qm_ch4

Embed Size (px)

Citation preview

  • 8/3/2019 qm_ch4

    1/10

    Chapter 4. Harmonic Oscillator

    1 Examples of Harmonic Oscillators

    Vibration of the nuclei in molecules

    r0

    r: the distance between two atoms

    r

    2

    00)(

    2

    1)( rrkVrV +

    -V0

    Vibration of atoms in solids: phonons Vibration modes of a continuous physical system - application to radiation (photons)

    2 Eigenvalues of the Hamiltonian

    2.1 Hamiltonian

    The Hamiltonian operator is

    H = p22m

    + 12

    m2x2

    Define two operators

    a =

    m

    2h

    x +

    ip

    m

    : annihilation operator a =

    m

    2h

    x ip

    m

    : creation operator

    Consider the commutator [a, a] =1

    2h(

    i[x, p] + i[p, x]) = 1

    Using x =

    h2m (a + a

    ) and p = 1i

    mh2 (a a),

    H =1

    2m

    1

    i

    mh

    2(a a)

    2

    +1

    2m2

    h

    2m(a + a)

    2

    1

  • 8/3/2019 qm_ch4

    2/10

    = h4

    a2 aa aa + (a)2

    +h

    4

    a2 + aa + aa + (a)2

    =h

    2(aa + aa) =

    h

    2(aa + 1 + aa)

    H = h(aa +

    1

    2

    ) = h(N +1

    2

    ) where N = aa.

    We denote an eigenket of N by its eigenvalue n as N|n = n|n.

    H|n = (n + 12

    )h|n energy eigenvalue, En = (n + 12)h

    2.2 Annihilation and Creation Operator

    [N , a] = [aa, a] = a[a, a] + [a, a]a = a[N , a] = [aa, a] = a[a, a] + [a, a]a = a

    Thus, Na|n = ([N , a] + aN)|n = (n + 1)a|n: a|n is an eigenstate of N with eigenvalue of (n + 1). a: creation operatorSimilarly, Na|n = ([N , a] + aN)|n = (n 1)a|n: a|n is an eigenstate of N with eigenvalue of (n 1). a: annihilation operator

    We write a|n = c|n 1, thenn|aa|n = |c|2n 1|n 1 = |c|2= nn|n

    = n

    Therefore, |c|2 = n c = n

    Thus, a|n = n|n 1 Similarly, a|n = n + 1|n + 1

    n is a positive integer.

    Proof) n = n|N|n = (n|a)(a|n) 0.If n is not integer, (a)m|n |n m n m is negative when m > n.Thus, n should be positive integer.

    2

  • 8/3/2019 qm_ch4

    3/10

    3 Eigenstates of the Hamiltonian

    3.1 Construction of the number state |n

    The ground state has n = 0: |0 and E0 = 12 h.Successive application of a to the ground state gives rise to

    |n =

    (a)nn!

    |0, En = (n + 1

    2)h

    3.2 Matrix Elements

    Using the number states {|n} as a basis,

    n|a|n = nn,n1n|a|n = n + 1n,n+1

    n|x|n =

    h2m

    (nn,n1 + n + 1n,n+1)

    n|p|n = i

    mh

    2(nn,n1 +

    n + 1n,n+1)

    a =

    0

    1 0 0 0 0

    2 0

    0 0 0

    3 ...

    ......

    ...

    0 0 0 0 0 n ...

    ......

    ...

    a =

    0 0 0 0 1 0 0 0

    0

    2 0 0 ...

    ......

    ...

    0 0 0 n + 1 0 ...

    ......

    ...

    3.3 x-representation

    x|a|0 =

    m

    2h

    xx + ipm 0

    = 0

    x + x20

    d

    dx0(x) = 0 where 0(x)

    x

    |0

    and x0

    h

    m

    d0(x)

    0(x)= x

    x20dx ln 0(x) = x

    2

    2x20+ C

    0(x) = Ae x2

    2x20

    3

  • 8/3/2019 qm_ch4

    4/10

    Normalization: A = 11/4

    x0

    0(x) = 11/4

    x0

    e x2

    2x20

    In general, n(x) = x|n = x|1

    n! (a)n|0 = 1

    1/42nn! 1

    xn+1/20

    x x20

    d

    dxn

    ex2

    2

    x2

    0

    3.4 Expectation Values

    n|x|n =

    h

    2m(

    nn,n1 +

    n + 1n,n+1) = 0

    n|p|n = imh2 (nn,n1 + n + 1n,n+1) = 0n|x2|n = h

    2mn|

    (a)2 + aa + aa + a2

    |n = h2m

    n|

    aa + aa

    |n

    =h

    2mn|

    2aa + 1

    |n = h2m

    (2n + 1) = (n +1

    2)

    h

    m

    n|p2|n = mh2

    n|

    (a)2 aa aa + a2

    |n = mh2

    n|

    aa + aa

    |n

    =mh

    2n|

    2aa + 1

    |n = (n + 12

    )mh

    xp = (x2 x2)1/2(p2 p2)1/2 = (n +1

    2)

    h

    m1/2

    (n +1

    2)mh

    1/2

    = (n +1

    2)h

    Note:

    (i) T = p22m = 12 h(n + 12) = 12H, V = 12m2x2 = 12 h(n + 12) = 12H: Virial theorem

    (ii) When n = 0, xp = h2 : minimum uncertainty - wave function 0(x): Gaussian

    3.5 Time Evolution ofx

    and

    p

    d

    dtx = 1

    ih[x, H] = p

    md

    dtp = 1

    ih[p, H] = m2x

    4

  • 8/3/2019 qm_ch4

    5/10

    d2

    dt2x = 1

    m

    d

    dtp = 2x xt = A cos t + B sin t

    At t=0, x0 = A, ddt x = p0m = B

    xt = x0 cos t + p0m

    sin t, pt = m ddt

    xt = p0 cos t mx0 sin t

    4 Isotropic 3D Harmonic Oscillator

    4.1 Hamiltonian and Eigenvalue Equation

    x

    y

    z

    m22

    2

    2

    1

    2

    rm

    m

    pH +=

    where p2 = p2x + p2y + p

    2z and r

    2 = x2 + y2 + z2.

    Then, H = Hx + Hy + Hz where Hx =p2x

    2m+

    1

    2m2x2

    Hx, Hy, Hz: 1D harmonic oscillator Hamiltonian.

    Since Hx, Hy, and Hz are commute with H, the eigenvalue equation, H| = E|, can be solvedseeking the eigenvectors of H which are also eigenvectors of Hx, Hy, and Hz .

    Eigenvectors and eigenvalues of Hx, Hy, Hz.

    Hx|nx = (nx + 12

    )h|nx, Hy|ny = (ny + 12

    )h|ny, Hz|nz = (nz + 12

    )h|nz

    The eigenstates common to H, Hx,Hy, and Hz are |nx, ny, nz |nx|ny|nz, in Ex Ey EzH|nx, ny, nz = (nx + ny + nz + 3

    2)h|nx, ny, nz

    Eigenvectors of H: |nx, ny, nz - tensor products of eigenvectors of Hx,Hy, Hz Eigenvalues ofH: E = (nx+ny+nz+ 32)h - sums of eigenvalues ofHx,Hy, Hz , En = (n+ 32)h

    4.2 Degeneracy of the Energy Levels

    (1) {Hx, Hy, Hz} is a C.S.C.O. in Er since Hx, Hy, and Hz are C.S.C.O.s in Ex, Ey, and Ez .H does not form a C.S.C.O. since the energy levels En are degenerate.

    (2) Degree of degeneracy, gn

    5

  • 8/3/2019 qm_ch4

    6/10

    0

    1

    0

    0:

    n-1

    0

    :

    n

    nz

    2

    1

    n

    n+1

    0n

    0

    1n-1

    n-1:

    0

    1

    n

    :

    0

    0

    ny

    nx

    +

    ++==

    +++++=

    1

    )2)(1(2

    1

    )1(21

    n

    i

    n

    nni

    nng L

    4.3 Annihilation and Creation Operator

    [ax, ax] = [ay, a

    y] = [az , a

    z] = 1

    ax|nx, ny, nz =

    nx + 1|nx + 1, ny, nzax|nx, ny, nz = nx|nx 1, ny, nz

    |nx, ny, nz = 1nx!ny!nz!

    (ax)nx(ay)

    ny(az)nz |0, 0, 0

    r|0, 0, 0 =

    m

    h

    3/4e

    m2h

    (x2+y2+z2)

    5 A Charged Harmonic Oscillator in a Uniform Electric Field

    5.1 Hamiltonian

    xxqxmxV =

    22

    2

    1)(

    m,q

    H =

    p2

    2m +

    1

    2 m

    2

    x

    2

    qx

    5.2 Schrodinger Equation

    h

    2

    2m

    d2

    dx2+

    1

    2m2x2 qx

    (x) = E(x)

    6

  • 8/3/2019 qm_ch4

    7/10

    h

    2

    2m

    d2

    dx2+

    1

    2m2

    x qm2

    2 q

    22

    2m2

    (x) = E(x)

    Replace the variable x by u = x qm2 , h

    2

    2m

    d2

    du2+

    1

    2m2u2

    (u) = E(u), where E = E +q22

    2m2

    Eigenfunctions and eigenvalues

    n(u) = n

    x q

    m2

    The translation comes from the fact that the electric field exerts a force on the particle.

    En = En

    q22

    2m2= (n +

    1

    2)h q

    22

    2m2

    x

    V(x)

    20

    m

    qx =

    2

    22

    2

    m

    q

    5.3 Electrical Susceptibility

    : electric field

    +- +-+-

    +- +-+-

    x

    polarized:P=qx Px=qx

    Susceptibility: =Px/

    (i) When = 0, Px = qn|x|n = 0(i) When = 0,

    Px = qn|x|n = q

    dxn

    x q

    m2

    xn

    x q

    m2

    = q

    dun (u) (u + x0)n (u) , where x = u + x0, x0 =q

    m2

    = q

    dun (u) un (u) + qx0

    |n (u) |2du

    = qx0 =q2

    m2

    7

  • 8/3/2019 qm_ch4

    8/10

    Susceptibility, =Px

    =

    1

    q2

    m2=

    q2

    m2

    x0 is the mean value of the equilibrium position of the electron

    Polarizability Px = qx0 = qx0

    5.4 Translation Operator

    U() e(aa), is a real constant.

    Adjoint U() = e(aa) U()U() = U()U() = 1 U: unitary operator

    Under the corresponding unitary transformation, H becomes

    H = U()HU() = h

    1

    2+ U()aaU()

    = h

    aa +

    1

    2

    where a = U()aU

    ()

    Using eA+B

    = eA

    eB

    e1

    2[A,B]

    U() = ea+a

    = eaea

    e2

    2 , U() = ea+a = ea

    eae2

    2

    Then,

    a = (eaea

    e2

    2 )a(ea

    eae2

    2 )

    = ea(ea

    aea

    )ea [ea , a] = ea , eaaea = a = ea(a )ea = a

    Similarly, a = a

    Thus,

    H = h

    (a )(a ) + 1

    2

    = H h(a + a) + 2h

    Let = q

    1

    2mh and use a + a =

    2mh x.

    H = H q

    1

    2mhh

    2m

    hx +

    q22

    21

    2mhh

    = H qx + q22

    2m2= H() +

    q22

    2m2

    Since H|n = En|n,HU()|n = U()HU()U()|n = U()H|n = EnU()|n

    Therefore, |n = U()|n is a eigenstate of H() and eigenvalue is En = (n + 12)h q22

    2m2

    |n = U()|n = eiphx0|n, x0 = q

    m2

    8

  • 8/3/2019 qm_ch4

    9/10

    6 Coupled Harmonic Oscillators

    6.1 Classical Picture

    x1

    m m

    k1 k2 k1

    x2

    2

    11 mk =

    2

    22mk =

    Equation of motion

    md2x1

    dt2= k1x1 + k2(x2 x1)

    md2x2

    dt2= k1x2 + k2(x1 x2)

    Introduce xC =12 (x1 + x2) (center of mass motion) and xR = x1 x2 (relative motion).

    The equation of motion becomes

    d2

    dt2xC = 21xC

    d2

    dt2xR = 21xR 222xR = (21 + 222)xR

    xC(t) = x0Ccos(Ct + C), C = 1

    xR(t) = x0

    R cos(Rt + R), R =

    21 + 2

    22

    : normal vibrational mode

    C

    R

    General motion - linear combination of normal modes.

    x1(t) = xC(t) +1

    2xR(t)

    x2(t) = xC(t) 12

    xR(t)

    When 2 1, R = C

    1 +22

    2

    21

    1/2 C +

    2

    2

    1 beating

    9

  • 8/3/2019 qm_ch4

    10/10

    t

    x1 Fast oscillaton

    Slow oscillaton

    1

    2

    22

    CR

    C

    6.2 Quantum Mechanical Picture

    H =1

    2m(p21 + p

    22) +

    1

    2m21(x

    21 + x

    22) +

    1

    2m22(x1 x2)2

    =p2C

    2C+

    p2R2R

    +1

    2C

    2Cx

    2C +

    1

    2R

    2Rx

    2R

    where pC = p1 + p2, C = 2m, C = 1 and pR =p1p2

    2 , R =m2 , R =

    21 + 222

    H = HC + HR

    HC =p2C

    2C+ 1

    2C

    2Cx

    2C = (a

    CaC +

    12

    )hC

    HR =p2R

    2R+

    1

    2R

    2Rx

    2R = (a

    RaR +

    1

    2)hR

    (1) Eigenvalues and eigenstates

    |u = |nC, nR = |nC|nRwhere HC|nC = (nC + 12)hC|nC and HR|nR = (nR + 12 )hR|nR(2) Quantum beats

    |(0) = 12

    (|0, 1 + |1, 0)

    |(t) = 12

    (eihHt |0, 1 + e ih Ht |1, 0)

    =1

    2(ei(C/2+3R/2)t|0, 1 + ei(3C/2+R/2)t|1, 0)

    =1

    2ei(C+3R)t/2(|0, 1 + ei(CR)t|1, 0)

    ( )10012

    12 = CR

    T

    =2( )

    10012

    1

    1 +=

    Coupling lifts degeneracy

    When 2 = 0 (no coupling), two-fold degeneracy exists : |n1, n2 and |n2, n1 has the same energyeigenvalue E = (n1 + n2 + 1)h.

    10