39
QCD with a Magnetic Background Field Andreas Sch ¨ afer for SFB/TRR-55, in particular Gergely Endr ˝ odi (now Frankfurt) 1 / 36

QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

QCD with a Magnetic Background Field

Andreas Schafer for SFB/TRR-55, in particularGergely Endrodi (now Frankfurt)

1 / 36

Page 2: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Key question of relativistic heavy ion physics:Does one reach thermal equilibrium fast enough to really probethe quark gluon plasma ?

In HICs one produces the strongest magnetic fields in theuniverse

Does this influence thermalization ?Does this lead to novel effects like the CME ?

2 / 36

Page 3: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Time and space dependence of these magnetic fields

0.5 1.0 1.5 2.0t @fmD

10-510-40.001

0.01

0.1

1

eBy @fm-2D

[Deng et al ’12] [Gursoy et al ’13]

The time profile depends crucially on the electric conductivity.Gursoy et al. use the lattice QCD values for equilibrium.

3 / 36

Page 4: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

relevance of QCD & magnetic fields for astrophysics

arXiv:0801.4387 gravitational wave signal from neutron starmerger

0 5 10 15 20 25time (ms)

-4.0

-2.0

0.0

2.0

4.0

r h +

(m

)

magnetizednon magnetized

4 / 36

Page 5: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Lee, Fukushima, Kharzeev et al.: The QCD chiral anomalyGµνGµν ∼ Ecolor ⋅ Bcolor can induce an electromagnetic Eparallel or antiparallel to B. STAR 1404.1433 :

0

10

20

30

40

020406080

11.5 GeV

0

10

20

30

40

020406080

7.7 GeV

0 20 40 60 80

0

10

20

30

UrQMDopp charge

same charge

27 GeV

0 20 40 60 80

0

10

20

30

19.6 GeV

MEVSIM

­5

0

5

10 62.4 GeV

opposite charge

same charge

­5

0

5

10 39 GeV

Collision centrality (% Most Central)

]⟩)R

­22

φ+ 1

φc

os

(⟨

≡ γ

[× 4

10

5 / 36

Page 6: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Lattice QCD cannot help directly , because the CME ishighly dynamical. Also, µB, µiso ≠ 0.While the CME effect should exist in principle, its sizecould well be unmeasurable small, see B. Muller and AS,1009.1053.see below: magnetic fields influence the flow pattern(paramagnetic squeezing).Lattice calculations with magnetic fields allow to checkeffective dynamical descriptions needed for comparisonwith experiment.

6 / 36

Page 7: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Magnetic field on the LatticeQCD is contained in the generating functional:

Z [Jaµ, η

i , ηi] = ∫ D[Aaµ, ψi , ψi

]

exp(i∫ d4x [LQCD − JaµAa

µ − ψiηi

− ηiψi])

Discretized space time⇒ e.g. the Wilson action

U(l1) = exp(−igAb(l1)

λb

2a)

W◻ = Tr{U(l1)U(l2)U(l3)U(l4)}

∑◻

2g2 (3 −Re W◻) =

14 ∫

d4x (F aµνF a

µν + O(a2))

7 / 36

Page 8: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Magnetic field on the torus

torus T 2 with surfacearea LxLy

picture from [D’Elia et al ’11]

● phase factor for a charged particle transported along pathC: exp(iq ∮C dxµAµ)

● Stokes theorem: ∮C dxµAµ = ∫∫A dσB = B ⋅Abut also = − ∫∫T 2−A dσB = −B ⋅ (LxLy −A)

● equality of phase factors gives quantization condition[Hashimi, Wiese ’09]

exp(iqBLxLy) = 1 → qBLxLy = 2π ⋅Nb, Nb ∈ Z

8 / 36

Page 9: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

How to discretize Aµ on the lattice?

simplest choice uy = exp(iaqAy) = exp(iφnx), with the flux unitφ = a2qB plus local U(1) gauge transformationψ(Nx ,ny)→ ψ(Nx ,ny) ⋅V ny with V = exp(iφNx)

This restores periodicity in the x-direction.

remark: det( /D(B) +mlatf ) > 0 so no sign problem

9 / 36

Page 10: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Observables sensitive to the QCD transition

● chiral condensate→ chiral symmetry breaking

ψfψf =∂ logZ∂mf

● chiral susceptibility→ chiral symmetry breaking

χf =∂2 logZ∂m2

f

● Polyakov loop→ deconfinement

P =1V∑x

Tr∏x4

U4(x,x4)

10 / 36

Page 11: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

C. Gattringer arXiv:1004.2200, pure gauge theoryphase of the Polyakov loop: Z3 symmetry for SU(3)

-0.2 0.0 0.2 0.4-0.4

-0.2

0.0

0.2

-0.2 0.0 0.2 0.4-0.4

-0.2

0.0

0.2

T = 0.63 Tc

T = 1.32 Tc

11 / 36

Page 12: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Transition characteristics

chiral susceptibility(∼ specific heat)

χ =∂2 logZ∂m2

transition temperature: peak maximumorder of transition: volume-dependence of heighth(V)∝ Vα

1st (α = 1), 2nd (0 < α < 1) or crossover (α = 0)bubble nucleation versus smooth transition

12 / 36

Page 13: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Transition characteristics at B = 0

● simulations with physical mlatf ,

continuum extrapolation● no singular behavior as V →∞

⇒ transition is analyticcrossover[Aoki, Endrodi, Fodor, Katz, Szabo ’06]there is no unique transition temperature

0

0.2

0.4

0.6

0.8

1

120 140 160 180 200

T [MeV]

∆l,s

fK scale

asqtad: Nτ=8

Nτ=12

HISQ/tree: Nτ=6

Nτ=8

Nτ=12

Nτ=8, ml=0.037ms

stout cont.! !!!!!

!!!!!!!!!!!!!!!!!!!!!!

""""""""""""""""""

!!!!!!!!!!!!!!!!!!

# # ####### ##### #

##!!""!!

Nt"16Nt"12Nt"10Nt"8

Continuum

100 150 200 250 300 3500.0

0.2

0.4

0.6

0.8

1.0

T !MeV"RenormalizedPolyakovloop

● T ψψc ≈ 150 MeV, T P

c ≈ 175 MeV [BWc ’06,’09,’10]

13 / 36

Page 14: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Condensate at B > 0: ‘magnetic catalysis’

● what happens to ψψ (⟨+q ↑,−q ↓⟩) in magnetic field?⇒ magnetic moments parallel, energetically favored state

● dimensional reduction 3 + 1→ 1 + 1 for LLL

E0(cont .) =√

p2z +m2 + (2n + 2sz + 1)mωc +

aeeBm

E0(LLL) =√

p2z +m2, #0 =

∣qB∣ ⋅ LxLy

2π● chiral condensate↔ spectral density near zero

ψψ ∝ ρ(0) [Banks, Casher ’80]

● in the chiral limit, to maintain ψψ > 0(NJL [Gusynin, Shovkovy et al ’96])

B = 0 ρ(p)dp ∼ p2dp “we need a strong interaction”B ≫ m2 ρ(p)dp ∼ qBdp “the weakest interaction suffices”

14 / 36

Page 15: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

● magnetic catalysis at zero temperature is a robust concept:χPT, NJL model, AdS-CFT, linear σ model, . . .

15 / 36

Page 16: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

● magnetic catalysis at zero temperature is a robust concept:χPT, NJL model, AdS-CFT, linear σ model, . . .

15 / 36

Page 17: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Inverse magnetic catalysis

● lattice QCD, physical mπ, continuum limit [Bali et al ’11, ’12]

● at T ≈ 150 MeV the condensate is reduced by Bdubbed ‘inverse magnetic catalysis’

16 / 36

Page 18: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Phase diagram● inflection point of ψψ(T ) defines Tc● significant difference whether IMC is exhibited or not:

lattice QCD, physical mπ, continuum limit [Bali et al ’11]

17 / 36

Page 19: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

● Suggestion: Two competing mechanisms at finite B[D’Elia et al ’11, Bruckmann, Endrodi, Kovacs 1303.3972]

direct (valence) effect B ↔ qfindirect (sea) effect B ↔ qf ↔ g

⟨ψψ(B)⟩∝ ∫ DU e−Sg det( /D(B,U) +m)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sea

Tr [( /D(B,U) +m)−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶valence

BBBB

18 / 36

Page 20: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

● Suggestion: Two competing mechanisms at finite B[D’Elia et al ’11, Bruckmann, Endrodi, Kovacs 1303.3972]

direct (valence) effect B ↔ qfindirect (sea) effect B ↔ qf ↔ g

⟨ψψ(B)⟩∝ ∫ DU e−Sg det( /D(B,U) +m)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sea

Tr [( /D(B,U) +m)−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶valence

18 / 36

Page 21: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Matter in magnetic fields (linear response)●paramagnets: attracted by magnetic field●diamagnets: repel magnetic field

paramagnet: liquid oxygen diamagnet: frog

is thermal QCD as a medium para- or diamagnetic?

19 / 36

Page 22: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

● free energy density in background magnetic field

f (B) = −TV

logZ(B)

● magnetization

M = −∂f

∂(eB), M∣B=0 = 0

● susceptibility

χ =∂M

∂(eB)∣B=0

= −∂2f

∂(eB)2 ∣B=0

● sign distinguishes betweenparamagnets (χ > 0) drawn into magnetic fielddiamagnets (χ < 0) repelled by magnetic field

20 / 36

Page 23: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

fermions give paramagnetic behaviour, bosons diamagnetic⇒ Expectation for the susceptibility

21 / 36

Page 24: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Magnetic susceptibility on the lattice

magnetic flux quantization

a2qB =2πNb

NxNy, Nb = 0,1, . . . ,NxNy

χ as derivative is not directly accessible⇒ variousmethods to circumvent this problem: Bali et al 1303.1328,DeTar et al 1309.1142, Bonati et al 1307.8063, Bali et al1406.0269here: calculate f (B) and differentiate it numericallylattice setup: stout smeared staggered quarks + Symanzikgauge action, physical pion mass, continuum estimatebased on Nt = 6,8,10

22 / 36

Page 25: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

with conventional Monte-Carlo techniques, derivatives oflogZ can be calculated, but not logZ ∝ f itselfrewrite logZ as the integral of its derivatives at constant Nb

logZ(∞) − logZ(mphf ) = ∫

mphf

dmf∂ logZ∂mf

take difference ∆ logZ = logZ(Nb) − logZ(0)

∆ logZ(∞)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

−∆ logZ(mphf ) = ∫

mphf

dmf∂∆ logZ∂mf

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∆ψfψf

∆ logZ obtained as integral of condensates

23 / 36

Page 26: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

with conventional Monte-Carlo techniques, derivatives oflogZ can be calculated, but not logZ ∝ f itselfrewrite logZ as the integral of its derivatives at constant Nb

logZ(∞) − logZ(mphf ) = ∫

mphf

dmf∂ logZ∂mf

take difference ∆ logZ = logZ(Nb) − logZ(0)

∆ logZ(∞)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

−∆ logZ(mphf ) = ∫

mphf

dmf∂∆ logZ∂mf

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∆ψfψf

∆ logZ obtained as integral of condensates

23 / 36

Page 27: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

obtain ∆ logZ as an integral for each Binterpolate ∆ logZ as function of Bdifferentiate to obtain χ∝ ∆ logZ ′′

24 / 36

Page 28: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Susceptibility from the lattice

● comparison to Hadron Resonance Gas model (low T )and to perturbation theory (high T )

● The quark gluon plasma is paramagnetic

25 / 36

Page 29: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Other results: Gluon anisotropies 1303.1328

A(E) =TV

⟨β

6∑n

(trE2⊥(n) − trE2

∥ (n))⟩

26 / 36

Page 30: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

The Pisa group found an anisotropic heavy quark potential.1403.6094

3 4 5 6 7 8ns

0.3

0.4

0.5

0.6

0.7

0.8

0.9aV

(nsa

)b=0 b=24 XYb=24 XYZb=24 Z

27 / 36

Page 31: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

There is hardly any effect on topological charge density1303.1328

28 / 36

Page 32: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

The correlation between topological charge and electric current

J fν(x) = ψfγνψf (x)

Df (∆) =⟨qtop(x) ⋅ J f

t (x +∆)⟩

⟨q2top(x)⟩⟨Σf

xy(x)⟩

lattice results:

29 / 36

Page 33: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

To interpret this result we extended the modelBasar, Dunne and Kharzeev, 1112.0532to arbitrary magnetic field strength and got in our model theprediction for LLL dominance

Df (model) ≈ 1

in contrast toDf (lattice) ≈ 0.1

While you can criticize our model extension, this result fits verywell to what we wrote in 1009.1053

30 / 36

Page 34: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Are any of these effects phenomenologically relevant ?Example CME: comparing Hirono, Hirano and Kharzeev (HHK),1412.0311 with Muller and Schafer (MS), 1009.1053

∆±=

dN+ − dN−

dN+ + dN− = Cem τBeB∣Q5∣

V

HHK MS

n5 = ∣Q5∣/V (0.35 GeV)3 (0.4 GeV)3

Cem 0.2 GeV−4 0.02 GeV−4

τBeB 4 GeV 0.04 GeV !!

⟨∆±(th)⟩ ≈ ⟨∆±(exp)⟩ ⟨∆±(th)⟩ ≪ ⟨∆±(exp)⟩

31 / 36

Page 35: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Can experiment decide ?The planned isobar run at RHIC comparing 96Zr with 96Ru(same A different Z).

problem: possible effects of µiso

What can the lattice say ?

Endrodi and Brandt have recently studied the case µiso ≠ 0,µB = 0 1611.06758

32 / 36

Page 36: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Z = ∫ DU e−βSG (detMlight)1/4

(detMs)1/4

Mlight = /D(τ3µiso) +mlight1 + iλη5τ2

= (/Dµ +mlight λη5−λη5 /D−µ +mlight

)

Ms = /D(0) +ms

/D = γµDµ + γ0 µiso τ3

One has to analyze λ→ 0 to get a well-defined result.

33 / 36

Page 37: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

calculable quantities

⟨π⟩ =T

2V⟨tr

λ

∣ /D(µiso) +mlight∣2 + λ2

⟨ψψ⟩ =T

2V⟨Re tr

/D(µiso) +mlight

∣ /D(µiso) +mlight∣2 + λ2

⟨niso⟩ =T

2V⟨Re tr

( /D(µiso) +mlight)† /D(µiso)

∣ /D(µiso) +mlight∣2 + λ2

34 / 36

Page 38: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

The “Silver Blaze” phenomenon

100

110

120

130

140

150

160

170

180

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T[M

eV]

µI/mπ

(TC , µI,C)P(TC , µI,C)C

preliminary

crossover

Pion condensation

243 × 6 lattice; red: phase boundary to the pion condensationphase, (Tc , µI,c)P ; blue: crossover line, (Tc , µI,c)C .crucial question: Is µiso(

96Zr ,96 Ru) close to mπ/2?

35 / 36

Page 39: QCD with a Magnetic Background Field - KEKresearch.kek.jp/group/hadron10/kek-hn-2017/slides/Schaefer-2017-0… · QCD with a Magnetic Background Field Andreas Schafer for SFB/TRR-55,

Conclusions

QCD in a magnetic field is a truly fascinating topicmuch insight can be obtained from lattice calculationsSimple models are misleading and have to be substitutedby descriptions which agree with all lattice results.Without tight quantitative control of magnetic field effectsmany aspects of HICs cannot be rigorously interpretedFor the RHIC isobar run it is important to knowµiso(

96Zr ,96 Ru)This is also relevant for astrophysics and cosmology

36 / 36