40
www.fcx.com CONNECTING THE FUTURE ® Doug Allen April 24, 2012 Quantitative Rietveld XRD Mineralogy of Copper and Molybdenum Ore Products

Quantitative Rietveld XRD Mineralogy of Copper and

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

www.fcx.com CONNECTING THE FUTURE®

Doug Allen

April 24, 2012

Quantitative Rietveld XRD Mineralogy of Copper and

Molybdenum Ore Products

Safety Share – Watch the Ground – Even in the Park ing Lot

3

Our Targets Reduce Cost, M inimize Risk, Optimize Metallurgy

Profitable Cu Recovery

Longevity of Lower Grade Resources

Getting Maximum Value & Mine Life Out of Existing Resources & Core Assets.

4

Mineralogy – The Driver for Ore Control & Processing

Concentrators Heap/Stockpile Leaching Comminution Crushing Response Ore Hardness Throughput Liberation/Locking Agglomerate Quality Reagent Use/Consumption Moisture Addition Selectivity Liquid & Air Permeability Middlings Cu Extraction Thickener Problems Salt Precipitation Optimal Recovery Pyrite Content Slimes Generation PLS Impurities Acid Consumption

Mineralogical Parameters Affect All Of The Process Parameters

5

Ore Control & Process Optimization Require New Tools

6

Ore Type Coding Comparison

TickMarks

Triangle lines

COR AC2

COR AC3

MET AC3

MET AC4

MET AC5

NWX AC2

NWX AC3

NWX AC4

NWX AC5

Ksp

Qz

Se

TickMarks

Triangle lines

COR QSAC1

MET QSAC1

MET QSAC2

MET QSAC3

NWX QSAC1

NWX QSAC2

Ksp

Qz

Se

TickMarks

Triangle lines

COR QSAC1

MET QSAC1

MET QSAC2

MET QSAC3

NWX QSAC1

NWX QSAC2

Ksp

Qz

Se

Visual XRD

QEMSCAN

7

Graphical Presentation of Data

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

QEM

SCAN

XRD

1XR

D 2

XRD

3D

4 SS

D4

Vant

ec

QEM

SCAN

XRD

1XR

D 2

XRD

3D

4 SS

D4

Vant

ec

QEM

SCAN

XRD

1XR

D 2

XRD

3D

4 SS

D4

Vant

ec

QEM

SCAN

XRD

1XR

D 2

XRD

3D

4 SS

D4

Vant

ec

QEM

SCAN

XRD

1XR

D2

XRD

3

QEM

SCAN

XRD

1XR

D 2

XRD

3

XRD

1XR

D2

XRD

3

QEM

SCAN

XRD

1XR

D 2

XRD

3

QEM

SCAN

XRD

1XR

D 2

XRD

3D

4 SS

D4

Vant

ec

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sam. 7 Sample 8 Sample 9

Mine 1 Mine 1 Mine 1 Mine 2 Mine 2 Mine 2 Mine 3 Mine 3 Mine 3

560-1 560-2 560-3 560-4 560-5 560-6 560-7 560-8 560-9

Rie

tvel

d M

iner

alog

y (W

t%)

Samples and Labs

Rietveld Round Robin Results Other

Iron Oxide

Chalcopyrite

Pyrite

Carbonates

Alunite

Kaolinite

Chlorite

Pyroxene

Amphibole

Biotite

Muscovite

Plagioclase

K-feldspar

Quartz

8

Freeport-McMoRan Technology Center XRD History

Year Developments Instru-ments

Miner-alogist

Tech-nician

XRD /Yr

NIR /Yr

2000 Occasional XRD by microscopists. Old orphaned Philips 1 0.2 0 ~100 2002 Rietveld by contract for NIR models. 1st Bruker D4 1 1 0 ~100 2003 Began in-house support of NIR Models 1 1 1 ~1K 2004 Began micronizing 1 1 2 ~2K 2005 Changed to Co Radiation. Phased out contract lab. 2 2 3 ~3K 2006 Earliest in-house automated Rietveld 2 2 ~4K 2007 Design of Automated AXN Lab 4 2 7K 2008 Construction of AXN Lab 4 2 5 14K 2009 Began AXN Operations 7 5 9 17K 100K 2010 Automated import of Resultls to Excel or LIMS 7 6 9 24K 110K 2011 Fully implemented automated Rietveld. 7 7.5 12 28K 168K 2012 Implemented chemistry reconciliation macro 7 7 13 36K 185K

9

XRD-NIR Design Capacity

500 Samples/Day + 50 QC Samples – XRD 700 Samples/Day + 50 QC Samples – NIR

Turnaround 24-36 Hours

24 hour/day operation

Automatic Transfer of Blast Hole Splits From

Central Analytical Services Center (CASC)

10

XRD Analysis

- Received Pattern timing Results

50494847464544434241403938373635343332313029282726252423222120191817161514131211109

6,400

6,200

6,000

5,800

5,600

5,400

5,200

5,000

4,800

4,600

4,400

4,200

4,000

3,800

3,600

3,400

3,200

3,000

2,800

2,600

2,400

2,200

2,000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

9.989366

10 Minute Scan

+

10 Minute Rietveld Analysis for Routine Samples

+

Automated Reporting through LIMS

11

Near Infrared (NIR) at AXN Lab High Performance

Extremely Fast Scanning Time 30 seconds Very User Friendly

Analyzes for Clay and Alteration Minerals

Excellent tool for Resource Control

Calibration Model Must be Constructed for

Each Ore Body – 300 to 500 XRD Refinements

Non-destructive Testing

NIR eliminates the need for the hazardous reagents and time consuming analysis

Auto XRD-NIR (AXN) Lab Safford High Throughput-Low Cost M ineralogical Ore Profiling

13

Auto XRD-NIR Lab Safford High Throughput-Low Cost M ineralogical Ore Profiling

Modern “Bucking” Room

Automatic XRD and NIR Data Capture

XRD-NIR Instrument Room

15

Prepmaster Control Software

Micronizing Lab – Not Automated

Typical Particle Size

Wet Micronize vs Auto Dry Grind

Diameter um

Mean 7.4 um P95% 15 um Top size 28 um

Mean 15.5 um P95% 53 um Top size 280 um

Press Requirements

Developing an automated press designed for XRD (not XRF) was the key to the

automated circuit.

Back-Loading Against Frosted Surface No Binder

Low Pressure Minimize Preferred Orientation

Press Development

Manual Prototype Herzog Automation

AXN QA/ QC Overview NIST Corundum standard analyzed daily on each XRD

EVA peak position and area plotted on control chart

Mylar Standard analyzed daily on NIR

AXN Ore Standard (Granite) analyzed daily on each XRD Synthetic standard being developed for XRD Topas Rietveld refinement results for charting

Site Specific Ore Standards analyzed daily on NIR

Minimum of 5 % of samples are duplicated

Blank (Glass) samples prepared daily to check for contamination

Pulverizing mills checked daily to ensure proper particle size is

produced

NIST 1976 Mounted in Bruker Ring XRD # 4 Oct 2011 to Apr 2013

AXN XRD Granite Ore Standard XRD # 3 – January 2010

Sample analyzed daily on each XRD

AXN XRD Ore Standard XRD # 3 – January 2010

AXN XRD Ore Standard

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Day of Month

Wt.

%

QuartzK-feldsparAlbiteMuscoviteBiotiteHematiteChalcopyrite Mount 1 Mount 2

• Sample scanned every day on each individual XRD machines

• Mount replaced approximately every two weeks

AXN Glass Sample

Scanned daily to check for contamination from the XRD mills

No crystalline (mineral) peaks present

Bulk of Freeport-McMoRan XRD Most Freeport-McMoRan samples are not complete

unknowns. • Blasthole Samples. • Mill Feeds, Concentrates, Tailings. • Exploration Drill Core or Cuttings. • Leach Pile Feed & Residue Samples.

We have a good idea of the minerals that are present in each project.

Most large projects have very similar samples with variations in Wt%.

Some sample types, however, are very complex.

Typical Sample Copper Rougher Concentrate

858075706560555045403530252015105

9,500

9,000

8,500

8,000

7,500

7,000

6,500

6,000

5,500

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

-500

-1,000

-1,500

-2,000

-2,500

-3,000

58.592765

Quartz 21.16 %K-feldspar 3.81 %Microcline Inter1 8.44 %Plagioclase 25 2.08 %Muscovite 2M1 1.00 %Muscovite 3T 1.01 %Chlorite 2.05 %Kaolinite (BISH) 1.45 %Hornblende 0.99 %Epidote 4.10 %Siderite 2.39 %Jarosite 1.46 %Hematite 0.70 %Pyrite 37.04 %Chalcopyrite 3.49 %Chalcocite 3.97 %Covellite 2.70 %Bornite 1.16 %Molybdenite 2H 0.14 %Digenite 0.87 %

A More Complex M ill Feed Composite

858075706560555045403530252015105

6,4006,2006,0005,8005,6005,4005,2005,0004,8004,6004,4004,2004,0003,8003,6003,4003,2003,0002,8002,6002,4002,2002,0001,8001,6001,4001,2001,000

800600400200

0-200-400-600-800

-1,000-1,200-1,400-1,600-1,800-2,000-2,200-2,400-2,600-2,800

5.2408716.108376

7.775848

Chalcopyrite 0.54 %Covellite 0.38 %Pyrite 0.40 %Sphalerite Iron 0.22 %Magnetite 2.14 %Calcite 10.61 %Dolomite 3.07 %Siderite 0.62 %Anhydrite 6.13 %Gypsum 0.76 %Bassanite 1.38 %Quartz 10.45 %K-feldspar Sand 9.49 %Plagioclase 25 12.11 %Muscovite 3T 0.76 %Biotite 3.10 %Phlogopite 1M Mica 1.31 %Kaolinite 1A 0.42 %Paragonite 2M 1.26 %Grossular 1.82 %Andradite 3.25 %Forsterite Iron 6.56 %Diopside 14.68 %Actinolite 3.24 %Talc 1.33 %Clinochlore IIb-4 3.37 %Lizardite 1T 0.49 %

Full List of M inerals Pushes Topas Limits But I t Still Converges

858075706560555045403530252015105

6,000

5,500

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

-500

-1,000

-1,500

-2,000

-2,500

-3,000

-3,500

-4,000

-4,500

-5,000

-5,500

-6,000

-6,500

-7,000

-7,500

-8,000

-8,500

-9,000

5.2383386.5

7.959107

Chalcopyrite 0.70 %Covellite 0.46 %Bornite 0.12 %Pyrite 0.42 %Sphalerite Iron 0.32 %Magnetite 1.97 %Calcite 7.83 %Dolomite 2.56 %Siderite 0.36 %Anhydrite 5.96 %Gypsum 0.70 %Bassanite 1.12 %Quartz 9.53 %K-feldspar Sand 5.71 %Plagioclase 25 10.10 %Muscovite 3T 0.40 %Biotite 2.76 %Phlogopite 1M Mica 1.00 %Kaolinite 1A 0.43 %Paragonite 2M 1.36 %Grossular 0.40 %Andradite 2.55 %Forsterite Iron 5.84 %Diopside 13.41 %Actinolite 1.09 %Talc 1.41 %Clinochlore IIb-4 3.96 %Lizardite 1T 0.43 %Digenite 0.15 %Chalcocite 0.24 %Djurleite 0.32 %Marcasite 0.32 %Marcasite 26756 0.25 %Pyrrhotite 3T 0.12 %Molybdenite 2H 0.00 %Molybdenite 3R 0.00 %Galena 0.11 %Hematite 0.00 %Goethite 0.21 %Ilmenite 0.00 %Magnesium Calcite 1.71 %Magnesite 0.17 %J it 0 28 %

42 of 53 phases displayed

Typical Variability

Mill Feed Composites

• Aug 2009 through April 2010.

• Two shift composites/day. • Variability measured on 29 pairs of duplicates.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

StdDev

Avg

Wt%

Mineral Avg Std Dev

Quartz 22.5 0.53 K-feldspar 23.0 0.46 Plagioclase 30.7 0.52 Muscovite 3.5 0.72 Biotite 4.1 0.31 Chlorite 3.1 0.33 Kaolinite 0.9 0.15 Pyroxene 1.3 0.17 Calcite 3.0 0.11 Siderite 0.5 0.08 Anhydrite 1.1 0.16 Gypsum 0.4 0.19 Pyrite 0.9 0.08 Molybdenite 0.04 0.015

One Month Daily Blast Hole Analysis

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

12/3

1/08

01/0

2/09

01/0

7/09

01/1

1/09

01/1

9/09

01/2

7/09

01/0

7/09

01/0

9/09

01/0

8/09

01/0

9/09

01/1

2/09

01/1

4/09

01/1

5/09

01/1

7/09

01/2

0/09

01/2

1/09

01/2

2/09

01/2

7/09

02/1

9/09

02/1

9/09

02/1

9/09

02/1

9/09

02/2

0/09

02/2

0/09

02/2

0/09

02/2

0/09

02/2

3/09

02/2

3/09

02/2

3/09

02/2

4/09

02/2

4/09

02/2

4/09

02/2

4/09

02/2

4/09

02/2

5/09

02/2

5/09

02/2

5/09

02/2

6/09

02/2

6/09

02/2

6/09

02/2

6/09

Sample Dates

Wt.

Perc

ent

QKP Muscovite Biotite and Chlorite Total Clay Carbonates Other

31

0%

20%

40%

60%

80%

100%

61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61

Rock Type

Min

eral

Wt.

%

magnetite

biotite

plagioclase

K-feldspar

quartz

0%

20%

40%

60%

80%

100%

61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61

Rock Type

Min

eral

Wt.

%

magnetite

biotite

plagioclase

K-feldspar

quartz

Typically 75% of M ill Feed XRD Mineralogy of Ore Logged as Type 61

0%

20%

40%

60%

80%

100%

61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61

Rock Type

Min

eral

Wt.

%

magnetite

biotite

plagioclase

K-feldspar

quartz

32

Tailing Thickener Product High Settling/ Rake Breakdown

33

3750 Bench NIR Blasthole Data

Calcite Chlorite

Biotite Acid Con.

Recent Developments Automated Refinement in Batch

Mode

Refinement Reconciliation with Chemical Assay

Automated Results Import into LIMS/Business Objects

34

Batch Rietveld Automation

We rejected TOPAS BBQ Option Refinements are run automatically and reported

It has no facility to check refinements visually and rerun

Has been successful in cement industry

Developed an in-house automated refinement program Visual Basic macros in MS Excel

Runs repeated samples using the same start file in batch mode

Results are (.pro) files that can be opened in Graphical User Interface (GUI)

Mineralogists or expert techs can rapidly open each (.pro) file in the GUI for a final check and/or make any adjustments needed.

36

Batch Rietveld Automation

Load profiles and Start.

Restore all colors.

Keep obs & calc l ine colors.Keep obs & calc l ine colors.

Show Topas refinement window.

Selected .inp file:

Selected .pro file:

Mineral Name Det. Limit (wt%)

Load Inp & Pro files

Detection Limits

Topas Auto Refinement Program

Clear

------------------------Snip-----------------

Browse to directory with saved (.inp) file exported from start.pro file. Filenames are copied into macro. Optional detection limits can be set. Plotting options for output (.pro) file. Controls whether “DOS” window is visible. Opens startfile directory (or browse); Select and open any number of (.raw) files; Creates (.inp) file for each (.raw) file; runs tc.exe for each, turns off phases <DL, reruns from start conditions; converts (.out) file to (.pro) file for use in GUI

37

Chemical Assay Reconciliation Screenshot of chemistry setup page

38

Chemical Assay Reconciliation Screenshot of XRD – Assay Comparison Page

Continuing Issues

Automated Micronizing

Eliminating Preferred Orientation

Modeling Highly Variable Disordered Clays (including Chrysocolla)

Thank You

Questions or Suggestions?