 The Schrodinger Picture . . . . . . . . . . . . . . . . . . . . . . . . . 3947.19.2 The Heisenberg Picture . . . . . . . . . . . . . . . . . . . . . . . . . . 3957.19.3 The Dirac Interaction Picture . . . . . . . . . . . . . . . . . . . . . 396

7.20 Functional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3977.20.1 Functional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 3987.20.2 Partial Functional Derivatives . . . . . . . . . . . . . . . . . . . . . 4047.20.3 Infinitesimal Transformations . . . . . . . . . . . . . . . . . . . . . 4117.20.4 Functional Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

7.21 The Discrete Feynman Path Integral . . . . . . . . . . . . . . . . . . . . . 4187.21.1 The Magic Feynman Propagator Formula . . . . . . . . . . . 4197.21.2 The Magic Formula for Time-Ordered Products . . . . . 4247.21.3 The Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

7.22 Causal Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4267.22.1 The Wick Rotation Trick for Vacuum Expectation

Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4277.22.2 The Magic Gell-Mann–Low Reduction Formula . . . . . 429

7.23 The Magic Gaussian Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4307.23.1 The One-Dimensional Prototype . . . . . . . . . . . . . . . . . . 4307.23.2 The Determinant Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . 4367.23.3 The Zeta Function Trick . . . . . . . . . . . . . . . . . . . . . . . . . 4367.23.4 The Moment Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4377.23.5 The Method of Stationary Phase . . . . . . . . . . . . . . . . . . 437

7.24 The Rigorous Response Approach to Finite Quantum Fields 4407.24.1 Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4417.24.2 Discrete Space-Time Manifold . . . . . . . . . . . . . . . . . . . . 4437.24.3 The Principle of Critical Action . . . . . . . . . . . . . . . . . . . 4477.24.4 The Response Function . . . . . . . . . . . . . . . . . . . . . . . . . . 4487.24.5 The Global Quantum Action Principle . . . . . . . . . . . . . 449

Page 16: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

XVIII Contents

7.24.6 The Magic Quantum Action Reduction Formula forCorrelation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

7.24.7 The Magic LSZ Reduction Formula for ScatteringFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

7.24.8 The Local Quantum Action Principle . . . . . . . . . . . . . . 4557.24.9 Simplifying the Computation of Quantum Effects . . . . 4587.24.10 Reduced Correlation Functions . . . . . . . . . . . . . . . . . . . 4587.24.11 The Mean Field Approximation . . . . . . . . . . . . . . . . . . 4597.24.12 Vertex Functions and the Effective Action . . . . . . . . . 461

7.25 The Discrete ϕ4-Model and Feynman Diagrams . . . . . . . . . . . 4637.26 The Extended Response Approach . . . . . . . . . . . . . . . . . . . . . . . 4817.27 Complex-Valued Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4867.28 The Method of Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . 4907.29 The Formal Continuum Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

8. Rigorous Finite-Dimensional Perturbation Theory . . . . . . . 4998.1 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

8.1.1 Non-Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4998.1.2 Resonance, Regularizing Term, and Bifurcation . . . . . 5018.1.3 The Renormalization Group . . . . . . . . . . . . . . . . . . . . . . 5048.1.4 The Main Bifurcation Theorem . . . . . . . . . . . . . . . . . . . 505

8.2 The Rellich Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5088.3 The Trotter Product Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 5098.4 The Magic Baker–Campbell–Hausdorff Formula . . . . . . . . . . . 5108.5 Regularizing Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

8.5.1 The Weierstrass Product Theorem . . . . . . . . . . . . . . . . . 5128.5.2 The Mittag–Leffler Theorem . . . . . . . . . . . . . . . . . . . . . . 5128.5.3 Regularization of Divergent Integrals . . . . . . . . . . . . . . . 5138.5.4 The Polchinski Equation . . . . . . . . . . . . . . . . . . . . . . . . . 515

9. Fermions and the Calculus for Grassmann Variables . . . . . 5179.1 The Grassmann Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5179.2 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5189.3 Calculus for One Grassmann Variable . . . . . . . . . . . . . . . . . . . . 5189.4 Calculus for Several Grassmann Variables . . . . . . . . . . . . . . . . 5199.5 The Determinant Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5209.6 The Method of Stationary Phase . . . . . . . . . . . . . . . . . . . . . . . . 5219.7 The Fermionic Response Model . . . . . . . . . . . . . . . . . . . . . . . . . 521

10. Infinite-Dimensional Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . 52310.1 The Importance of Infinite Dimensions in Quantum Physics . 523

10.1.1 The Uncertainty Relation . . . . . . . . . . . . . . . . . . . . . . . . 52310.1.2 The Trouble with the Continuous Spectrum . . . . . . . . 526

10.2 The Hilbert Space L2(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52710.2.1 Measure and Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Page 17: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Contents XIX

10.2.2 Dirac Measure and Dirac Integral . . . . . . . . . . . . . . . . . 53110.2.3 Lebesgue Measure and Lebesgue Integral . . . . . . . . . . . 53210.2.4 The Fischer–Riesz Theorem . . . . . . . . . . . . . . . . . . . . . . 533

10.3 Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53410.3.1 Gauss’ Method of Least Squares . . . . . . . . . . . . . . . . . . . 53410.3.2 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 53510.3.3 Continuous Fourier Transform . . . . . . . . . . . . . . . . . . . . 537

10.4 The Dirichlet Problem in Electrostatics as a Paradigm . . . . . 54210.4.1 The Variational Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 54410.4.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54610.4.3 The Variational Problem . . . . . . . . . . . . . . . . . . . . . . . . . 54910.4.4 Weierstrass’ Counterexample . . . . . . . . . . . . . . . . . . . . . . 55110.4.5 Typical Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55410.4.6 The Functional Analytic Existence Theorem . . . . . . . . 55710.4.7 Regularity of the Solution . . . . . . . . . . . . . . . . . . . . . . . . 56010.4.8 The Beauty of the Green’s Function . . . . . . . . . . . . . . . 56210.4.9 The Method of Orthogonal Projection . . . . . . . . . . . . . 56610.4.10 The Power of Ideas in Mathematics . . . . . . . . . . . . . . . 56910.4.11 The Ritz Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57010.4.12 The Main Existence Principle . . . . . . . . . . . . . . . . . . . . 571

11. Distributions and Green’s Functions . . . . . . . . . . . . . . . . . . . . . 57711.1 Rigorous Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

11.1.1 The Discrete Dirac Delta Function . . . . . . . . . . . . . . . . 58211.1.2 Prototypes of Green’s Functions . . . . . . . . . . . . . . . . . . . 58311.1.3 The Heat Equation and the Heat Kernel . . . . . . . . . . . 58911.1.4 The Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 59111.1.5 The Schrodinger Equation and the Euclidean

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59111.2 Dirac’s Formal Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

11.2.1 Dirac’s Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 59311.2.2 Density of a Mass Distribution . . . . . . . . . . . . . . . . . . . . 59411.2.3 Local Functional Derivative . . . . . . . . . . . . . . . . . . . . . . . 59411.2.4 The Substitution Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 59811.2.5 Formal Dirac Calculus and the Fourier Transform . . . 59911.2.6 Formal Construction of the Heat Kernel . . . . . . . . . . . . 609

11.3 Laurent Schwartz’s Rigorous Approach . . . . . . . . . . . . . . . . . . . 61011.3.1 Physical Measurements and the Idea of Averaging . . . 61011.3.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61111.3.3 Tempered Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 61711.3.4 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

11.4 Hadamard’s Regularization of Integrals . . . . . . . . . . . . . . . . . . . 62111.4.1 Regularization of Divergent Integrals . . . . . . . . . . . . . . . 62111.4.2 The Sokhotski Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 62211.4.3 Steinmann’s Renormalization Theorem . . . . . . . . . . . . . 623

Page 18: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

XX Contents

11.4.4 Regularization Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62511.5 Renormalization of the Anharmonic Oscillator . . . . . . . . . . . . 628

11.5.1 Renormalization in a Nutshell . . . . . . . . . . . . . . . . . . . . . 62811.5.2 The Linearized Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 62811.5.3 The Nonlinear Problem and Non-Resonance . . . . . . . . 63211.5.4 The Nonlinear Problem, Resonance, and Bifurcation . 63311.5.5 The Importance of the Renormalized Green’s Function 63511.5.6 The Renormalization Group . . . . . . . . . . . . . . . . . . . . . . 636

11.6 The Importance of Algebraic Feynman Integrals . . . . . . . . . . . 63711.6.1 Wick Rotation and Cut-Off . . . . . . . . . . . . . . . . . . . . . . . 63711.6.2 Dimensional Regularization . . . . . . . . . . . . . . . . . . . . . . . 63911.6.3 Weinberg’s Power-Counting Theorem . . . . . . . . . . . . . . 64111.6.4 Integration Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

11.7 Fundamental Solutions of Differential Equations . . . . . . . . . . . 64711.7.1 The Newtonian Potential . . . . . . . . . . . . . . . . . . . . . . . . . 64911.7.2 The Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 64911.7.3 The Beauty of Hironaka’s Theorem . . . . . . . . . . . . . . . . 650

11.8 Functional Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65411.8.1 The Feynman Path Integral for the Heat Equation . . . 65411.8.2 Diffusion, Brownian Motion, and the Wiener Integral 65711.8.3 The Method of Quantum Fluctuations . . . . . . . . . . . . . 65811.8.4 Infinite-Dimensional Gaussian Integrals and Zeta

Function Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 66011.8.5 The Euclidean Trick and the Feynman Path Integral

for the Schrodinger Equation . . . . . . . . . . . . . . . . . . . . . 66111.9 A Glance at Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 663

11.9.1 The Fourier–Laplace Transform . . . . . . . . . . . . . . . . . . . 66311.9.2 The Riemann–Hilbert Problem . . . . . . . . . . . . . . . . . . . . 66511.9.3 The Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 66611.9.4 Symmetry and Special Functions . . . . . . . . . . . . . . . . . . 66711.9.5 Tempered Distributions as Boundary Values of Ana-

lytic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66811.10 The Trouble with the Euclidean Trick . . . . . . . . . . . . . . . . . . . 669

12. Distributions and Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67112.1 The Discrete Dirac Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

12.1.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67112.1.2 The Four-Dimensional Discrete Dirac Delta Function 67212.1.3 Rigorous Discrete Dirac Calculus . . . . . . . . . . . . . . . . . . 67512.1.4 The Formal Continuum Limit . . . . . . . . . . . . . . . . . . . . . 675

12.2 Rigorous General Dirac Calculus . . . . . . . . . . . . . . . . . . . . . . . . 67712.2.1 Eigendistributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67712.2.2 Self-Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 67912.2.3 The von Neumann Spectral Theorem . . . . . . . . . . . . . . 68012.2.4 The Gelfand–Kostyuchenko Spectral Theorem . . . . . . 681

Page 19: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Contents XXI

12.2.5 The Duality Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68112.2.6 Dirac’s Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68312.2.7 The Schwartz Kernel Theorem . . . . . . . . . . . . . . . . . . . . 683

12.3 Fundamental Limits in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 68412.3.1 High-Energy Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68412.3.2 Thermodynamic Limit and Phase Transitions . . . . . . . 68512.3.3 Adiabatic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68712.3.4 Singular Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

12.4 Duality in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69212.4.1 Particles and de Broglie’s Matter Waves . . . . . . . . . . . . 69212.4.2 Time and Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69412.4.3 Time and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69412.4.4 Position and Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 69512.4.5 Causality and Analyticity . . . . . . . . . . . . . . . . . . . . . . . . 69712.4.6 Strong and Weak Interaction . . . . . . . . . . . . . . . . . . . . . 705

12.5 Microlocal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70512.5.1 Singular Support of a Distribution . . . . . . . . . . . . . . . . . 70712.5.2 Wave Front Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70812.5.3 The Method of Stationary Phase . . . . . . . . . . . . . . . . . . 71712.5.4 Short-Wave Asymptotics for Electromagnetic

Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72012.5.5 Diffraction of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72612.5.6 Pseudo-Differential Operators . . . . . . . . . . . . . . . . . . . . . 73012.5.7 Fourier Integral Operators . . . . . . . . . . . . . . . . . . . . . . . . 731

12.6 Multiplication of Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 73212.6.1 Laurent Schwartz’s Counterexample . . . . . . . . . . . . . . . 73212.6.2 Hormander’s Causal Product . . . . . . . . . . . . . . . . . . . . . 734

Part III. Heuristic Magic Formulas of Quantum Field Theory

13. Basic Strategies in Quantum Field Theory . . . . . . . . . . . . . . . 74113.1 The Method of Moments and Correlation Functions . . . . . . . . 74413.2 The Power of the S-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74713.3 The Relation Between the S-Matrix and the Correlation

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74813.4 Perturbation Theory and Feynman Diagrams . . . . . . . . . . . . . 74913.5 The Trouble with Interacting Quantum Fields . . . . . . . . . . . . . 75013.6 External Sources and the Generating Functional . . . . . . . . . . . 75113.7 The Beauty of Functional Integrals . . . . . . . . . . . . . . . . . . . . . . 754

13.7.1 The Principle of Critical Action . . . . . . . . . . . . . . . . . . . 75413.7.2 The Magic Feynman Representation Formula . . . . . . . 75513.7.3 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75613.7.4 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75713.7.5 Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

Page 20: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

XXII Contents

13.7.6 The Magic Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . 75813.8 Quantum Field Theory at Finite Temperature . . . . . . . . . . . . 759

13.8.1 The Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 75913.8.2 The Classical Hamiltonian Approach . . . . . . . . . . . . . . . 76213.8.3 The Magic Feynman Functional Integral for the Par-

tition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76313.8.4 The Thermodynamic Limit . . . . . . . . . . . . . . . . . . . . . . . 765

14. The Response Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76714.1 The Fourier–Minkowski Transform . . . . . . . . . . . . . . . . . . . . . . . 77214.2 The ϕ4-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

14.2.1 The Classical Principle of Critical Action . . . . . . . . . . . 77614.2.2 The Response Function and the Feynman Propagator 77614.2.3 The Extended Quantum Action Functional . . . . . . . . . 78414.2.4 The Magic Quantum Action Reduction Formula for

Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78414.2.5 The Magic LSZ Reduction Formula for the S-Matrix . 78714.2.6 The Local Quantum Action Principle . . . . . . . . . . . . . . 78914.2.7 The Mnemonic Functional Integral . . . . . . . . . . . . . . . . 78914.2.8 Bose–Einstein Condensation of Dilute Gases . . . . . . . . 790

14.3 A Glance at Quantum Electrodynamics . . . . . . . . . . . . . . . . . . 79114.3.1 The Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 79314.3.2 The Principle of Critical Action . . . . . . . . . . . . . . . . . . . 79514.3.3 The Gauge Field Approach . . . . . . . . . . . . . . . . . . . . . . . 79614.3.4 The Extended Action Functional with Source Term . . 80014.3.5 The Response Function for Photons . . . . . . . . . . . . . . . 80114.3.6 The Response Function for Electrons . . . . . . . . . . . . . . 80214.3.7 The Extended Quantum Action Functional . . . . . . . . . 80314.3.8 The Magic Quantum Action Reduction Formula . . . . . 80514.3.9 The Mnemonic Functional Integral . . . . . . . . . . . . . . . 806

15. The Operator Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81515.1 The ϕ4-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

15.1.1 The Lattice Approximation . . . . . . . . . . . . . . . . . . . . . . . 81715.1.2 Fourier Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81915.1.3 The Free 2-Point Green’s Function . . . . . . . . . . . . . . . . 82215.1.4 The Magic Dyson Formula for the S-Matrix . . . . . . . . 82415.1.5 The Main Wick Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 82615.1.6 Transition Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83115.1.7 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 83915.1.8 Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . 84115.1.9 General Feynman Rules for Particle Scattering . . . . . . 84515.1.10 The Magic Gell-Mann–Low Reduction Formula for

Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84715.2 A Glance at Quantum Electrodynamics . . . . . . . . . . . . . . . . . . 848

Page 21: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

Contents XXIII

15.3 The Role of Effective Quantities in Physics . . . . . . . . . . . . . . . 84915.4 A Glance at Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

15.4.1 The Trouble with the Continuum Limit . . . . . . . . . . . . 85215.4.2 Basic Ideas of Renormalization . . . . . . . . . . . . . . . . . . . . 85215.4.3 The BPHZ Renormalization . . . . . . . . . . . . . . . . . . . . . . 85515.4.4 The Epstein–Glaser Approach . . . . . . . . . . . . . . . . . . . . 85615.4.5 Algebraic Renormalization . . . . . . . . . . . . . . . . . . . . . . . . 86015.4.6 The Importance of Hopf Algebras . . . . . . . . . . . . . . . . . 861

15.5 The Convergence Problem in Quantum Field Theory . . . . . . . 86215.5.1 Dyson’s No-Go Argument . . . . . . . . . . . . . . . . . . . . . . . . 86215.5.2 The Power of the Classical Ritt Theorem in Quantum

Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86315.6 Rigorous Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864

15.6.1 Axiomatic Quantum Field Theory . . . . . . . . . . . . . . . . . 86815.6.2 The Euclidean Strategy in Constructive Quantum

Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87215.6.3 The Renormalization Group Method . . . . . . . . . . . . . . . 874

16. Peculiarities of Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 87916.1 Basic Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87916.2 The Principle of Critical Action . . . . . . . . . . . . . . . . . . . . . . . . . 88016.3 The Language of Physicists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88616.4 The Importance of the Higgs Particle . . . . . . . . . . . . . . . . . . . . 88816.5 Integration over Orbit Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 88816.6 The Magic Faddeev–Popov Formula and Ghosts . . . . . . . . . . . 89016.7 The BRST Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89216.8 The Power of Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893

16.8.1 Physical States, Unphysical States, and Cohomology . 89516.8.2 Forces and Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89616.8.3 The Cohomology of Geometric Objects . . . . . . . . . . . . . 89816.8.4 The Spectra of Atoms and Cohomology . . . . . . . . . . . . 90116.8.5 BRST Symmetry and the Cohomology of Lie Groups 902

16.9 The Batalin–Vilkovisky Formalism . . . . . . . . . . . . . . . . . . . . . . . 90516.10 A Glance at Quantum Symmetries . . . . . . . . . . . . . . . . . . . . . 906

17. A Panorama of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 90917.1 Introduction to Quantum Field Theory . . . . . . . . . . . . . . . . . . . 90917.2 Quantum Gravity and Cosmology . . . . . . . . . . . . . . . . . . . . . . . 91617.3 Exactly Soluble Models in Statistical Physics and Quantum

Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91817.4 Standard References in Quantum Field Theory . . . . . . . . . . . . 92017.5 Rigorous Approaches to Quantum Field Theory . . . . . . . . . . . 92117.6 The Fascinating Interplay between Modern Physics and Math-

ematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92417.7 The Monster Group, Vertex Algebras, and Physics . . . . . . . . . 935

Page 22: Quantum Field Theory I: Basics in Mathematics and Physics978-3-540-34764-4/1.pdf · Quantum Field Theory I: Basics in Mathematics and Physics ... • harmonic analysis and the Fourier

XXIV Contents

17.8 Historical Development of Quantum Field Theory . . . . . . . . . 94017.9 General Literature in Mathematics and Physics . . . . . . . . . . . 94117.10 Encyclopedias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94217.11 Highlights of Physics in the 20th Century . . . . . . . . . . . . . . . 94317.12 Actual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947A.2 The International System of Units . . . . . . . . . . . . . . . . . . . . . . . 950A.3 The Planck System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952A.4 The Energetic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958A.5 The Beauty of Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . 960A.6 The Similarity Principle in Physics . . . . . . . . . . . . . . . . . . . . . . 962

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025