130
QCD and the LHC Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) Rutgers University, February 15 2011

QCD and the LHC - CERN · 2011. 2. 15. · The use of Quantum Chromodynamics, i.e. the theory that governs the behaviour of quarks and gluons G. Salam (CERN/Princeton/LPTHE) QCD and

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • QCD and the LHC

    Gavin Salam

    CERN, Princeton & LPTHE/CNRS (Paris)

    Rutgers University, February 15 2011

  • The scales at play[Introduction]

  • The scales at play[Introduction]

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    Nuc

    l. P

    hys.

    Che

    mis

    try

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    1 century

    Nuc

    l. P

    hys.

    Che

    mis

    try

    Fla

    v. fa

    ctor

    ies

    Tev

    atro

    n

    neutrinoexperiments

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    1 century

    Nuc

    l. P

    hys.

    Che

    mis

    try

    Fla

    v. fa

    ctor

    ies

    Tev

    atro

    n

    neutrinoexperiments

    LHC

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    happens here...get clues as to what

    The hope:

    matter−antimatter asymmetry+ other questions, e.g.

    nature of dark matter/energy

    Nuc

    l. P

    hys.

    Che

    mis

    try

    Fla

    v. fa

    ctor

    ies

    Tev

    atro

    n

    neutrinoexperiments

    LHC

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    cosmic rays, astrophysics, cosmologyg−2, dark matter searches, proton decay, ...

    happens here...get clues as to what

    The hope:

    matter−antimatter asymmetry+ other questions, e.g.

    nature of dark matter/energy

    Nuc

    l. P

    hys.

    Che

    mis

    try

    Fla

    v. fa

    ctor

    ies

    Tev

    atro

    n

    neutrinoexperiments

    LHC

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    cosmic rays, astrophysics, cosmologyg−2, dark matter searches, proton decay, ...

    happens here...get clues as to what

    The hope:

    matter−antimatter asymmetry+ other questions, e.g.

    nature of dark matter/energy

    Nuc

    l. P

    hys.

    Che

    mis

    try

    Fla

    v. fa

    ctor

    ies

    Tev

    atro

    n

    neutrinoexperiments

    LHC

    tµ τneutrinos e

    ud s cb

    extr

    a

    dim

    ensi

    ons

  • The Large Hadron Collider[Introduction]

    The world’s largest fundamentalphysics endeavour

    Designed to be 7× more powerfulthan its predecessor, Tevatron

    Involving O (10 000) scientistsFrom about 60 countries

    At a cost of several billion US$

    This talk is about one of the facets of discovery at the LHC:

    The use of Quantum Chromodynamics, i.e. the theory that governsthe behaviour of quarks and gluons

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 3 / 36

  • What does discovery look like?

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 4 / 36

  • What kinds of searches?[Introduction]

    mass peak

    / dm

    [log

    sca

    le]

    mass

    Signal

    QCDprediction

    New resonance (e.g. Z ′) where you see alldecay products and reconstruct an invari-ant mass

    pp Z’

    Sufficiently large, sharp signal emerges in-dependently of any knowledge of back-grounds.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 5 / 36

  • What kinds of searches?[Introduction]

    New resonance (e.g. Z ′) where you see alldecay products and reconstruct an invari-ant mass

    pp

    µ+

    µ−

    Z’

    Sufficiently large, sharp signal emerges in-dependently of any knowledge of back-grounds.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 5 / 36

  • What kinds of searches?[Introduction]

    high−mass excess

    / dm

    [log

    sca

    le]

    mass

    Signal

    QCDprediction

    UnreconstructedSUSY cascade.Study effective mass(sum of all transversemomenta).

    ~g

    ~g~g

    ~q

    ~q

    χ0

    χ0

    g

    q

    q

    q

    q

    g

    Broad excess at high mass scales.

    Knowledge of backgrounds is crucial isdeclaring discovery.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 5 / 36

  • What kinds of searches?[Introduction]

    [GeV]effm

    0 200 400 600 800 1000 1200 1400

    En

    trie

    s / 1

    00

    Ge

    V

    -110

    1

    10

    210

    310 = 7 TeV)sData 2010 (Standard ModelmultijetsW+jetsZ+jetstt

    single topDibosons

    =2801/2=360 m0MSUGRA mµ1 lepton: e,

    -1L dt ~ 35 pb∫

    ATLAS

    UnreconstructedSUSY cascade.Study effective mass(sum of all transversemomenta).

    ~g

    ~g~g

    ~q

    ~q

    χ0

    χ0

    g

    q

    q

    q

    q

    g

    Broad excess at high mass scales.

    Knowledge of backgrounds is crucial isdeclaring discovery.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 5 / 36

  • / dm

    [log

    sca

    le]

    mass

    Signal ?

    CONTINUEHERE

    / dm

    [log

    sca

    le]

    mass

    Signal ?

    STARTHERE

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 6 / 36

  • / dm

    [log

    sca

    le]

    mass

    Signal ?

    CONTINUEHERE

    / dm

    [log

    sca

    le]

    mass

    Signal ?

    STARTHERE

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 6 / 36

  • / dm

    [log

    sca

    le]

    mass

    Signal ?

    CONTINUEHERE

    / dm

    [log

    sca

    le]

    mass

    Signal ?

    STARTHERE

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 6 / 36

  • How do you predict a background?

    The LHC collides protons — made of quarks and gluons.

    The theory that governs the behaviour of quarks andgluons is Quantum Chromodynamics (QCD)

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 7 / 36

  • QCD[QCD]

    QCD, an SU(3) Yang-Mills theory, gives the rules for the interaction ofquark fields (ψ) with gluon fields (A), and gluon fields with themselves.Most simply expressed in terms of the Lagrangian

    L = ψ̄a(iγµ∂µδab − gsγµtCabACµ −m)ψb −1

    4FµνA F

    Aµν

    FAµν

    = ∂µAAν − ∂νAAν − gs fABCABµACν [tA, tB ] = ifABC tC

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 8 / 36

  • The QCD coupling[QCD]

    One key parameter: the strength ofthe interaction, i.e. the strongcoupling ‘constant’ αs = g

    2s /4παs = g2s /4παs = g2s /4π

    αs(Q) ≃1

    b0 lnQ2/Λ2

    Nobel: Gross, Politzer & Wilczek

    ◮ strong interactions at proton (GeV) scale

    ◮ weak interactions at LHC (TeV)scales:

    αs(1 TeV) ≃ 0.09

    QCD α (Μ ) = 0.1184 ± 0.0007s Z

    0.1

    0.2

    0.3

    0.4

    0.5

    αs (Q)

    1 10 100Q [GeV]

    Heavy Quarkoniae+e– AnnihilationDeep Inelastic Scattering

    July 2009

    Bethke ’09

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 9 / 36

  • QCD predictions[QCD]

    Given small coupling, the most widespread approach to

    making QCD predictions is perturbation theory.E.g. using Feynman diagrams; basic rules for QCD known for ∼40 years

    recursive techniques for trees (late 80’s); unitarity for loops (90’s and 00’s)

    A cross section σ is written as a series in powers of αs:

    σ =︷ ︸︸ ︷

    σ2 α2s︸ ︷︷ ︸

    leading order (LO)

    + σ3 α3s + σ4 α

    4s

    ︸ ︷︷ ︸

    NNLO

    + · · ·

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 10 / 36

  • QCD predictions[QCD]

    Given small coupling, the most widespread approach to

    making QCD predictions is perturbation theory.E.g. using Feynman diagrams; basic rules for QCD known for ∼40 years

    recursive techniques for trees (late 80’s); unitarity for loops (90’s and 00’s)

    A cross section σ is written as a series in powers of αs:

    σ =

    next-to-leading order(NLO)︷ ︸︸ ︷

    σ2 α2s︸ ︷︷ ︸

    leading order (LO)

    + σ3 α3s + σ4 α

    4s

    ︸ ︷︷ ︸

    NNLO

    + · · ·

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 10 / 36

  • QCD predictions[QCD]

    Given small coupling, the most widespread approach to

    making QCD predictions is perturbation theory.E.g. using Feynman diagrams; basic rules for QCD known for ∼40 years

    recursive techniques for trees (late 80’s); unitarity for loops (90’s and 00’s)

    A cross section σ is written as a series in powers of αs:

    σ =

    next-to-leading order(NLO)︷ ︸︸ ︷

    σ2 α2s︸ ︷︷ ︸

    leading order (LO)

    + σ3 α3s + σ4 α

    4s

    ︸ ︷︷ ︸

    NNLO

    + · · ·

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 10 / 36

  • Controlling QCD for discovery[QCD]

    We can only approximate QCD (e.g. LO, NLO, etc.).

    Discovery comes if you have an excess with respect to a QCDprediction accounting for its uncertainties.

    Standard Model

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    QCD predictionand uncertainty

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 11 / 36

  • Controlling QCD for discovery[QCD]

    We can only approximate QCD (e.g. LO, NLO, etc.).

    Discovery comes if you have an excess with respect to a QCDprediction accounting for its uncertainties.

    New Physics

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    QCD predictionand uncertainty

    data

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 11 / 36

  • Controlling QCD for discovery[QCD]

    We can only approximate QCD (e.g. LO, NLO, etc.).

    Discovery comes if you have an excess with respect to a QCDprediction accounting for its uncertainties.

    New Physics

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    QCD predictionand uncertainty

    data

    New Physics?

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    QCD predictionand uncertainty

    data

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 11 / 36

  • Controlling QCD for discovery[QCD]

    We can only approximate QCD (e.g. LO, NLO, etc.).

    Discovery comes if you have an excess with respect to a QCDprediction accounting for its uncertainties.

    New Physics

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    QCD predictionand uncertainty

    data

    New Physics?

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    QCD predictionand uncertainty

    data

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 11 / 36

    A non-issue?

    Even for a basic leading-order approximation, with αs ≃ 0.1,expect ∼ 10% uncertainty from missing NLO(?)

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000 1200 1400

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    pp, 14 TeVFastNLO, kt R=0.7

    LO

    NLO

    K ≃ 1.2

    gluon

    proton proton

    quark

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000 1200 1400

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    pp, 14 TeVFastNLO, kt R=0.7

    LO

    NLO

    K ≃ 1.2

    Look at p t ofquark or gluon (jets)

    gluon

    proton proton

    quark

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000 1200 1400

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    pp, 14 TeVFastNLO, kt R=0.7

    LO

    NLO

    K ≃ 1.2

    Look at p t ofquark or gluon (jets)

    gluon

    proton proton

    quark

    K of 1.2 is compatible with being 1 +O (αs)

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    10-2

    10-1

    1

    101

    102

    103

    104

    200 400 600 800 1000 1200 1400

    dσ/d

    p t,Z

    [fb

    / 100

    GeV

    ]

    pt,Z [GeV]

    pp, 14 TeV

    LO

    NLO

    K ≃ 1.5

    MCFM

    Look at p t ofZ−boson Z−boson

    proton proton

    quark

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    10-2

    10-1

    1

    101

    102

    103

    104

    200 400 600 800 1000 1200 1400

    dσ/d

    p t,Z

    [fb

    / 100

    GeV

    ]

    pt,Z [GeV]

    pp, 14 TeV

    LO

    NLO

    K ≃ 1.5

    MCFM

    Look at p t ofZ−boson Z−boson

    proton proton

    quark

    K of 1.5 is compatible with being 1 + C × αs, with quite large C

    To date, no generalised understanding of size of C when in range 5− 10

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    10-2

    10-1

    1

    101

    102

    103

    104

    200 400 600 800 1000 1200 1400

    dσ/d

    p t,j1

    [fb

    / 100

    GeV

    ]

    pt,j1 [GeV]

    pp, 14 TeV

    LO

    NLO

    K ≃ 5

    MCFM

    Look at p t ofquark (jet) Z−boson

    proton proton

    quark

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    10-2

    10-1

    1

    101

    102

    103

    104

    200 400 600 800 1000 1200 1400

    dσ/d

    p t,j1

    [fb

    / 100

    GeV

    ]

    pt,j1 [GeV]

    pp, 14 TeV

    LO

    NLO

    K ≃ 5

    MCFM

    Look at p t ofquark (jet) Z−boson

    proton proton

    quark

    K of 5?!!! Found by several groups.Butterworth, Davison, Rubin & GPS ’08

    Bauer & Lange ’09; Denner et al ’09

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    10-2

    10-1

    1

    101

    102

    103

    104

    200 400 600 800 1000 1200 1400

    dσ/d

    HT

    ,jets

    [fb

    / 100

    GeV

    ]

    HT,jets [GeV]

    pp, 14 TeV

    LO

    NLO

    K ≃ 100

    MCFM

    Look at sum of p t ofquarks and gluons (jets)

    Z−boson

    proton proton

    quark

    Rubin, GPS & Sapeta ’10

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • How well does QCD perturbative series converge?[QCD]

    Consider LO, NLO and their ratio K =NLO

    LO

    10-2

    10-1

    1

    101

    102

    103

    104

    200 400 600 800 1000 1200 1400

    dσ/d

    HT

    ,jets

    [fb

    / 100

    GeV

    ]

    HT,jets [GeV]

    pp, 14 TeV

    LO

    NLO

    K ≃ 100

    MCFM

    Look at sum of p t ofquarks and gluons (jets)

    Z−boson

    proton proton

    quark

    Rubin, GPS & Sapeta ’10

    What can it possibly mean to do perturbation theory if the “O (αs)”NLO correction is so much larger than LO?

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 12 / 36

  • So what happens at the next order, NNLO?[QCD]

    The last examples are somewhat extreme. In such cases, it’s fair toask the question:

    What happens at the next order? Does QCD converge?

    Despite over 10 years’ work by many people, not a single NNLOcalculation exists for a hadron-collider process with coloured particlesin the final state.

    Several groups working on NNLO for this and related processes; maybeZ+jet jet process will be completed in a year or two or . . . ?

    Gehrmann family, Glover, Heinrich & al

    Weinzierl

    Somogyi, Trocsanyi, Del Duca, et al.

    Czakon, Mitov, et al.

    etc.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 13 / 36

  • Why the large K -factor from LO to NLO?[QCD]

    Leading Order

    αsαEW

    Next-to-Leading Order

    α2sαEW

    LHC probes scales well above EW scale,√s ≫ MZ .

    EW bosons are light.New (logarithmically enhanced) topologies appear.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 14 / 36

    In absence of a full calculation atNNLO, try to gain physical insight

  • Why the large K -factor from LO to NLO?[QCD]

    Leading Order

    αsαEW

    Next-to-Leading Order

    α2sαEW

    LHC probes scales well above EW scale,√s ≫ MZ .

    EW bosons are light.New (logarithmically enhanced) topologies appear.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 14 / 36

  • Why the large K -factor from LO to NLO?[QCD]

    Leading Order

    αsαEW

    Next-to-Leading Order

    α2sαEW

    LHC probes scales well above EW scale,√s ≫ MZ .

    EW bosons are light.New (logarithmically enhanced) topologies appear.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 14 / 36

  • Why the large K -factor from LO to NLO?[QCD]

    Leading Order

    αsαEW

    Next-to-Leading Order

    α2sαEW ln2 ptMZ

    LHC probes scales well above EW scale,√s ≫ MZ .

    EW bosons are light.New (logarithmically enhanced) topologies appear.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 14 / 36

  • Why the large K -factor from LO to NLO?[QCD]

    Leading Order

    αsαEW

    Next-to-Leading Order

    α2sαEW ln2 ptMZ

    LHC probes scales well above EW scale,√s ≫ MZ .

    EW bosons are light.New (logarithmically enhanced) topologies appear.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 14 / 36

  • Why the large K -factor from LO to NLO?[QCD]

    Leading Order

    αsαEW

    Next-to-Leading Order

    α2sαEW ln2 ptMZ

    LHC probes scales well above EW scale,√s ≫ MZ .

    EW bosons are light.New (logarithmically enhanced) topologies appear.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 14 / 36

  • Physical understanding → better predictions[QCD]

    Since dominant contribution comes from Z+2partons, try combining NLOZ+parton with NLO Z+2partons. LoopSim: Rubin, GPS & Sapeta ’10

    ptptpt of jet 1

    0

    2

    4

    6

    8

    10

    250 500 750 1000 1250

    K-f

    acto

    r w

    rt L

    O

    pt,j1 (GeV)

    MCFM 5.7, CTEQ6Mpp, 14 TeV

    anti-kt, R=0.7pt,j1 > 200 GeV

    LONLO–nNLO (µ dep)–nNLO (RLS dep)

    Never achieved previously

    We call this n̄NLO

    Not quite full NNLO

    But has many of its qualities

    ◮ ptj distribution seems toconverge at n̄NLO

    ◮ scale uncertainties reduced by∼ factor 2

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 15 / 36

  • Physical understanding → better predictions[QCD]

    Since dominant contribution comes from Z+2partons, try combining NLOZ+parton with NLO Z+2partons. LoopSim: Rubin, GPS & Sapeta ’10

    HT, jets =∑

    jets pt,jHT, jets =∑

    jets pt,jHT, jets =∑

    jets pt,j

    1

    10

    100

    1000

    500 1000 1500 2000 2500

    K-f

    acto

    r w

    rt L

    O

    HT,jets (GeV)

    MCFM 5.7, CTEQ6Mpp, 14 TeVanti-kt, R=0.7pt,j1 > 200 GeV

    LONLO

    –nNLO (µ dep)–nNLO (RLS dep)

    Never achieved previously

    We call this n̄NLO

    Not quite full NNLO

    But has many of its qualities

    ◮ Signficiant furtherenhancement for HT ,jets

    ◮ n̄NLO brings clear message:

    HT ,jetsHT ,jetsHT ,jets is not a goodobservable!

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 15 / 36

  • 0.01

    0.1

    1

    10

    100

    1000

    200 400 600 800 1000

    dσ/d

    p t [p

    b/G

    eV]

    pt [GeV]

    QCD predictionand uncertainty

    data

    Really New Physics?

    What went into the QCDprediction?

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 16 / 36

  • As if “giant” K -factors weren’t bad enough. . .

    How about infinite K -factors?

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 17 / 36

  • Quarks & gluons? You never see them[Jets]

    q

    q

    Start off with quark and anti-quark, qq̄

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

  • Quarks & gluons? You never see them[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ dEE

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    θ

    q

    q

    A quark never survives unchangedit always emits a gluon (usually low-energy, at small angles)

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

  • Quarks & gluons? You never see them[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ dEE

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    q

    q

    Each gluon radiates a further gluon

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

  • Quarks & gluons? You never see them[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ dEE

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    q

    q

    And so forth

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

  • Quarks & gluons? You never see them[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ dEE

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    q

    q

    Meanwhile the same happens on other side of event

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

  • Quarks & gluons? You never see them[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ dEE

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    q

    q

    And then a non-perturbative transition occurs

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

  • Quarks & gluons? You never see them[Jets]

    q

    q

    π, K, p, ...

    Giving a pattern of hadrons that “remembers” the gluon branchingHadrons mostly produced at small angle wrt qq̄ directions or with low energy

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

  • Quarks & gluons? You never see them[Jets]

    jet

    jet

    q

    q

    π, K, p, ...

    Giving a pattern of hadrons that “remembers” the gluon branchingHadrons mostly produced at small angle wrt qq̄ directions or with low energy

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

  • Quarks & gluons? You never see them[Jets]

    jet

    jet

    q

    q

    π, K, p, ...

    Giving a pattern of hadrons that “remembers” the gluon branchingHadrons mostly produced at small angle wrt qq̄ directions or with low energy

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 18 / 36

    Instead of quarks and gluons, one sees “jets” of hadrons.

    How can you compare a calculation of quarks and gluonsto a measurement of hadrons?

    What happens to the divergences that arise inperturbative QCD beyond leading order?

  • Jets made systematic: jet definitions[Jets]

    jet 1 jet 2

    LO partons

    Jet Def n

    jet 1 jet 2

    Jet Def n

    NLO partons

    jet 1 jet 2

    Jet Def n

    parton shower

    jet 1 jet 2

    Jet Def n

    hadron level

    π π

    K

    p φ

    LHC events may be discussed in terms of quarks, quarks+gluon, or hadrons

    A jet definition provides common representation of different “levels” ofevent complexity.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 19 / 36

  • QCD jets flowchart[Jets]

    Jet (definitions) provide central link between expt., “theory” and theory

    And jets are an input to almost all analyses

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 20 / 36

  • QCD jets flowchart[Jets]

    Jet (definitions) provide central link between expt., “theory” and theory

    And jets are an input to almost all analyses

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 20 / 36

  • A $100 000 000, 20-year old problem[Jets]

    A significant community of QCD theorists has spent the past ten yearsmaking accurate calculations of signals and backgrounds at the LHC (withremarkable advances in field theory on the way)

    O (100) people × 10 years ≃ $100 000 000

    Problem 1: the jet definitions previously used by LHC experiments werenot compatible with these calculations — they “leaked” infinities:

    σ = c1 αs + c2 α2s +∞∞∞α3s + · · ·

    Problem 2: the jet definitions advocated by theorists since 1990’s hadbeen mostly shunned by proton-collider experiments

    a) bad response to experimental noiseb) severe computational issues (1 minute/event ×1010 recorded events)

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 21 / 36

  • Solving the jets problem[Jets]

    Discovered a link between QCD jet-finding and problems

    of 2D computational geometryCacciari & GPS ’05

    Many techniques could be carried over from comp. geom field

    Developed a theory of the interplay between jet-finding,QCD radiation and experimental noise

    Cacciari, GPS & Soyez ’08

    A crucial element was linearity of response

    Proposed a new jet-definition based on what we’d learnt

    anti-ktCacciari, GPS & Soyez ’08

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 22 / 36

  • [Jets]

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    Island Beach State Park

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.0492063

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.052381

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.0904762

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.103175

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.14127

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.169841

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.181222

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.421097

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.478454

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.947691

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} = 0.949818

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} > 1

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    DeltaR_{ij} > 1

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • You can cluster anything[Jets]

    pt/GeV

    40

    20

    00 1 2 3 4 y

    30

    10

    How anti-kt works:

    ◮ Define pairwise i–j distances

    dij = min

    (

    1

    p2ti,1

    p2tj

    )

    ∆R2ij

    ◮ Define single-particle distances

    diB =1

    p2ti

    ◮ If smallest is dij merge iand j

    ◮ If smallest is diB call i a jet

    A non-intuitive successor to

    kt alg of Catani et al. ’91

  • How does anti-kt fare?[Jets]

    Timing v. particle multiplicity 2005

    10-4

    10-3

    10-2

    10-1

    1

    101

    102

    100 1000 10000 100000

    t / s

    N

    KtJe

    t k t

    CDF M

    idPoin

    t (see

    ds >

    0 GeV

    )

    CDF M

    idPoin

    t (seed

    s > 1 G

    eV)

    CDF J

    etClu (

    very u

    nsafe)

    3.4 GHz P4, 2 GB

    R=0.7

    Tevatron LHC lo-lumi LHC hi-lumi LHC Pb-Pb

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 24 / 36

  • How does anti-kt fare?[Jets]

    Timing v. particle multiplicity 2008

    10-4

    10-3

    10-2

    10-1

    1

    101

    102

    100 1000 10000 100000

    t / s

    N

    KtJe

    t k t

    CDF M

    idPoin

    t (see

    ds >

    0 GeV

    )

    CDF M

    idPoin

    t (seed

    s > 1 G

    eV)

    CDF J

    etClu (

    very u

    nsafe)

    FastJe

    t

    Seedl

    ess IR

    Safe C

    one

    (SISC

    one)

    Cam/Aac

    hen

    R=0.7

    anti-k t

    LHC lo-lumi LHC hi-lumi LHC Pb-Pb

    k t

    in critical region of N ∼ 2000− 40001000 times faster than previous attempts with similar jet algorithms

    FastJet code available publicly at http://fastjet.fr/

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 24 / 36

    http://fastjet.fr/

  • How does anti-kt fare?[Jets]

    Experimental sensitivity to noise

    As good as, orbetter than allpreviousexperimentally-favouredalgorithms.

    Essentially becauseanti-kt has linearresponse to softparticles.

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 24 / 36

  • How does anti-kt fare?[Jets]

    Coefficient of “infinity”

    10-5 10-4 10-3 10-2 10-1 1

    Fraction of hard events failing IR safety test

    JetClu

    SearchCone

    PxCone

    MidPoint

    Midpoint-3

    Seedless [SM-pt]

    Seedless [SM-MIP]

    Anti-Kt, SISCone

    50.1%

    48.2%

    16.4%

    15.6%

    9.3%

    1.6%

    0.17%

    0 (none in 4x109)

    Safe for perturbative QCDpredictions:

    No “leakage” of infinitiesto higher orders

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 24 / 36

  • Anti-kt contained in FastJet[Jets]

    A program that brings together theoretical physics and computationalgeometry. Cacciari, GPS & Soyez ’06-

    In 2009: about 40 000 page loads from 3 300 IP addresses, in & 1000 locations.

    [After exclusion of robots]

  • ATLAS & CMS use anti-kt for all their jet-finding[Jets]

  • ATLAS & CMS use anti-kt for all their jet-finding[Jets]

    Among the handful of LHC searches so far, anti-kt jets have probedthe highest scales, ∼ 2 TeV, about twice as high as Tevatron.

  • Anti-kt solves a long-standing

    problem, crucial in providing acommon language to compare

    theory and experiment. dσ

    / dm

    [log

    sca

    le]

    mass

    Signal ?

    But is QCD really about noth-ing other than comparing the-ory and experiment? dσ

    / dm

    [log

    sca

    le]

    mass

    Signal ?

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 27 / 36

  • The quest for the Higgs

    Using jets better, in order to make discoveries possible

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 28 / 36

  • Higgs mass and Higgs decays?[Discovery]

    [GeV]HM50 100 150 200 250 300 350 400

    [G

    eV]

    top

    m

    150

    155

    160

    165

    170

    175

    180

    185

    190

    WAtop band for mσ1

    WAtop

    68%, 95%, 99% CL fit contours excl. m

    LE

    P 9

    5% C

    L

    Tev

    atro

    n 9

    5% C

    L

    WAtop

    68%, 95%, 99% CL fit contours incl. m

    68%, 95%, 99% CL fit contours incl. WA and direct Higgs searchestopm

    [GeV]HM50 100 150 200 250 300 350 400

    [G

    eV]

    top

    m

    150

    155

    160

    165

    170

    175

    180

    185

    190

    G fitter SM

    Nov 10

    Likely Higgs Mass

    There’s some likelihood thatthe Higgs boson will be“light”, MH ∼ 120 GeV

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 30 / 36

  • Higgs mass and Higgs decays?[Discovery]

    [GeV]HM50 100 150 200 250 300 350 400

    [G

    eV]

    top

    m

    150

    155

    160

    165

    170

    175

    180

    185

    190

    WAtop band for mσ1

    WAtop

    68%, 95%, 99% CL fit contours excl. m

    LE

    P 9

    5% C

    L

    Tev

    atro

    n 9

    5% C

    L

    WAtop

    68%, 95%, 99% CL fit contours incl. m

    68%, 95%, 99% CL fit contours incl. WA and direct Higgs searchestopm

    [GeV]HM50 100 150 200 250 300 350 400

    [G

    eV]

    top

    m

    150

    155

    160

    165

    170

    175

    180

    185

    190

    G fitter SM

    Nov 10

    Likely Higgs Mass

    BR(H)

    bb_

    τ+τ−

    cc_

    gg

    WW

    ZZ

    tt-

    γγ Zγ

    MH [GeV]50 100 200 500 1000

    10-3

    10-2

    10-1

    1

    Higgs decayproducts v. MHMHMH

    There’s some likelihood thatthe Higgs boson will be“light”, MH ∼ 120 GeV

    If it is, crucial test of whetherit is the Higgs, will comefrom measuring several dif-ferent decays

    Remember: Higgs couplings

    intimately related to origin

    of particle masses

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 30 / 36

  • H → bb̄ (main light-Higgs decay) v. hard to see[Discovery]

    Best hope is pp → W±H, W± → ℓ±ν, H → bb̄.

    e,µ

    b

    νb

    H

    W

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 31 / 36

  • H → bb̄ (main light-Higgs decay) v. hard to see[Discovery]

    Best hope is pp → W±H, W± → ℓ±ν, H → bb̄.

    pp → WH → ℓνbb̄ + bkgds

    ATLAS TDR

    Conclusion (ATLAS TDR):

    “The extraction of a signal from H → bb̄decays in the WH channel will be verydifficult at the LHC, even under the mostoptimistic assumptions [...]”

    Low efficiency, huge backgrounds, e.g. tt̄

    e,µ

    b

    νb

    H

    W

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 31 / 36

  • H → bb̄ (main light-Higgs decay) v. hard to see[Discovery]

    Best hope is pp → W±H, W± → ℓ±ν, H → bb̄.

    pp → WH → ℓνbb̄ + bkgds

    ATLAS TDR

    Conclusion (ATLAS TDR):

    “The extraction of a signal from H → bb̄decays in the WH channel will be verydifficult at the LHC, even under the mostoptimistic assumptions [...]”

    Low efficiency, huge backgrounds, e.g. tt̄

    Try a long shot?

    ◮ Go to high pt (ptH , ptW > 200 GeV)◮ Lose 95% of signal, but more efficient?◮ Maybe kill tt̄ & gain clarity?

    W

    H

    bb

    e,µ ν

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 31 / 36

  • H → bb̄ (main light-Higgs decay) v. hard to see[Discovery]

    Best hope is pp → W±H, W± → ℓ±ν, H → bb̄.

    pp → WH → ℓνbb̄ + bkgds

    ATLAS TDR

    Conclusion (ATLAS TDR):

    “The extraction of a signal from H → bb̄decays in the WH channel will be verydifficult at the LHC, even under the mostoptimistic assumptions [...]”

    Low efficiency, huge backgrounds, e.g. tt̄

    Try a long shot?

    ◮ Go to high pt (ptH , ptW > 200 GeV)◮ Lose 95% of signal, but more efficient?◮ Maybe kill tt̄ & gain clarity?

    W

    H

    bb

    e,µ ν

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 31 / 36

    Question:

    What’s the best strategy to identify thetwo-pronged structure of the boosted

    Higgs decay?

  • 3 QCD principles help guide our analysis[Discovery]

    ◮ QCD radiation from a boosted Higgs decay is limited by

    angular ordering

    ◮ Higgs decay shares energy symmetrically, QCDbackground events with same mass share energy

    asymmetrically

    ◮ QCD radiation from Higgs decay products is point-like,noise (UE, pileup) is diffuse

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 32 / 36

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Discovery]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Cluster event, C/A, R=1.2

    Butterworth, Davison, Rubin & GPS ’08

    SIGNAL

    Zbb BACKGROUND

    arbitrary norm.G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 33 / 36

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Discovery]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Fill it in, → show jets more clearly

    Butterworth, Davison, Rubin & GPS ’08

    SIGNAL

    Zbb BACKGROUND

    arbitrary norm.G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 33 / 36

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Discovery]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Consider hardest jet, m = 150 GeV

    Butterworth, Davison, Rubin & GPS ’08

    SIGNAL

    0

    0.05

    0.1

    0.15

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    Zbb BACKGROUND

    0

    0.002

    0.004

    0.006

    0.008

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    arbitrary norm.G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 33 / 36

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Discovery]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    split: m = 150 GeV, max(m1,m2)m

    = 0.92 → repeat

    Butterworth, Davison, Rubin & GPS ’08

    SIGNAL

    0

    0.05

    0.1

    0.15

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    Zbb BACKGROUND

    0

    0.002

    0.004

    0.006

    0.008

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    arbitrary norm.G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 33 / 36

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Discovery]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    split: m = 139 GeV, max(m1,m2)m

    = 0.37 → mass drop

    Butterworth, Davison, Rubin & GPS ’08

    SIGNAL

    0

    0.05

    0.1

    0.15

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    Zbb BACKGROUND

    0

    0.002

    0.004

    0.006

    0.008

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    arbitrary norm.G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 33 / 36

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Discovery]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    check: y12 ≃ pt2pt1 ≃ 0.7 → OK + 2 b-tags (anti-QCD)

    Butterworth, Davison, Rubin & GPS ’08

    SIGNAL

    0

    0.05

    0.1

    0.15

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    Zbb BACKGROUND

    0

    0.002

    0.004

    0.006

    0.008

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    arbitrary norm.G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 33 / 36

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Discovery]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Rfilt = 0.3

    Butterworth, Davison, Rubin & GPS ’08

    SIGNAL

    0

    0.05

    0.1

    0.15

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    Zbb BACKGROUND

    0

    0.002

    0.004

    0.006

    0.008

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    arbitrary norm.G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 33 / 36

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Discovery]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Rfilt = 0.3: take 3 hardest, m = 117 GeV

    Butterworth, Davison, Rubin & GPS ’08

    SIGNAL

    0

    0.05

    0.1

    0.15

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    Zbb BACKGROUND

    0

    0.002

    0.004

    0.006

    0.008

    80 100 120 140 160mH [GeV]

    200 < ptZ < 250 GeV

    arbitrary norm.G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 33 / 36

  • How well-designed jet-finding helps you[Discovery]

    Search for main decay of light Higgs boson, W/Z+H, H → bb̄(The only way of seeing this decay — other than the next slide)

    using the method from Butterworth, Davison, Rubin & GPS ’08

    Other recent work focuses on v. high background rejection (lower efficiency)

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 34 / 36

  • How well-designed jet-finding helps you[Discovery]

    Recovering the ttH, H → bb̄ Higgs channel

    Plehn, GPS & Spannowsky ’09

    based in part on Johns Hopkins top tagger ’08

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 34 / 36

  • How well-designed jet-finding helps you[Discovery]

    Dijet mass reconstruction for new heavy resonance X → gg

    1/N

    dn/

    dbin

    / 2

    dijet mass [GeV]

    gg, M = 2000 GeV

    arXiv:0810.1304

    0

    0.02

    0.04

    0.06

    0.08

    1900 2000 2100

    kt, R=0.4Qwf=0.13 = 190 GeV

    1/N

    dn/

    dbin

    / 2

    dijet mass [GeV]

    gg, M = 2000 GeV

    arXiv:0810.1304

    0

    0.02

    0.04

    0.06

    0.08

    1900 2000 2100

    C/A-filt, R=1.3Qwf=0.13 = 53 GeV

    (subtr.)

    Cacciari, Rojo, GPS & Soyez ’08

    Other recent work: Krohn, Thaler & Wang ’09

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 34 / 36

  • How well-designed jet-finding helps you[Discovery]

    Supersymmetry with R-parity violating decays χ̃01 → qqqOne of its most difficult incarnations

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    0 50 100 150 200

    m1/(

    100G

    eV

    ) dN

    /dbin

    per

    fb-1

    m1 [GeV]

    Herwig 6.5 + Jimmy 4.3

    Cam/Aachen R=0.7pt1 > 500 GeV

    signal + background

    background (just dijets)

    signal

    0

    200

    400

    600

    800

    0 50 100 150 200m

    1/(

    100G

    eV

    ) dN

    /dbin

    per

    fb-1

    m1 [GeV]

    Cam/Aachen + filt, R=0.7pt1 > 500 GeV, zsplit > 0.15, mbc > 0.25 mabc

    pt3, pt4 > {100,80} GeV, |∆y13|, |∆y14| < 1.5

    signal + background

    background (just dijets)

    signal

    Butterworth, Ellis, Raklev & GPS ’09

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 34 / 36

  • How well-designed jet-finding helps you[Discovery]

    Supersymmetry with R-parity violating decays χ̃01 → qqqOne of its most difficult incarnations

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    0 50 100 150 200

    m1/(

    100G

    eV

    ) dN

    /dbin

    per

    fb-1

    m1 [GeV]

    Herwig 6.5 + Jimmy 4.3

    Cam/Aachen R=0.7pt1 > 500 GeV

    signal + background

    background (just dijets)

    signal

    0

    200

    400

    600

    800

    0 50 100 150 200m

    1/(

    100G

    eV

    ) dN

    /dbin

    per

    fb-1

    m1 [GeV]

    Cam/Aachen + filt, R=0.7pt1 > 500 GeV, zsplit > 0.15, mbc > 0.25 mabc

    pt3, pt4 > {100,80} GeV, |∆y13|, |∆y14| < 1.5

    signal + background

    background (just dijets)

    signal

    Butterworth, Ellis, Raklev & GPS ’09

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 34 / 36

    Establishing the rules for systematically makingbetter discoveries with jets is work in progress

    But the evidence for its potential is clearly there

  • How well-designed jet-finding helps you[Discovery]

    Supersymmetry with R-parity violating decays χ̃01 → qqqOne of its most difficult incarnations

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    0 50 100 150 200

    m1/(

    100G

    eV

    ) dN

    /dbin

    per

    fb-1

    m1 [GeV]

    Herwig 6.5 + Jimmy 4.3

    Cam/Aachen R=0.7pt1 > 500 GeV

    signal + background

    background (just dijets)

    signal

    0

    200

    400

    600

    800

    0 50 100 150 200m

    1/(

    100G

    eV

    ) dN

    /dbin

    per

    fb-1

    m1 [GeV]

    Cam/Aachen + filt, R=0.7pt1 > 500 GeV, zsplit > 0.15, mbc > 0.25 mabc

    pt3, pt4 > {100,80} GeV, |∆y13|, |∆y14| < 1.5

    signal + background

    background (just dijets)

    signal

    Butterworth, Ellis, Raklev & GPS ’09

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 34 / 36

  • Conclusions

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 35 / 36

  • Conclusions[Conclusions]

    QCD is unavoidable at LHC

    The simplicity of its formulation contrasts with the

    richness of its phenomenology

    Even after 20 years of planning for the LHC,QCD still has surprises for us

    Both in its own rightAnd as a tool for discovery

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 36 / 36

  • EXTRAS

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 37 / 36

  • JetClu (& Atlas Cone) in Wjj @ NLO[Extras]

    W

    jet jet

    α2sαEW α3sαEW α

    3sαEW

    1-jet +∞+∞+∞2-jet O (1) −∞ 0

    With these (& most) cone algorithms, perturbative infinities fail tocancel at some order ≡≡≡ IR unsafety

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 38 / 36

  • JetClu (& Atlas Cone) in Wjj @ NLO[Extras]

    W

    jet jet

    soft divergence

    W

    jet jet

    α2sαEW α3sαEW α

    3sαEW

    1-jet +∞+∞+∞2-jet O (1) −∞ 0

    With these (& most) cone algorithms, perturbative infinities fail tocancel at some order ≡≡≡ IR unsafety

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 38 / 36

  • JetClu (& Atlas Cone) in Wjj @ NLO[Extras]

    W

    jet

    W

    jet jet

    soft divergence

    W

    jet jet

    α2sαEW α3sαEW α

    3sαEW

    1-jet +∞+∞+∞2-jet O (1) −∞ 0

    With these (& most) cone algorithms, perturbative infinities fail tocancel at some order ≡≡≡ IR unsafety

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 38 / 36

  • JetClu (& Atlas Cone) in Wjj @ NLO[Extras]

    W

    jet

    W

    jet jet

    soft divergence

    W

    jet jet

    α2sαEW α3sαEW α

    3sαEW

    1-jet +∞+∞+∞2-jet O (1) −∞ 0

    With these (& most) cone algorithms, perturbative infinities fail tocancel at some order ≡≡≡ IR unsafety

    G. Salam (CERN/Princeton/LPTHE) QCD and the LHC 38 / 36

    IntroductionQCDJetsDiscoveryConclusionsExtras