39
Quantitative analysis of electroencephalographic (EEG) signals www.epileptologie- bonn.de Dept. of Epileptology University of Bonn

Quantitative analysis of electroencephalographic (EEG) signals

  • Upload
    keiji

  • View
    73

  • Download
    2

Embed Size (px)

DESCRIPTION

Dept. of Epileptology University of Bonn. Quantitative analysis of electroencephalographic (EEG) signals. www.epileptologie-bonn.de. Quantitative EEG analysis. Quantitative EEG-methods: why? Example: Wavelet-based event-related potential (ERP)-analysis - PowerPoint PPT Presentation

Citation preview

Page 1: Quantitative analysis of electroencephalographic (EEG) signals

Quantitative analysis ofelectroencephalographic (EEG) signals

www.epileptologie-bonn.de

Dept. of EpileptologyUniversity of Bonn

Page 2: Quantitative analysis of electroencephalographic (EEG) signals

•Quantitative EEG-methods: why?

•Example: Wavelet-based event-related potential (ERP)-analysis

•Phase-locking analysis of mediotemporal lobe (MTL) depth ERPs

•Declarative memory formation: MTL connectivity

•Summary

Quantitative EEG analysis

Page 3: Quantitative analysis of electroencephalographic (EEG) signals

Quantitative EEG methods: why?Example: sleep-EEG (qualitative)

Rechtschaffen and Kales, 1968

2 Hz

5 Hz

10 Hz

20 Hz

30 Hz

Page 4: Quantitative analysis of electroencephalographic (EEG) signals

Time

Hypnogram

Quantitative EEG methods: why?Example: sleep-EEG (qualitative)

Page 5: Quantitative analysis of electroencephalographic (EEG) signals

Quantitative EEG methods: why?Example: sleep-EEG (quantitative)

Electroencephalogr Clin Neurophysiol 1996; 98: 401-410

Page 6: Quantitative analysis of electroencephalographic (EEG) signals

Quantitative EEG methods: why?EEG = superposition of oscillations

Visual analysis: only low-frequency oscillations perception, cognitive processes!

1/f amplitude- characteristic

Page 7: Quantitative analysis of electroencephalographic (EEG) signals

Theta-gamma interaction within hippocampus

Chrobak u. Buzsáki, J. Neurosci. 1998

Interactions(hippocampus):

Theta (5Hz)

Gamma (>30Hz)

Quantitative EEG methods: why?

Page 8: Quantitative analysis of electroencephalographic (EEG) signals

Quantitative EEG methods: why?Event-related EEG: averaging

Average

event-related

potential (ERP)

Reduction of background „noise“: 1/n

Page 9: Quantitative analysis of electroencephalographic (EEG) signals

Quantitative EEG methods: why?

Averaged ERP-response ? ?

Amplitude-Changes Phase-Locking

Event-related EEG

evoked induced ( cognition)

Page 10: Quantitative analysis of electroencephalographic (EEG) signals

Wavelet-based ERP analysisTraditional approach: Fourier-transform

Power density

P () = F () F* ()

Spectral Coherence

Cxy() = |Pxy()|2 Pxx() Pyy()

Fourier-transform

F () = f(t) eit dt

Discrete: Fast-Fourier-transform (FFT)

f = 1 / T !

Page 11: Quantitative analysis of electroencephalographic (EEG) signals

Wavelet-based ERP analysisPhase-locking vs. amplitude-changes

Morlet-Wavelet: w(t,) = exp(-t2/22) * exp (it) Wavelet-Transform: W(t,) = f(t-) * w(,) d

Power (t,) = W(t,) 2 Phase (t,) = arctan (Im (t,) / Re (t,))

Page 12: Quantitative analysis of electroencephalographic (EEG) signals

Wavelet-based ERP analysis

Original EEG

-150

-100

-50

0

50

100

150

Zeit [s]0 5 10

Wavelet-transform (real part)

-50

-30

-10

10

30

50

uV

* Amplitude/Power (t,)

Phase (t,)

Phase-locking vs. amplitude-changes

Page 13: Quantitative analysis of electroencephalographic (EEG) signals

WT ERP-responses:

Wavelet-based ERP analysis

t,1Phases: t,2t,3 ...

Circular variance: | e i |

Shannon entropy: 1 + P log P

Histogram P():

-180 ° 0 ° 180 °

0°-180° 180°

Phase-locking vs. amplitude-changes

Variance?

Phase-locking index

e.g. Lachaux et al., Hum. Brain Mapp. 1999; Tass et al., Phys. Rev. Lett. 1998

Page 14: Quantitative analysis of electroencephalographic (EEG) signals

Brain region A

Brain region B

t,1 ? t,2 ? t,3 ? t,4 ?

Phase-synchronisation

Variance of phase differences t Synchronisation index

Wavelet-based ERP analysis

Page 15: Quantitative analysis of electroencephalographic (EEG) signals

Phase-locking analysis of MTL depth ERPsEpilepsy (prevalence 1%)

Seizures:

Unfamilar sensations

Unvoluntary body movements

Loss of consciousness

Page 16: Quantitative analysis of electroencephalographic (EEG) signals

Parahippocampal cortex

Rhinal cortex

Amygdala

Hippocampus

Phase-locking analysis of MTL depth ERPsMTL depth-recordings in epilepsy patients

MTL-epilepsy: 45% pharmaco-resistant

Presurgical evaluation: seizure focus?

Memory processes

Page 17: Quantitative analysis of electroencephalographic (EEG) signals

Phase-locking analysis of MTL depth ERPs

(neue Wörter)„Oddball experiment“: X ... X ... X ... O ... X ... X ... O ... X ... X

Hippocampus sclerosis Non-pathological side

Target Target

Zeit (ms)

-200 0 200 400 600 800 1000

Am

plit

ud

e (

µV

)

-120

-100

-80

-60

-40

-20

0

20

40

60

TargetNontarget

Zeit (ms)

-200 0 200 400 600 800 1000

Am

plit

ud

e (

µV

)

-120

-100

-80

-60

-40

-20

0

20

40

60

TargetNontarget

Neuroimage 2005; 24: 980-989

Hippocampal P3

Page 18: Quantitative analysis of electroencephalographic (EEG) signals

Phase-locking analysis of MTL depth ERPs

Phase-locking

Power

Fre

qu

en

cy (

Hz)

5

10

15

20

25

30

-1 0 1 2 3 4 5

time(ms)

0 200 400 600 800

Hippocampus sclerosis Non-pathological side

time(ms)

0 200 400 600 800

Fre

qu

en

cy (

Hz)

5

10

15

20

25

30

-2 -1 0 1 2 3

Neuroimage 2005; 24: 980-989

Hippocampal P3: low-frequency range

Page 19: Quantitative analysis of electroencephalographic (EEG) signals

Phase-locking analysis of MTL depth ERPs

Phase-locking

Power

Hippocampus sclerosis Non-pathological side

Neuroimage 2005; 24: 980-989

Hippocampal P3: gamma range

Fre

qu

en

cy (

Hz)

32

34

36

38

40

42

44

46

48

-1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5

time (ms)0 200 400 600 800 1000

Fre

qu

en

cy (

Hz)

32

34

36

38

40

42

44

46

48

-1,0 -0,5 0,0 0,5 1,0 1,5

0 200 400 600 800 1000time (ms)

Page 20: Quantitative analysis of electroencephalographic (EEG) signals

(neue Wörter)„Continuous recognition experiment“:

Haus ... Schiff ... Pferd ... Schiff ... Baum ... Haus ... Tisch ...

Old

time (ms)

-200 0 200 400 600 800 1000

am

plitu

de (

µV

) -60

-40

-20

0

20

Correct rejections (new)Hits (old)

OldNewNewNew New New

J. Cogn. Neurosci. 2004; 16:1595-1604

Phase-locking analysis of MTL depth ERPsAnterior mediotemporal lobe (AMTL)-N4

Page 21: Quantitative analysis of electroencephalographic (EEG) signals

J. Cogn. Neurosci. 2004; 16:1595-1604

Phase-locking

Power

( fMRI)

ERPs

(neue Wörter)(old words) (new words)

Phase-locking analysis of MTL depth ERPsAMTL-N4

Page 22: Quantitative analysis of electroencephalographic (EEG) signals

Declarative memory formation: MTL connectivityMTL depth electrodes

Interaction?

Declarative long-term memory: Consciously accessible information,

e.g. events and facts

Rhinal Cortex

Convergence of sensory data,semantic preprocessing Hippocampus

Synaptic plasticity, long term potentiation (LTP)

Page 23: Quantitative analysis of electroencephalographic (EEG) signals

•9 TLE patients with unilateral focus

•“Dm-effect” (difference due to memory):

remembered vs. forgotten words

Subsequent memory paradigm

Sahne

„Uhr“„Appetit“

„Sahne“„Ende“„Leistung“

„Mutter“

87

LearningLearning DistractionDistraction

?

Free recallFree recall

„84“„81“

„78“„75“

„72“. . .

Declarative memory formation MTL connectivity

Page 24: Quantitative analysis of electroencephalographic (EEG) signals

I I I I I I I I I II2000

µV– 20

400 1600120080020

ms

Rhinal cortex

Hippocampus

remembered

forgotten

Fernández et al., Science 1999

MTL-ERPs: “difference due to memory”

Dm-effects correlated (r = 0.92) rhinal-hippocampal interaction

Direct evidence?

-sync. coupling of assemblies

Declarative memory formation: MTL connectivity

Page 25: Quantitative analysis of electroencephalographic (EEG) signals

time [s]

Fre

quen

cy [

Hz]

0.0 0.5 1.0 1.532

34

36

38

40

42

44

46

48

- 30 - 20 - 10 0 + 10 + 20 + 30

Change [%]: remembered - forgotten

Desynchronisation Synchronisation

Nat. Neurosci. 2001; 4: 1259-1264

Rhinal-hippocampal gamma synchronisationDeclarative memory formation: MTL connectivity

-180 ° 0 180 °

0°-180° 180°

Phase-synch. index:

remembered - forgotten

Page 26: Quantitative analysis of electroencephalographic (EEG) signals

Nat. Neurosci. 2001; 4: 1259-1264

Changes of gamma power

Rhinal cortex

-10

0

10

20

Changes of gamma power compared to baseline

Hippocampus

-10

0

10

20

time [s]

remembered forgotten

0.0 0.5 1.0 1.5

Declarative memory formation: MTL connectivity

Page 27: Quantitative analysis of electroencephalographic (EEG) signals

Interpretation

• Rhinal-hippocampal phase coupling initiates information transfer ( 100 ms poststim.)

• Information transfer after onset of rhinal dm-effect (ERPs, 300 ms poststim.)

• Phase decoupling terminates information transfer ( 1000 ms poststim.)

• Reduced gamma power: specific assembly activation, suppression of gamma “noise”

Declarative memory formation: MTL connectivity

Page 28: Quantitative analysis of electroencephalographic (EEG) signals

Memory-related theta-gamma cooperation

Sp

ectr

al co

he

ren

ce

[%

] b

etw

ee

nrh

ina

l co

rte

x a

nd

hip

po

ca

mp

us

0

5

10

15

20

25

30

forgotten words

remembered words

delta1-4Hz

theta4-7Hz

alpha17-10Hz

alpha210-13Hz

beta113-16Hz

beta216-19Hz

Eur. J. Neurosci. 2003; 17: 1082-1088

"dm"-effect: Gamma-synchronization

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

"dm

"-ef

fect

: The

ta-c

oher

ence

0,0

0,2

0,4

0,6

0,8

1,0

r = 0.80, p = 0.018

Non-specific increase of theta-coherence

Specific theta-gamma

interaction

Declarative memory formation: MTL connectivity

Page 29: Quantitative analysis of electroencephalographic (EEG) signals

Gamma activity: interactions with theta and action potentials

Chrobak u. Buzsáki, J. Neurosci. 1998

Interactions(hippocampus):

Theta (5Hz)

Gamma (>30Hz)

Spikes

Declarative memory formation: MTL connectivity

Page 30: Quantitative analysis of electroencephalographic (EEG) signals

Hebbian assembly formation

Correlated firing of pre- and postsynaptic neuron Increase of synaptic efficacy (1949)

Experimental validation:

• Long-term potentiation and depression (LTP, LDP)• Spike timing dependent synaptic plasticity (STDP)

Synchronized gamma activity: precise spike timing (t < 10 ms)

(z.B. Engel u. Singer, Trends Cogn. Sci. 2001; Fries et al., Nat. Neurosci. 2001)

Abbott u. Nelson, Nat.. Neurosci. 2000

Declarative memory formation: MTL connectivity

Page 31: Quantitative analysis of electroencephalographic (EEG) signals

Rhinal-hippocampal coupling during sleep

• Dreams are difficult to remember

• Unrecognized scene shifts

• Duration severely misestimated

Memory formation during (REM-) sleep reduced

(e.g. Hobson et al., Behav. Brain Sci. 2000)

Sleep recordings in 8 unilateral MTLE patients

(Indirect) electrophysiological correlate?

Declarative memory formation: MTL connectivity

Page 32: Quantitative analysis of electroencephalographic (EEG) signals

Rhinal-hippocampal coupling during sleep

Eur. J. Neurosci. 2003; 18: 1711-1716

Declarative memory formation: MTL connectivity

0

10

20

30

40

WachStadium 1Stadium 2SWS = 3, 4REM

1-4

4-8

8-12

12-16

16-20

20-28

28-36

36-44 Hz

Page 33: Quantitative analysis of electroencephalographic (EEG) signals

Rhinal-hippocampal 40 Hz coherence

Awake

Stage 1

REM

Stage 2

SWS

0.5

0.

Time (hours)0 2 4 6

Eur. J. Neurosci. 2003; 18: 1711-1716

Declarative memory formation: MTL connectivity

Page 34: Quantitative analysis of electroencephalographic (EEG) signals

Memory formation during sleep

Direct correlate?

Awakenings from REM sleep: dream recall in 6 patients (good, 79.2%) vs. 6 patients (poor, 6.7%)

• No group differences in daytime memory performance

• Sleep: “spontaneous memory formation”, attention, volition, semantic processing

Core factor of declarative memory formation

Declarative memory formation: MTL connectivity

Page 35: Quantitative analysis of electroencephalographic (EEG) signals

EEG power within hippocampusDeclarative memory formation: MTL connectivity

Page 36: Quantitative analysis of electroencephalographic (EEG) signals

Rhinal-hippocampal EEG coherenceDeclarative memory formation: MTL connectivity

Page 37: Quantitative analysis of electroencephalographic (EEG) signals

Rhinal-hippocampal connectivity

= core factor of

declarative memory formation

Declarative memory formation: MTL connectivityConclusion

Page 38: Quantitative analysis of electroencephalographic (EEG) signals

Summary

Quantitative EEG-analysis

•EEG = superposition of functionally specific oscillations

•Averaged ERPs = phase locking + amplitude changes

•Connectivity may be more relevant than amplitudes of local activations

Page 39: Quantitative analysis of electroencephalographic (EEG) signals

Guillén Fernández

Peter Klaver

Christoph Helmstädter

Thomas Dietl

Rüdiger Köhling

Edgar Kockelmann

Martin Lutz

Wieland Burr

Hakim Elfadil

Mario Städtgen

Carlo Schaller

Christian E. Elger

Kontakt: [email protected]

Dept. of EpileptologyUniversity of Bonn

www.epileptologie-bonn.de