13
Solutions to Problems in Peskin and Schroeder, An Introduction To Quantum Field Theory Homer Reid June 23, 2006 Chapter 9 Problem 9.1 Part a. Part 1: Complex scalar propagator The action for the scalars alone is S[φ,φ * ,J,J * ]= d 4 x μ φ * μ φ - m 2 φ * φ + J * φ + * = d 4 x -φ * μ μ + m 2 φ + J * φ + * = d 4 x {-φ * O KG φ + J * φ + * } where the differential operator O KG is O KG = μ μ + m 2 . Introduce shifted fields: φ(x)= φ (x)+ i d 4 yD F (x - y)J (y) φ * (x)= φ * (x) - i d 4 yD * F (x - y)J * (y) = φ * (x)+ i d 4 yD F (x - y)J * (y) where iD F (x - y) is the solution to O KG iD F (x - y)= δ (4) (x - y). 1

quantum field theory by Peskin_Chap09 solution

  • Upload
    phoool

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: quantum field theory by Peskin_Chap09 solution

Solutions to Problems in Peskin and Schroeder,

An Introduction To Quantum Field Theory

Homer Reid

June 23, 2006

Chapter 9

Problem 9.1

Part a.

Part 1: Complex scalar propagator

The action for the scalars alone is

S[φ, φ∗, J, J∗] =

d4x∂µφ

∗∂µφ−m2φ∗φ+ J∗φ+ Jφ∗

=

d4x−φ∗

[∂µ∂

µ +m2]φ+ J∗φ+ Jφ∗

=

d4x −φ∗OKGφ+ J∗φ+ Jφ∗

where the differential operator OKG is

OKG = ∂µ∂µ +m2.

Introduce shifted fields:

φ(x) = φ′(x) + i

d4yDF (x− y)J(y)

φ∗(x) = φ′∗(x) − i

d4yD∗

F (x− y)J∗(y)

= φ′∗(x) + i

d4yDF (x− y)J∗(y)

where iDF (x − y) is the solution to

OKGiDF (x− y) = δ(4)(x− y).

1

Page 2: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 2

Then the action for the scalars becomes

S =

d4x

−[

φ′∗ + i

d4yDF (x − y)J∗(y)

]

OKG

[

φ′ + i

d4yDF (x− y)J(y)

]

+ J∗

[

φ′ + i

d4yDF (x − y)J(y)

]

+ J

[

φ′∗ + i

d4yDF (x− y)J∗(y)

]

=

d4x

− φ′∗OKGφ′ − i

d4yJ(x)DF (x − y)J∗(y)

+ i

d4yJ∗(x)DF (x− y)J(y)

+ i

d4yJ(x)DF (x− y)J∗(y)

= −∫

d4xφ′∗OKGφ′ + i

d4xd4yJ∗(x)DF (x− y)J(y).

The generating functional is then

Z[J, J∗] =

DφDφ∗eiS[φ,φ∗,J,J∗]

= Z0 exp

−∫

d4xd4yJ∗(x)DF (x− y)J(y)

,

where

Z0 =

DφDφ∗e−iφ∗OKGφ,

and the two-point function is

0∣∣∣φ∗(x)φ(y)

∣∣∣0

=1

Z0

[

−i ∂

∂J(x)

] [

−i ∂

∂J∗(y)

]

Z[J, J∗]∣∣∣J=0

=

[

−i ∂

∂J(x)

]

i

d4xJ(x)DF (x− y)Z[J, J∗]

∣∣∣J=0

= DF (x− y).

Part 2: Photon propagator

The action for the photon field is

S[Aµ, jµ] =

d4x

−1

4Fµν(x)F

µν(x) + jµ(x)Aµ(x)

(1)

Integrate by parts as described pedantically in Appendix 1:

=

d4x

1

2Aµ(x)

[∂2gµν − ∂µ∂ν

]Aν(x) + jµ(x)A

µ(x)

Page 3: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 3

Go over to momentum space:

=

∫d4k

(2π)4

1

2Aµ(k)

[−k2gµν + kµkν

]Aν(−k) + jµ(−k)Aµ(k)

Go through mysterious Faddeev–Popov procedure to come up with magicalfactor of 1/ξ to desingularize the kernel of the kinetic term, which is otherwisesingular as illustrated by brute force in Appendix 2:

=

∫d4k

(2π)4

1

2Aµ(k)

[

−k2gµν +

(

1 − 1

ξ

)

kµkν

]

Aν(−k) + jµ(−k)Aµ(k)

≡∫

d4k

(2π)4

1

2Aµ(k)OEM

µνAν(−k) + jµ(−k)Aµ(k)

(2)

where the differential operator OEM

µν is

OEM

µν = ∂2gµν −(

1 − 1

ξ

)

∂µ∂ν

or in momentum space

OEM

µν = −k2gµν +

(

1 − 1

ξ

)

kµkν

and has inverse

iDµν = − 1

k2

(

gµν − (1 − ξ)kµkν

k2

)

(3)

defined such that the 4x4 matrix equation

OEM · iD = 1

is satisfied.Now introduce shifted fields:

Aν(x) = A′ν(x) −∫

d4y iDνρ(x− y)jρ(y)

The action becomes

S =

d4x

1

2A′µ(x)OEM

µνA′ν(x) − jµ(x)A

′µ(x) +1

2

d4y jµ(x)iDµρ(x − y)jρ(y)

+ jµ(x)

[

A′µ(x) −∫

d4y iDµρ(x− y)jρ(y)

]

=1

2

d4xA′µ(x)OEM

µνA′ν(x) − 1

2

d4xd4y jµ(x) iDµρ(x− y)jρ(y). (4)

Page 4: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 4

Aside. Effective fermion-fermion interaction in QED.

I think it is interesting to see how this procedure may be used to integratethe photon out of the QED lagrangian to give an effective electron-electroninteraction. If we wanted to calculate the expectation value of a product ofelectron field operators, say for example the electron density at a point x, wewould be led to consider an expression of the form

ψ(x)γ0ψ(x)⟩

=

DψDψDA ψ(x)γ0ψ(x)eiL[ψ,ψ,A]

DψDψDA eiL[ψ,ψ,A](5)

where the QED lagrangian is the spacetime integral of the QED lagrangiandensity,

L[ψ, ψ,A] =

d4xL[ψ, ψ,A] =

d4x

−1

4FµνF

µν + ψ(i/∂ −m)ψ − eψγµψAµ

.

Then the photon part of the path integral is

DA exp

i

d4x

[

− 1

4FµνF

µν − ejµAµ

]

where jµ = eψγµψ is the electron current. The argument of the exponentialhere is just the action (1). Transforming it into the form (4), the photon pathintegral is

[∫

DA′ exp

i

d4x[

A′µ(x)OEM

µνA′ν(x)

]]

× e−ie2

2

R

d4xd4y jµ(x) iDµν (x−y)jν(y)

The first term is independent of the fermions, and since there are no photonfields in the payload of the numerator in (6), this term cancels, leaving

ψ(x)γ0ψ(x)⟩

=

DψDψ ψ(x)γ0ψ(x)eiLeff[ψ,ψ]

DψDψ eiLeff[ψ,ψ]

(6)

where the effective Lagrangian now contains a nonlocal term and hence cannotbe written as the space integral of a local density function:

Leff

[ψ, ψ] =

d4x

ψ(x)(i/∂ −m)ψ(x)

− e2

2

d4x

d4y

ψ(x)γµψ(x) iDµν(x− y)ψ(y)γνψ(y)

.

Page 5: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 5

To look at the interaction term in k-space, we put

ψ(x) =

∫d4p1

(2π)4e−ip1xψ(p1)

ψ(x) =

∫d4p2

(2π)4e+ip2xψ(p2)

iDµν(x− y) =

∫d4q

(2π)4e−iq(x−y)

q2 + iε

(

gµν − (1 − ξ)qµqν

q2

)

ψ(y) =

∫d4k1

(2π)4e−ik1yψ(k1).

ψ(y) =

∫d4k2

(2π)4e+ik2yψ(k2)

The fermion-fermion interaction term becomes

− e2

2

d4x

d4y

ψ(x)γµψ(x) iDµν(x− y)ψ(y)γνψ(y)

= −e2

2

∫d4p1d

4k1d4q

(2π)12

ψ(p1 − q)γµψ(p1)[

gµν − (1 − ξ) qµqν

q2

]

ψ(k1 + q)γνψ(k1)

q2 + iε

.

The longitudinal part of iDµν actually doesn’t contribute here, because e.g.

ψ(k1+q)/qψ(k1) = ψ(k1+q)[

(/k1 + /q) − /k1

]

ψ(k1) = ψ(k1+q)[

m−m]

ψ(k1) = 0

so the interaction term reduces to

−e2

2

∫d4p1d

4k1d4q

(2π)12

ψ(p1 − q)γµψ(p1)ψ(k1 + q)γµψ(k1)

q2 + iε

.

This looks exactly like the interaction term you get when you write down thehamiltonian for the interacting homogenous electron gas, although in that casethere are no γµ matrices and the k integrals are only over 3-dimensional space.

Part b.

The lowest-order diagram is

p+ p′

k

p

k′

p′

ν

µ

= (−ie)2(p− p′)µ[ −igµν(p− p′)2

]

us(k)γνvs′(k

′)

Page 6: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 6

The squared, averaged matrix element is (ignoring the electron mass)

|M|2 =1

4e4

(p− p′)µ(p− p′)ν

(p− p′)4Tr

[/kγµ/k′γν

]

= e4(p− p′)µ(p− p′)ν

(p− p′)4[kµk

ν + kνk′

µ − (k · k′)gµν]

=e4

(p− p′)4

2[

k · (p− p′)] [

k′ · (p− p′)]

− (k · k′)(p− p′)2

(7)

We work in a frame such that

k = (E, 0, 0, E), k′ = (E, 0, 0,−E)

and

p = (E, |p| sin θ, 0, |p| cos θ), p′ = (E,−|p| sin θ, 0,−|p| cos θ).

Then (7) reads

|M|2 =e4E2

2|p|2[− cos2 θ + 1

]

=e4E2

2|p|2 sin2 θ.

Inserting the kinematic factors from P&S equation 4.84,

dΩ=

e4

256π2|p||E| sin2 θ

=e4

256π2E√E2 −m2

sin2 θ.

The total cross section is

σ = 2π

∫ π

0

dΩsin θdθ

=e4

128πE√E2 −m2

∫ π

0

sin3 θdθ

=e4

96πE√E2 −m2

.

Part c.

The two first-order diagrams are

Page 7: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 7

M1 =q

k + q

q

k

µ νρ σ

= (−ie)2∫

d4k

(2π)4

[−igµρq2

]

(2k + q)ρ[

i

(k + q)2 −m2

]

(2k + q)σ[

i

k2 −m2

] [−igσνq2

]

M2 =q q

k

µ νρ σ

= (2ie2)

∫d4k

(2π)4

[−igµρq2

] [igρσ

k2 −m2

] [−igσνq2

]

The sum of the diagrams is

M1 + M2 =

[−igµρq2

]

Πρσ(q)

[−igσνq2

]

where

Πρσ(q) = e2∫

d4k

(2π)4(2k + q)ρ(2k + q)σ − 2gρσ

[(k + q)2 −m2

]

[(k + q)2 −m2] [k2 −m2](8)

Rewrite the denominator:

1

[(k + q)2 −m2] [k2 −m2]=

∫ 1

0

dx

x [(k + q)2 −m2] + (1 − x) [k2 −m2]2

=

∫ 1

0

dx

[k2 + 2xk · q + xq2 −m2]2

Shift variables to l = k + xq in (8):

Πρσ(q) = e2∫

dx

∫d4l

(2π)44lρlσ + (1 − 2x)2qρqσ − 2gρσ

[l2 + (1 − x)2q2 −m2

]

[l2 − ∆]2,

(9)where we ignored numerator terms of odd order in l, and where

∆ = −x(1 − x)q2 +m2.

Page 8: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 8

Using lρσ → 1dl2gρσ under the integral sign, we rewrite this as

Πρσ(q) = e2∫

dx

gρσI1(∆) +[

(1 − 2x)2qρqσ − 2[(1 − x)2q2 −m2]gρσ]

I2(∆)

(10)where

I1(∆) =

(4

d− 2

)∫ddl

(2π)dl2

(l2 − ∆)2

= − i

(4π)2

(4d− 2

)d2Γ

(1 − d

2

)

∆1− d2

= − 2i

(4π)2Γ

(2 − d

2

)

∆2− d2

(here we have used the fact that(1 − d

2

(1 − d

2

)= Γ

(2 − d

2

)) and

I2(∆) =

∫ddl

(2π)d1

(l2 − ∆)2

=i

(4π)2Γ

(2 − d

2

)

∆2− d2

.

Then (10) is

Πρσ(q) =ie2

(4π)2

dxΓ

(2 − d

2

)

∆2− d2

[−2∆ − 2(1 − x)2q2 + 2m2

]gρσ + (1 − 2x)2qρqσ

=ie2

(4π)2

dxΓ

(2 − d

2

)

∆2− d2

− 2(1 − x)(1 − 2x)q2gρσ + (1 − 2x)2qρqσ

=ie2

(4π)2

dxΓ

(2 − d

2

)

∆2− d2

− (1 − 2x)2

[q2gρσ − qρqσ

]− (1 − 2x)q2gρσ

︸ ︷︷ ︸

→0

where the last term in the curly brackets integrates to 0, being odd underx → (1 − x) while the denominator, which involves ∆, is even. Then the finalresult is

iΠρσ(q) = (q2gµν − qρσ)iΠ(q2)

iΠ(q2) =e2

(4π)2

∫ 1

0

(1 − 2x)2Γ(2 − d

2 )

∆2− d2

dx

=e2

(4π)2

∫ 1

0

(1 − 2x)2[

const. − log ∆]

dx

where

const. =2

ε− γ + log 4π

Page 9: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 9

-2

-1

0

1

2

3

4

5

6

7

8

9

-2 -1 0 1 2 3 4-2

-1

0

1

2

3

4

5

6

7

8

9

q2/m2

∫1 0(1

−2x

)2lo

g(

m2

m2−x(1−x)q

2

)

dx

Figure 1: Integral in (11) as evaluated by numerical quadrature.

is infinite but q-independent at d = 4. Isolating the q-dependence of Π, we have

iΠ(q2) − iΠ(0) =e2

(4π)2

∫ 1

0

(1 − 2x)2 log

(m2

m2 − x(1 − x)q2

)

dx. (11)

Values of this integral are plotted in Figure 1. The divergence at q2 = 4m2 isclear.

Appendix: Integration-by-parts of kinetic term in photon Lagrangian

Someday I hope to be able to perform in my head the kind of manipulationsthat are needed to go from the first to the second lines of P&S equation 9.51.However, at the moment I need to work it all out in detail. The Lagrangian

Page 10: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 10

density is

L = −1

4FµνF

µν

= −1

4(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ)

= −1

2(∂0A1 − ∂1A0)(∂

0A1 − ∂1A0)

− 1

2(∂0A2 − ∂2A0)(∂

0A2 − ∂2A0)

− 1

2(∂0A3 − ∂3A0)(∂

0A3 − ∂3A0)

− 1

2(∂1A2 − ∂2A1)(∂

1A2 − ∂2A1)

− 1

2(∂1A3 − ∂3A1)(∂

1A3 − ∂3A1)

− 1

2(∂2A3 − ∂3A2)(∂

2A3 − ∂3A2).

I get scared whenever I see something like Aµ or ∂µ because I know there are abunch of hidden minus signs in there and they confuse me. To make sure thatall minus signs are explicit, let’s rewrite FµνF

µν with all minus signs displayedexplicitly. Basically we just go through and replace ∂0 = ∂0, ∂

i = −∂i, A0 = A0,

Page 11: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 11

Ai = −Ai. This gives

L = −1

2(−∂0A

1 − ∂1A0)(∂0A

1 + ∂1A0)

− 1

2(−∂0A

2 − ∂2A0)(∂0A

2 + ∂2A0)

− 1

2(−∂0A

3 − ∂3A0)(∂0A

3 + ∂3A0)

− 1

2(−∂1A

2 + ∂1A2)(−∂1A

2 + ∂1A2)

− 1

2(−∂1A

3 + ∂1A3)(−∂1A

3 + ∂1A3)

− 1

2(−∂2A

3 + ∂2A3)(−∂2A

3 + ∂2A3)

= +1

2

[

(∂0A1)2 + (∂1A

0)2 + 2(∂0A1)(∂1A

0)]

+1

2

[

(∂0A2)2 + (∂2A

0)2 + 2(∂0A2)(∂2A

0)]

+1

2

[

(∂0A3)2 + (∂3A

0)2 + 2(∂0A3)(∂3A

0)]

− 1

2

[

(∂1A2)2 + (∂2A

1)2 − 2(∂1A2)(∂2A

1)]

− 1

2

[

(∂1A3)2 + (∂3A

1)2 − 2(∂1A3)(∂3A

1)]

− 1

2

[

(∂2A3)2 + (∂3A

2)2 − 2(∂2A3)(∂3A

2)]

.

The next step is to integrate by parts, which entails making replacements like

(∂1A3)(∂3A

1) → −A3∂1∂3A1.

Also, we break up the terms with prefactors of 2 into two separate terms, each ofwhich we integrate by parts in a different way. This gives a different Lagrangianthat integrates to the same thing as the old Lagrangian did, so we will just callthe new Lagrangian L as well:

L = −1

2

[

A1∂20A

1 +A0∂21A0 +A1∂1∂0A

0 +A0∂0∂1A1]

− 1

2

[

A2∂20A

2 +A0∂22A

0 +A2∂2∂0A0 +A0∂0∂2A

2]

− 1

2

[

A3∂20A

3 +A0∂23A

0 +A3∂3∂0A0 +A0∂0∂3A

3]

+1

2

[

A2∂21A

2 +A1∂22A

1 −A2∂2∂1A1 −A1∂1∂2A

2]

+1

2

[

A3∂21A

3 +A1∂23A

1 −A3∂3∂1A1 −A1∂1∂3A

3]

+1

2

[

A3∂22A

3 +A2∂23A

2 −A3∂3∂2A2 −A2∂2∂3A

3]

.

Page 12: quantum field theory by Peskin_Chap09 solution

Homer Reid’s Solutions to Peskin and Schroeder Problems: Chapter 9 12

I will think of this as a kind of bilinear form between 4-dimensional vectors:

L = −1

2

A0A

1A

2A

3”

0

B

B

@

(∂2

1+ ∂2

2+ ∂2

3) ∂0∂1 ∂0∂2 ∂0∂3

∂1∂0 (∂2

0+ ∂2

2+ ∂2

3) −∂1∂2 −∂1∂3

∂2∂0 −∂2∂1 (∂2

0+ ∂2

1+ ∂2

3) −∂2∂3

∂3∂0 −∂3∂1 −∂3∂2 (∂2

0+ ∂2

2+ ∂2

1)

1

C

C

A

0

B

B

@

A0

A1

A2

A3

1

C

C

A

Appendix 2: Convincing the skeptics among us that −k2gµν + kµkν issingular, but −k2gµν + (1 − 1

ξ)kµkν is invertible with inverse given by

(3)

These should all work in both octave or matlab.

octave:1> g=[1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 -1];

octave:2> ku=rand(4,1) % k with raised index

ku =

0.880788

0.157326

0.075570

0.481218

octave:3> kl=g*ku; % k with lowered index

octave:4> k2=kl’ * ku

k2 = 0.51375

octave:5> kmat=-k2*g + kl * kl’

kmat =

0.262033 -0.138571 -0.066562 -0.423851

-0.138571 0.538505 0.011889 0.075708

-0.066562 0.011889 0.519465 0.036366

-0.423851 0.075708 0.036366 0.745324

octave:6> rank(kmat)

ans = 3

Sure enough, the matrix has less than full rank! The problem is the existenceof an eigenvector with eigenvalue 0, namely kµ itself.

octave:7> kmat*ku

ans =

5.5511e-17

-1.3878e-17

0.0000e+00

-5.5511e-17

On the other hand, the matrix modified to contain the magical Fadeev-Popovfactor is nonsingular:

Page 13: quantum field theory by Peskin_Chap09 solution

octave:8> xi=rand

xi = 0.35839

octave:9> kmat2=-k2*g + (1-1/xi)*kl*kl’

kmat2 =

-1.902603 0.248076 0.119162 0.758798

0.248076 0.469442 -0.021285 -0.135536

0.119162 -0.021285 0.503530 -0.065104

0.758798 -0.135536 -0.065104 0.099185

octave:10> rank(kmat2)

ans = 4

Moreover, its inverse is just the matrix (3):

octave:11> iD=-(g - (1-xi)*ku*ku’/k2) / k2

iD =

-0.060627 0.336846 0.161802 1.030323

0.336846 2.006626 0.028901 0.184036

0.161802 0.028901 1.960341 0.088400

1.030323 0.184036 0.088400 2.509375

octave:12> kmat2*iD

ans =

1.00000 -0.00000 -0.00000 -0.00000

0.00000 1.00000 0.00000 0.00000

0.00000 0.00000 1.00000 0.00000

0.00000 0.00000 0.00000 1.00000

13