42
P.V. PANEL WIND LOAD EFFECTS APRIL 2011 Arman Hemmati , Brady Zaiser, Chaneel Park, Jeff Symons, Katie Olver Winter Project Review TEAM 12

P.V. Panel wind load effects

Embed Size (px)

DESCRIPTION

TEAM 12. P.V. Panel wind load effects. Winter Project Review. April 2011. Arman Hemmati , Brady Zaiser , Chaneel Park, Jeff Symons, Katie Olver. Overview. Refresh CFD Progress & Result Wind-Tunnel Experiment Progress & Result. Refresh. Ideal angle of inclination is 51° - PowerPoint PPT Presentation

Citation preview

Page 1: P.V. Panel wind load effects

P.V. PANEL WIND LOAD EFFECTS

APRIL 2011

Arman Hemmati , Brady Zaiser, Chaneel Park, Jeff Symons, Katie Olver

Winter Project Review

TEAM 12

Page 2: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

2

Overview

• Refresh• CFD Progress & Result• Wind-Tunnel Experiment Progress & Result

Page 3: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

3

Refresh

• Ideal angle of inclination is 51°

• Too much weight for the roof?

• Wind-Tunnel testing – Experimental

• Computational Fluid Dynamics (CFD) - Computational

Page 4: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

4

CFD – Software Packages• ANSYS CFX

▫ Employing Finite Element Method (FEM)▫ Best in Single Physics Modeling ▫ Mostly used for modeling of Solids▫ University of Calgary Licensing

• Comsol Multiphysics▫ Works on basis of FEM▫ Multi-physical modeling▫ Best suited for modeling of Fluids, Stationary Solids▫ Shell Canada Licensing

Page 5: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

5

Computational – 2D vs. 3D Modeling

1. Two-Dimensional (2D) Models▫ Easier to develop, evaluate, and understand▫ Typically the start of an analysis▫ Provides a general overview to the forces expected in the

wind tunnel

2. Three-Dimensional (3D) Models▫ More Difficult to set-up, and develop▫ More powerful computers required▫ More realistic model of the actual phenomena▫ Typically used to compare to the wind tunnel testing

Page 6: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

6

CFD – Expectations1. Establish a functional and feasible model

a) 2-Dimensionalb) C.V. size (inlet and outlet buffer zones)c) Turbulence Model – k-epsilon, RNG k-epsilon

2. Confirm the credibility of the model

a) Pressure Coefficient (CP) – Front and Rear Surfaces

b) CL and CD

c) Convergence

3. Parameter variation study

a) Panel angle of attackb) Panel – Rooftop separation distancec) Wind speed / Reynolds Number d) Number of panel in series

Interconnected

Page 7: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

7

CFD – Validation

• Open Channel Flow:Geometry – Horizontal Open

ChannelSimple Physics – Laminar flow

Wall (No Slip)

Wall (No Slip)

Ou

tlet

Inle

t

Velocity (m/s)

Heig

ht

(m)

Page 8: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

8

CFD – Validation• Pressure Coefficient

• Vertical Flat Plate

11.5 12 12.5 13 13.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Pressure Coefficient Along Front and Back Surfaces of a Vertical Flat

Plate (2D)

FrontBack

Distance Along Y-Axis (m)

Pre

ssure

(P

a)

Page 9: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

9

CFD – Steady Convergence in CFX

Page 10: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

10

CFD - Verification

• Reference: “On the Flow of Air Behind an Inclined Flat Plate of Infinite Span” -Fage and Johansen, 1927.

Page 11: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

11

11.5 12 12.5 13 13.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pressure Coefficient Along Front and Back Surfaces of an Inclined

(90deg) Flat Plate (2D)

Distance Along Y-Axis (m)C

p

10.9 11.1 11.3 11.5 11.7 11.9 12.1 12.3 12.5 12.7

-1

-0.5

0

0.5

1

Pressure Coefficient Along Front and Back Surfaces of an

Inclined (70deg) Flat Plate (2D)

Distance Along Y-Axis (m)

Cp

10.9 11.1 11.3 11.5 11.7 11.9 12.1 12.3

-1.1

-0.6

-0.1

0.4

0.9

Pressure Coefficient Along Front and Back Surfaces of an

Inclined (51deg) Flat Plate (2D)

Distance Along Y-Axis (m)

Cp

-0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

-1.3

-0.8

-0.3

0.2

0.7

Pressure Coefficient Along Front and Back Surfaces of an

Inclined (30deg) Flat Plate (2D)

Distance Along X-Axis (m)

Cp

Page 12: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

12

CFD – Initial Results

20 30 40 50 60 70 80 90 1000%

25%

50%

75%

100%

f(x) = − 0.000430477231319 x + 0.266165919788991

Coefficient of Drag Error (Exp. v.s. Comp.)

[ ]a degreesCD

-ER

RO

R [

%]

20 30 40 50 60 70 80 90 1000%

25%

50%

75%

100%

f(x) = 1.65071261751711E-05 x + 0.251118597093691

Lift Coefficient Error (Exp. v.s. Comp.)

[ ]a degreesCL-E

RR

OR

[%

]

Page 13: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

13

Page 14: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

14

CFD – Unsteady Simulations

Page 15: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

15

CFD – Unsteady Simulations

11.5 12 12.5 13 13.5

-2

-1.5

-1

-0.5

0

0.5

1

Pressure Coefficient Along Front and Back Sur-faces of an Inclined (90deg) Flat Plate (2D)

FrontBack

Distance Along Y-Axis (m)

Cp

Page 16: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

16

CFD – Now What?

• Can not get rear of panel to match research

• Panel Angle: 10°, 30°, 51°, 70°, 90°

• Flow Type: Steady, Unsteady

• Turbulence Model: k-ε , RNG k-ε

Page 17: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

17

CFD – Unsteady Data Collection

• Time steps set to 0.01s• Pressure data recorded every 5 time steps• Averaged over 10s• 10s/0.05s = 200 pressure plots• X 10 unsteady simulations = 2000 pressure plots to

export from CFX into Excel!

• The solution: Macros!

Page 18: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

18

Page 19: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

19

CFD – Drag Results

0 10 20 30 40 50 60 70 80 90 1000.00000

0.50000

1.00000

1.50000

2.00000

2.50000

Flat Plate Drag Coefficient at Different Angles of Attack

Steady k eSteady RNG k eUnsteady k eUnsteady RNG k eTheory1927 ExperimentCOMSOL Steady k-eWind Tunnel

Angle of Attack (degrees)

Coeff

icie

nt

of

Dra

g

20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

% Error of Drag Coefficient with 1927 Experiment

Steady k eSteady RNG k eUnsteady k eUnsteady RNG k eComsol Steady k-eWind Tunnel

Angle of Attack (degrees)

Err

or

%

20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

1.2

Difference of Drag Coefficient from the 1927 Experiment

Steady k eSteady RNG k eUnsteady k eUnsteady RNG k eCOMSOL Steady k-eWind Tunnel

Angle of Attack (degrees)

Diff

ere

nce i

n C

oeff

icie

nt

of

Dra

g

20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

% Error of Drag Coefficient with Flat Plate Emprical Solution

Steady k eSteady RNG k eUnsteady k eUnsteady RNG k eComsol Steady k-eWind Tunnel

Angle of Attack (degrees)

Err

or

%

Page 20: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

20

CFD – Lift Results

0 10 20 30 40 50 60 70 80 90 100

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Flat Plate Lift Coefficient at Different Angles of Attack

Steady k eSteady RNG k eUnsteady k eUnsteady RNG k eTheory1927 ExperimentCOMSOL Steady k-eWind Tunnel

Angle of Attack (degrees)

Coeff

icie

nt

of

Lif

t

20 30 40 50 60 70 80 90 1000

50

100

150

200

250

300

350

400

% Error of Lift Coefficient with Flat Plate Empir-ical Solution

Steady k eSteady RNG k eUnsteady k eUnsteady RNG k eComsol Steady k-eWind Tunnel

Angle of Attack (degrees)

Err

or

%

20 30 40 50 60 70 80 90 1000

20

40

60

80

100

120

140

160

180

200

% Error of Lift Coefficient with 1927 Experiment

Steady k eSteady RNG k eUnsteady k eUnsteady RNG k eComsol Steady k-eWind Tunnel

Angle of Attack (degrees)

Err

or

%

20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

Difference of Lift Coefficient from the 1927 Exper-iment

Steady k eSteady RNG k eUnsteady k eUnsteady RNG k eCOMSOL Steady k-eWind Tunnel

Angle of Attack (degrees)

Diff

ere

nce i

n C

oeff

icie

nt

of

Lif

t

Page 21: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

21

CFD - Strouhal Number

• Relationship for vortex shedding frequency

• Flat Plate, St = 0.16 f= 2.8 Hz

• CFX gives St = 0.22 f= 3.94 Hz

• Error = 41%

Page 22: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

22

CFD - Recommendations

•Use 3D over 2D▫Other turbulence models only work in 3D

•Use specialized turbulence models▫DES, LES, SAS

Page 23: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

23

Experimental Schedule

Page 24: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

24

Wind Tunnel – Schedule Delay

• Manufacturing order to the faculty machine shop submitted February 4

• Drag Plate and DAQs system faults found during preliminary tests. (Hardware line-up problem and software problem). Adjustment in process.

• Products finished by Mar. 11th, but software could not be improved. Has to take 3 different measurement assuming wind velocity is constant.

Page 25: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

25

Wind Tunnel – Budget

•Drag plate, wind tunnel, DAQs system borrowed for free from the department

Panel Model

Drag Plate Wind Tunnel

DAQs

Material: $10.00 $0.00 $12.87 $0.00

Labour: $25.00 $0.00 $0.00 $0.00

Total: $35.00 $0.00 $12.87 $0.00

Page 26: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

26

Wind tunnel – Drag Plate

•One load cell (max. 50lbs) installed inside the drag plate

•Two new holes drilled and threaded exactly in the centre

Page 27: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

27

Wind tunnel - DAQs

•3 InterfaceTM load cells(25lbs, 50lbs)

•NI 9237(4 Channels)

•NI cDAQ – 9172•NI LabView 2009

with customized vi file

Page 28: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

28

Wind tunnel – tunnel systems

•Straight, rectangular wind tunnel

•Two turbines with speed control damper

•Anemometer

Page 29: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

29

Wind tunnel – model assembly

• Plastic lamination on the panel• Final Assembly in the wind tunnel• Wooden boards on the sides of the drag plate

Page 30: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

30

Wind tunnel – final apparatus

a

Ah

G

l

c

b

d

Page 31: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

31

Wind tunnel – testing parameters

Tests Number

Wind Direction Front, Back 2

Panel Angle 35°, 51°, 65°, 79° 4

Panel Gap 0 ~ 15cm 14

Total 112

In the result, we had total of 144 runs including repetition & make-ups for mistakes. For each run we had to take 3 different measurement, resulting in total of 432 data files to analyze.

Page 32: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

32

Experimental Result – Drag

0 2 4 6 8 10 12 14 160.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

Drag(Wind blowing from the front)

51 degrees65 degrees35 degrees79 degrees51 degrees(BB)

Gap from Floor(cm)

Dra

g C

oeff

icent

Page 33: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

33

Experimental Result - Drag

0 2 4 6 8 10 12 14 16 180.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

Drag(Wind blowing from the back)

51 Degrees65 degrees35 degrees79 degrees51 degrees(BB)

Gap from the floor(cm)

Dra

g C

oeff

cie

nt

Page 34: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

34

Experimental Result - Lift

0 2 4 6 8 10 12 14 16

-1.200

-0.700

-0.200

0.300

0.800

Lift(Wind blowing from the front)

51 degrees65 degrees35 degrees79 degrees51 degrees(BB)

Gap from floor (cm)

Lif

t C

oeff

icent

Page 35: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

35

Experimental Result - Lift

0 2 4 6 8 10 12 14 16 18

-1.000

-0.800

-0.600

-0.400

-0.200

0.000

0.200

Lift(Wind blowing from the back)

51 Degrees65 degrees35 degrees79 degrees51 degrees(BB)

Gap from the floor(cm)

Lif

t C

oeff

icie

nt

Page 36: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

36

Comparison to Theoretical Values

30 40 50 60 70 80 90

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

2.500

Drag and Lift Coefficients Over Varying Angles

Drag CoefficientLift CoefficientsTheoretical DragTheoretical LiftDrag/Lift Ratio Check

PV Panel Angle

Dra

g a

nd L

ift

Coeff

icie

nts

Page 37: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

37

Experimental Verification

•Load cell credibility -> Fish scale Verification

•Effect of built up pressure on drag plate -> Fish scale with weight

•Lift and Drag Relationship: , especially at higher

angle.

Page 38: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

38

Effect of Pressure on Measurement

Exp Fish Scale(kg) Load Cell(lbs) Fish Scale(N) Load Cell(N) % Error

Drag 1 0 0.5738727.468 29.889 8.82%

Drag 2 2.8 7.293254

Drag 3(with weight) 0 0.44018930.411 29.209 3.95%

Drag 4(with weight) 3.1 7.006685

Drag 5(with weight) 0 0.37218627.959 26.470 5.32%

Drag 6(with weight) 2.85 6.322863

Load Cell(lbs)(Without weight) Load Cell(lbs)(With Weight) % Error

Load cell 1 161.8012 161.6372 0.10%

Load Cell 2 11.22869 11.43814 1.87%

Page 39: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

39

Load Cell CredibilityFish Scale(N) Load Cell(N) Sum % Error

Load Cell 1

-49. 05

-4.905944

-47.13 3.92%

Load Cell 2 -42.220699

Page 40: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

40

Real PV Panel – Worst Case Scenario

•Wind Blowing from the Front▫Max CoD: 0.816 -> 674.28N @ 29m/s▫Max CoL: 0.549 -> 453.65N @ 29m/s

•Wind Blowing from the Back▫Max CoD: 0.535 -> 442.08N @ 29m/s▫Max CoL: 0.573 -> 473. 48N @ 29m/s

•Required Mass of Concrete Blocks: 196.66kg -> 3 Blocks (240kg) / Panels

•Maximum Load applied to Roof: 2.81kN/Panels

Page 41: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

41

Conclusion

•Measurements from our DAQs is reliable•However, there are results we cannot

understand fully. Sources of error could be: Velocity profile and wall effects.

Page 42: P.V. Panel wind load effects

April - 2011Design Review #5: DeLoPREC

www.ucalgary.ca/deloprec