Purolite Ion Exchange Resins for Use in Nuclear Power

Embed Size (px)

DESCRIPTION

article

Citation preview

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    1/34

    ION EXCHANGE RESINS

    FOR USE IN NUCLEAR

    POWER PLANTS

    Original by J.J. Wolff

    Revised and Updated

    January 2012

    Limerick Nuclear Generating Station

    Source: US NRC file photo

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    2/34

    The WolffPaper Apr 2012 1

    Special Thanks:

    The original author of this paper, Jean-Jacques Wolff, was born on April 23, 1930.He first studied Chemistry and then Bio-technology. He worked in the sugar and

    sweetener field of the food industry prior to joining a growing producer of ionexchange resins, Duolite, in the early 1960s. There he progressed quickly to

    become Technical Manager.

    Following the acquisition of Duolite by Rohm and Haas in June 1984, he decidedto reinforce the technical team of a new fast-growing manufacturer of ionexchange and adsorbent resins called Purolite International. There he broughthis deep expertise in the Nuclear Industry, mainly to lectricit de France.

    Jean-Jacques Wolff was well known and appreciated by his clients all over the

    world, especially in Asia. He was an excellent open minded colleague and duringhis life developed many new purification processes.

    Jean-Jacques Wolff was married and had two sons. He passed away on 25thNovember 1992.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    3/34

    The WolffPaper Apr 2012 2

    Table of ContentsINTRODUCTION Page 3

    SECTION 1: NUCLEAR POWER GENERATION Page 4

    A. Nuclear FissionB. Controlling the reactionC. Nuclear Industry Water Quality GuidelinesD. System Contaminants

    SECTION 2: TYPES OF REACTORS & WATER TREATMENT CIRCUITS Page 8

    A. Graphite-Gas Reactor (AGR) Page 8Graphite-Gas Reactor Treatment Circuits

    1. Makeup Water2. Condensate Polishing3. Turbo-blowers4. Spent Fuel Ponds

    B.

    Pressurized Water Reactors (PWR) Page 11PWR Primary Circuit Treatment

    1. Reactor Coolant Purificationa. Outage Clean-up Bedsb. pH Control (CVCS)c. Outage Activity

    2. Deboration3. Spent Fuel Ponds (SFP)4. Radwaste Effluent Treatment

    PWR Secondary Circuit Treatment Page 19

    5. Makeup water Treatment6. Condensate Polishing7. Steam Generator Blowdown Treatment

    C. Boiling Water Reactors (BWR) Page 24BWR Circuit Treatment

    1. Makeup water Treatment2. Condensate Polishing3. Reactor Coolant Purification4. Spent Fuel Pool Treatment5. Radwaste Treatment

    D. Fast Breeder Reactor (LMFBR) Page 28SECTION 3: NUCLEAR ION EXCHANGE RESIN Page 29

    1. Nuclear Quality Resin2. Operating Capacity3. Decontamination Capacity

    SECTION 4: REFERENCES Page 33

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    4/34

    The WolffPaper Apr 2012 3

    1. INTRODUCTIONNuclear power plants are currently operated in 31 countries with 15 more countries currently

    planning the construction of their first nuclear power plants. Nuclear power generation will

    continue to grow as a strategic option due to the increasing cost of fossil fuel based energy

    and the pressure to reduce greenhouse gases.Ion exchange resins in both bead and powder form are used extensively in all types of

    nuclear power plants throughout the world. Ion exchange systems are the most cost

    effective and in some cases the only way to produce water with the quality required for

    proper plant operation.

    Ion exchange plays a vital role in the elimination of soluble chemical components that

    contribute to corrosion as well as removing corrosion products and radioactive isotopes from

    the different coolant circuits. The objective of controlling these chemistries is to protect the

    nuclear generating systems from corrosion, extend the system life and maintain a safe

    working environment in and around the plant.

    The purpose of this paper is to review the different types of nuclear reactors that are in use

    today, and explain in some detail the important role that ion exchange systems (and ion

    exchange resins) play in the different nuclear applications.

    Worldwide nuclear power plantsSource: Targetmap.com

    Note: All Purolite products referred to in this paper are Purolite unless specifically noted.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    5/34

    The WolffPaper Apr 2012 4

    SECTION 1:NUCLEAR POWER GENERATION

    A.Nuclear FissionNuclear fission is a process in which a nucleus of an atom splits to form free neutrons and

    protons while producing a tremendous amount of energy in the form of heat. The atom splits

    because it is bombarded by slow moving neutrons that briefly are absorbed by the nucleus

    (neutron and proton) and cause it to change. New lighter elements are formed (fission

    products) as well as free neutrons. As more neutrons are produced when the atoms split, the

    reaction becomes self-sustaining. The new neutrons collide with other nuclei. Isotopes of

    Uranium and Plutonium have historically been used because they can sustain this chain

    reaction and are called fissionable materials.

    Today, nuclear fuel is natural or enriched uranium in the form of UO2pellets. These pellets

    are fitted into sealed sheaths made of steel, zirconium or magnesium alloys called fuel rods.

    These fuel rods are arranged into bundles or elements in a very specific geometric manner.

    Based on the diameter of the rods, the elements are gathered into vertical or horizontal

    columns at an optimal distance apart. This increases the probability of neutrons meeting with

    a 235U nucleus, thereby inducing nuclear fission. The neutron flux is the term used for rate of

    reaction inside the reactor. The heat emitted during fission in the reactor core is transferred

    to a coolant that can be a liquid (water, heavy water or liquid sodium) or a gas (CO2). This

    heat is used to boil water and create high pressure steam in a secondary closed system. This

    steam is used to drive a steam turbine and generate electricity.

    B.Controlling the ReactionIn order to control the reaction, the fuel bundles are typically immersed in materials that act

    to moderate (moderator) neutrons or retard (retarder) the production of neutrons. A

    moderator is a medium that reduces the speed of fast neutrons to control the nuclear

    reaction. These include solid graphite, light water or heavy water. The reactor casing is

    made of steel and clad in a thick wall of concrete which provides a shield against radiation.

    After the reactor starts up, neutron production progressively increases and slow neutrons

    may behave in one of several ways.

    1. Enter a 235U nucleus and induce fission, yielding heat and other neutrons2. Disappear by diffusion through the reactor casing3. Be reflected by the reactor casing4. Be absorbed by:

    a.

    Various structural materialsb. Control rods: They are designed to reduce the neutron flux and are made of

    materials with a high-neutron-absorbing capacity, such as silver, indium and

    cadmium.

    c. A neutron absorbent such as boric acid.d. Poisons manufactured into the fuel assemblies

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    6/34

    The WolffPaper Apr 2012 5

    The relationship between these processes must be precisely managed to achieve optimal

    control of the reactor. When a state of equilibrium is reached the reactor is said to be critical

    or that it has diverged.

    During the life of the reactor fuel, the concentration of 235U, and therefore the neutron flux

    rate, decreases. The accumulation of fission products causes parasitic absorption of neutrons

    which further decreases neutron flux. In order to compensate for these effects, control rods

    are progressively removed during operation or the concentration of adsorbent in the

    moderator is reduced.

    If the production of neutrons falls below the critical level that is required to produce energy,

    the fuel must be replaced in a refueling outage. This occurs during a scheduled shutdown in

    which a portion of the fuel rods are replaced and the remaining rods are rearranged.

    Refueling outages are typically carried out every 18 to 24 months for most reactor designs.

    Several reactor designs allow operators to change fuel while the facility is still generating

    power.

    Figure 1:

    Source: World Nuclear Association

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    7/34

    The WolffPaper Apr 2012 6

    C.Nuclear Industry Water Quality GuidelinesAlthough the nuclear industry does not regulate the type or quality of ion exchangers used in

    nuclear plant operations, it does establish guidelines on makeup water, primary chemical

    volume control, and shutdown chemistry, as well as secondary chemistry coolant that impacts

    condensate polishing, and steam generator blowdown quality. These guidelines strongly drivethe selection and specification of resins by nuclear operations to maintain consistent quality

    and cleanliness within circuits.

    Individual nuclear power companies set specifications for resins purchased for the different

    plants. However, these are generally based on resin manufacturers specifications. The level

    of impurity on the resins is established by the resin manufacturer or service company based

    on achievable post-processing capabilities.

    Make-up water chemistry parameters have been referenced by the Institute of Nuclear Power

    Operations (INPO) Chemistry Guidelines, the World Association of Nuclear Operators

    (WANO), and the Electric Power Research Institute (EPRI) Chemistry Guidelines. All

    emphasize the importance of maintaining extremely low contaminant concentrations in themakeup water and minimizing corrosion products and trace impurities from coolant water

    and condensate streams. The most critical chemistry parameters listed in the referenced

    reports are: Key ionic species such as sodium, fluoride, chloride, sulfate and nitrate ions and

    specific conductivity. While the first four ions are common, nitrate is not normally present in

    significant concentrations. A specific conductivity limit 0.08 S/cm measured at 25C must

    be maintained or conversely, a resistivity value 12.5 M/cm must be maintained.

    D.System ContaminantsDuring operation, sodium will concentrate in crevices and points of evaporation, resulting in

    high sodium alkalinity which contributes to stress corrosion cracking in steam generator tubes

    and on turbine components. The sodium specification for nuclear makeup water is normally

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    8/34

    The WolffPaper Apr 2012 7

    thermally or radiolytically in the system, producing chloride and sulfate ions, which

    potentially reduce the water pH and lead to intergranular corrosion (IGC) and stress corrosion

    cracking. The typical allowable level of sulfate in the steam generator is 1.50 ppb and the

    allowable level of chloride is

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    9/34

    The WolffPaper Apr 2012 8

    SECTION 2: TYPES OF REACTORS & TREATMENT OF CIRCUITS

    A.The Graphite-Gas Reactor (Figure 2)The Graphite-Gas Reactor was one of the first types to be introduced and quickly became the

    main backbone for the nuclear industry in the United Kingdom. Initial designs were the

    Magnox and later the AGR (Advanced Gas Cooled Reactor) system. The AGR design operates

    at higher temperatures, which requires certain design modification to accommodate the

    elevated temperatures. Today, most of the Magnox designs are no longer in operation, but

    there are several AGR designs still in successful commercial operation. All of these operate

    with two reactors in a single structure, and use uranium as the fuel.

    In the reactor core, the fuel rods are located inside a block of graphite that acts as a

    moderator. The coolant is pressurized CO2, which passes through the reactor core removing

    heat. This heated CO2stream is used to produce steam, which drive turbine generators that

    generate electricity as part of the overall power plant.

    Figure 2:Magnox Reactor Schematic

    Source: English Wikipedia.

    Todays highly regulated nuclear power plants are considered to be safe, and producerelatively low amounts of radioactive waste material. One of the primary advantages seen

    with the graphite-gas design is their ability to allow for the online replacement of fuel

    elements. However, operating difficulties make Graphite-gas reactors commercially less

    attractive to build and have restricted widespread use of this design.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    10/34

    The WolffPaper Apr 2012 9

    Graphite-Gas Reactor Treatment Circuits (Figure 3)

    Ion exchange is used to treat four circuits in a Graphite-Gas nuclear plant. They are the

    makeup water, the returned condensate, the turbo blower and the spent fuel pool.

    Figure 3:

    1. Makeup waterAlmost all AGR units operate their own make up treatment systems. However service

    providers are available to support makeup requirements with service trailers. These systems

    commonly employ pre-filtration followed by reverse osmosis (RO) technology with a final,

    high-purity mixed bed polisher. Nuclear power plants that continue to own and operate their

    own makeup water-treatment systems will generally use standard resins that produce

    high-quality water but also have good regeneration efficiency.The following resins configured in the order shown can be used to demineralize the makeup

    water for AGR Reactors:

    NRW100 strong acid cation exchanger PFA100 weak base anion exchanger NRW400 strong base anion exchanger NRW3240 for polishing mixed beds

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    11/34

    The WolffPaper Apr 2012 10

    This combination of resins will produce water with conductivity below 0.1 S/cm and less

    than 10 ppb of Si02. The makeup water recommended purity is specified in Table 1.

    Table 1: AGR Makeup Water Specifications

    Component Specification

    Total Dissolved Solids

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    12/34

    The WolffPaper Apr 2012 11

    B.Pressurized Water Reactor (PWR) (Figure 4)The Pressurized Water Reactor (PWR) is the most widely used nuclear power generation

    design and has achieved great success worldwide. The reactor core heats the surrounding

    pressurized water (the primary circuit or coolant) and the water circulates to a steam

    generator where it transfers its heat to a secondary water system. Steam at approximately900psig is created and is sent to a steam turbine to generate electricity. The advantage of

    this system is that the radioactive sections (the reactor and primary circuit) are separate from

    the rest of the power plant. Such separation helps to control and minimize potential

    contamination risks.

    PWRs use enriched UO2 (between 2.0 and 4.95 wt. %) in pellet form as fuel. In a 900 MW

    power plant, the reactor uses up to 72 tons of uranium per year. These pellets are contained

    inside zirconium alloy sheaths (Zircalloy) to form a rod. In a typical design, approximately 200

    of these fuel rods are bunched together to form a bundle or element. Depending on its

    capacity, a reactor core can contain from 150 to 200 rod bundles which are arranged for

    optimum heat generation.Figure 4: Pressurized Water Reactor

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    13/34

    The WolffPaper Apr 2012 12

    Source: US Nuclear Regulatory Commission

    The coolant running through the reactor core is purified water and is given the term light

    water. Acting as both a heat transfer fluid and a moderator, it is heated to 290 320oC and

    maintained under a pressure of 150 bar (2,200 psi). The neutron flux rate can be controlled

    by varying the concentration of boric acid dissolved in this primary circuit water and by

    moving the control rods up and down. However, typical operation has the control rods

    almost completely withdrawn to maximize fuel burn-up. Large water pumps circulate the

    pressurized water through the steam generators, which function as heat exchangers. Certain

    PWR reactor designs such as the Candu system use heavy water. This is water highly

    enriched in the hydrogen isotope deuterium. Deuterium has a proton and a neutron in the

    nucleus whereas hydrogen has only a proton. Other than the moderator, the basics of the

    Candu reactor are the same as the PWR described herein.

    The PWR was originally designed in the United States by WestinghousesBettis Atomic Power

    Laboratory for military ships. Westinghouse, Asea Brown Boveri-Combustion Engineering

    (ABB-CE), Framatome, Kraftwerk Union, Siemens, and Mitsubishi have typically built this type

    of reactor throughout the world. Babcock & Wilcox (B&W) built a PWR design but used

    vertical once-through steam generators rather than the U-tube design used by the rest of the

    suppliers. Industry consolidation has occurred so that Framatome-Areva-NP, Westinghouse,

    Mitsubishi and Toshiba are the key remaining manufacturers. Such reactors, especially the

    Westinghouse AP1000 and the Areva EPR designs, are expected to be widely used in the years

    to come and will constitute a major portion of the worlds nuclear power generation

    programs in the foreseeable future.

    PWR Treatment Circuits

    The PWR is composed of two entirely separate circuits: Primary (Figure 5) and secondary

    (Figure 8).

    Primary Circuit Treatment

    Ion exchange is used to treat four circuits within the primary circuit in a PWR nuclear plant.

    They are the reactor coolant purification system, deboration, spent fuel pool and radwaste

    effluent.

    The primary circuit water is in direct contact with the reactor fuel. It acts as coolant and

    moderator. Impurities from the makeup water and corrosion products that are exposed to

    the core become radioactive and thus require special treatment. Primary circuit water

    transports heat from the fuel bundles and helps to cool the fuel. This water, although high in

    boron and, to a much lower level, lithium, must be clean and free of soluble and suspended

    corrosion matter that will collect on the fuel rods. In addition, inorganic salts of sodium,

    sulfate, and chloride must be controlled to minimize corrosion in the granular structure of the

    fuel rod sheaths and system metal surfaces. Two types of corrosion can occur: Intergranular

    Corrosion (IGC) or Stress Corrosion Cracking (SCC). Corrosion byproducts will foul fuel and

    contribute to irregular burning known as axial anomalies or Crud Induced Power Shift (CIPS).

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    14/34

    The WolffPaper Apr 2012 13

    These corrosion byproducts will become activated isotopes that release as crud bursts during

    cool down periods of outages. These buildups and releases can potentially damage fuel

    sheaths and contribute to fuel leaks and support Crud Induced Localized Corrosion (CILC).

    To further minimize colloidal and dissolved impurities, corrosion-resistant materials with

    special alloys, such as Zircaloy, Inconel and stainless steel are utilized. It must be noted,however, that stainless steel is sensitive to the presence of chloride in the water. Today,

    special corrosion-resistant stainless metals, such as Alloy690TT and Alloy 80Mod, are being

    used to replace current steam generators to minimize source term and extend unit life.

    Source term is latent radiation that builds up in the system and must be controlled.

    The pH of the primary water is typically maintained between 6.9 and 7.4 at 300C or coolant

    average temperature. This may change depending on materials of construction, water

    chemistry and system design. If necessary, it is adjusted up by adding lithium hydroxides.

    Lithium can be natural lithium, a mixture of two isotopes (approximately 7%6Li

    +and 93%

    7Li

    +),

    or purified lithium (99.5%7Li

    +). Natural lithium is notably less expensive but has the

    disadvantage of producing tritium by neutron capture of 6Li+. Purified 7Li+ is the principal

    lithium isotope used in a large majority of PWRs worldwide.

    The pH of the primary water must be maintained at the specified level and adjusted based on

    the water temperature. Reactor pH (temperature corrections of 0.2 to 2 units) is adjusted

    down by removing lithium. Boric acid is used to slow down neutrons. When a power plant

    starts up, the concentration of boric acid is typically 1,500 ppm as B. As the nuclear fuel

    activity decreases, the concentration is reduced progressively until low concentrations are

    reached by the end of the fuel life cycle. However, the plant may need to increase or decrease

    the boric acid concentration in order to adjust the power supply at a given moment. Natural

    boron is a combination of B

    11

    and B

    10

    .

    B

    10

    is a powerful neutron absorbent and changes into7Li

    + via a nuclear reaction known as radiolysis. Thus, the

    7Li

    + concentration is maintained

    within the circuit proportionally to the boric acid concentration.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    15/34

    The WolffPaper Apr 2012 14

    Figure 5: PWR - Primary Circuit Treatment

    1. Reactor Coolant PurificationThe primary circuit coolant water is treated exclusively by the Chemical-Volume-Control

    System (CVCS). This system consists of 2 to 4 ion exchange vessels that remove ionic

    impurities, control pH by adding lithium or removing lithium, control activity by adding orremoving boron and remove radioactivity. During full power, one vessel loaded with lithiated

    cation and borated anion mixed bed resin (Li:B) is operated to control low-level ionic

    impurities and temperature-adjusted pH. All anions are borated from boron in the primary

    coolant. Some plants are designed with Boron Thermal Regeneration Systems that can add or

    remove boron. Near the end of the full power cycle the RFO (Refueling Outage) cleanup bed

    will be loaded and may be borated during intermittent operation.

    Mixed bed resins used in the CVCS include NRW3460 and NRW3560 (both available in natural6Li

    +and purified

    7Li

    +forms). If a greater capacity is required to remove Co58, Co60 and Cs137,

    the mixed bed can be layered with macroporous strong acid cation NRW160. Some systems

    will have a separate cation bed available in the event that additional cation control isrequired.

    All ion exchange resins used for primary coolant purification have a quality rating and must

    meet specific criteria for nuclear purity. If not, there will be a risk of impurity leaching. Studies

    have shown that in presence of 3,000 ppm boric acid and 2 ppm lithium, an anionic resin

    containing 800 mg chloride per kg of dry resin produces water containing approximately 50

    ppb chloride. Therefore, low-chloride anionic resins must be used that is, with less than

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    16/34

    The WolffPaper Apr 2012 15

    0.1 % of total active sites with chloride, or approximately 200 mg per kg of dry resin. Special

    attention should also be paid to the silica content in anionic resin, as silica found on the

    anionic resin is easily displaced by boric acid and can end up leaching into primary coolant.

    a. Outage Cleanup BedsNear the end of a power cycle prior to a scheduled shutdown a mixed bed is loaded with H+form cation, OH

    - form anion (H:OH) and layered resins for refueling cleanup. These resins

    replace the previous outage bed resins which have been sluiced to a spent resin tank (SRT).

    This bed may be operated intermittently prior to end of cycle to remove residual lithium and

    borate the anion. This becomes an H:B bed. During the refueling outage (RFO) this bed will

    remove corrosion isotopes that are released during the shutdown and forced oxygenation.

    This is to minimize personal contamination and dose while work is being done on the primary

    system.

    Chemical adjustments to the primary system carried out shortly after shutdown are, by design,

    intended to force significant levels of radioactivity, both soluble and insoluble, into the

    coolant stream. These adjustments include controlling the hydrogen concentration tomaintain a reducing phase followed by the addition of hydrogen peroxide to create an

    oxidizing phase. Iron solubility increases in the reducing phase while nickel solubility increases

    in the oxidizing phase. The addition of hydrogen peroxide will cause iron to precipitate.

    These steps force corrosion and radioisotopes from the reactor surface and crevices of fuel

    bundles. Steam generators may or may not be isolated during the cleanup, however if

    recirculating coolant pumps (RCP) remain on, more activity will be released from these areas.

    Ion exchange beds and filters are designed to reduce radioactive contaminants to EPRIs

    action level of 5.0E-2 Ci/gm before outage activities can begin.

    Due to limited flow of one cleanup bed, it is common for the Li:B bed used during full power

    to operate with the H:B layered bed in parallel. This literally doubles the cleanup rate. Ifpump capacity allows, some plants will have only the layered cleanup bed in service and

    double the service flow. The objective of operating at double the flow is to reduce the time

    required to reach the required action level. This operation works well when CVCS and cleanup

    beds are used only one cycle.

    Refueling outage (RFO) beds are CVCS beds used to clean the primary coolant during an

    outage. RFO beds are loaded with a special configuration (layering) of resins to reduce both

    soluble and insoluble isotopes. For instance, RFO beds typically have 20cf of nuclear mixed

    bed NRW3560 loaded on the bottom, 5cf of high capacity, macroporous cation NRW160 in

    the middle and 5cf of macroporous anion NRW5010 or NRW5070 to cap the top. The bottom

    layer of NRW3560 consists of high-capacity cation (NRW160) and anion resins (NRW600) topolish the coolant. The middle layer of NRW160 is used to remove soluble metals such as

    cobalt, cesium, iron, nickel and other metal ions in the coolant water. The top layer of

    NRW5010 or NRW5070 will effectively filter very fine particulates colloids - that commonly

    pass through the cleanup mixed beds. This macroporous anion layer at the top of the bed is

    efficient at removing particulates below 0.1 m in size, which would otherwise plug or bypass

    standard operating filters. Use of these macroporous anions will also favorably impact

    radwaste cleanup, by lowering the post-filtration dose and allowing smaller effective size

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    17/34

    The WolffPaper Apr 2012 16

    filters (0.1 m) to be used during outage activities, reducing the number of filters used, and,

    to a limited extent, assisting in the reduction of source term within the primary system.

    Currently there is a push to reduce nuclear waste because of lack of storage sites. Resins are

    now being used in more than one cycle. Originally the NRW5010 product was considered to

    be too fragile and not possible to be loaded on full service bed, but with the development of

    the stronger macroporous anion NRW5070, full power beds can be layered and used for

    possibly 2 cycles without concern of bead failure. Cleanup beds however may not be good

    candidates for multiple outages due to the high level and type of loading they encounter.

    b. pH controlAs mentioned earlier, pH is adjusted upward by adding lithium hydroxide and downward by

    removing lithium. Since B10

    absorbs neutrons and changes into7Li

    +there may be an excessive

    increase in lithium in the circuit. This concentration is controlled by routing the mixed bed

    effluent (primarily Westinghouse systems) into a separate CVCS vessel loaded with strong

    acid cation resin NRW160 to remove excess lithium.

    c. Outage ActivityWhen the reactor cavity coolant has reached the specified activity level the reactor coolant

    pumps (RCP) are stopped, steam generators isolated and the reactor head is lifted. From this

    point the cavity is flooded with water from the reactor or refueling water storage tank (RWST)

    and refueling begins. This creates a large pool where fuel bundles are manipulated under

    water. Some bundles are moved to a spent fuel pool through a refueling canal and

    continually remain submerged. Once the refueling has been completed, the reactor water is

    returned to the RWST or released to the radwaste stream for processing before discharge.

    The discharged water is termed primary effluent and includes primary circuit let down (water

    released from primary system to be replaced with water of a different boron concentration)and the various liquid waste streams originating from the radioactive sections of the power

    plant. These waters contain lithium and boron in addition to a large variety of radioactive

    isotopes. The effluents are filtered before being treated by ion exchangers. Usually the resin

    train consists of activated carbon, natural zeolite, a strong acid cation exchanger H+ form

    (NRW160, NRW1100, NRW1000), followed by mixed bed resins (NRW3240 or NRW3260). The

    strong acid cation exchanger removes lithium, cobalt, cesium etc. Fluoride and antimony are

    generally the difficult species to remove.

    2. DeborationThe term deboration is related to ion exchange systems that will remove boron in a controlledmanner. The deboration system removes residual boric acid remaining in the first part of the

    waste stream by ion exchange before passing to the radwaste processing system. The system

    may consist of an evaporator or a reverse osmosis system which produces a highly

    concentrated boron solution. The solution, according to its quality ,is either recycled back to

    the primary circuit or directed to a treatment system for solid effluent. Permeate containing

    boron may be treated with nuclear grade strong base anion exchanger (NRW6000 or

    NRW7000).

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    18/34

    The WolffPaper Apr 2012 17

    The capacity of the anion resin for boron will vary proportionally with the boric acid in the

    evaporator effluent or RO permeate. When the boron concentration increases, the anion

    resin operating capacity will increase. When boron is about 100 ppm, the operating capacity

    of the anion will be about 40 grams of boric acid per liter of resin.

    3.

    Spent Fuel Pool (SFP) TreatmentThere are generally three pools in a nuclear power plant: the reactor water cavity (RWC), the

    spent fuel pool (SFP) and the reactor water storage tank (RWST). The RWC is the pool created

    when the reactor cavity is flooded with water from the RWST. RWC completely covers the

    reactor dome and allows for fuel to be moved to and from the reactor while being covered

    with water. The RWST tank is used during the entire cycle to refill the RWC during the outage,

    the SFP and during an emergency shutdown, and to refill the Cold Leg Accumulators (CLA).

    The CLA is a pressure vessel that will discharge, in the event of pressure loss, high borated

    water into the cold leg piping feeding the reactor vessel and assists in the shutdown of the

    nuclear reaction. The SFP is connected to the RWC by a fuel-transport canal. Fresh fuel is

    stored in the SFP prior to an outage and exhausted fuel is stored in the SFP after its usefulservice.

    Purification of the RWC and the SFP is carried out by a spent fuel pool demineralizer, which

    uses a mixed bed of strong acid cation resin and strong base anion resin (NRW3560 or

    NRW3670). Peroxide generated by radiation from the exhausted fuel contributes to oxidative

    attack on the cation resin, which results in the release of sulfates. Fuel pools with a higher

    percentage of spent fuel will have greater issues with this resin degradation than others. The

    highly cross-linked macroporous cation resin NRW160 (found in NRW3560 and NRW3540),

    gel cation NRW1160 (NRW3660) and NRW1180 tolerate this oxidative condition better than

    lower cross linked resins. This allows for a longer service life before sulfates in the pool water

    requires resin replacement.Figure 6:Oxidative stability of Purolite cation resin in a peroxide environment

    Maintaining the clarity of both the reactor water and spent fuel pool water is crucial.

    Sediments are easily disturbed during fuel movement causing clarity to deteriorate and

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    19/34

    The WolffPaper Apr 2012 18

    turbidity and radiation levels to increase. Use of the macroporous anion resins NRW5010 or

    NRW5070 assist in reducing turbidity and associated radioactivity when layered on top of the

    mixed bed resin. Additionally, if fuel bundles are moved from the fuel pool and transported to

    dry storage in special storage casks, the SFP demineralizer with an NRW5010 layer on the

    mixed bed removes fine particulates that collect on metal surfaces. This significantly reduces

    the task of decontaminating casks prior to moving them to storage.

    Figure 7: Activity buildup on anions used for RFO cleanup

    4. Radwaste Effluent TreatmentThe radwaste system collects all effluents from the power plant, such as active and inactive

    blowdown and wash water. Depending on the ionic load, a mixed bed may be used alone

    (NRW3240) or in a train consisting of a strong acid cation exchanger (NRW160) followed by

    the mixed bed. However, it has been found that a number of radioactive products are presentin colloid form (this is the case with ions in association with Co58 and Ag 110, in particular)

    and therefore are not captured by conventional resins. Adding a layer of the macroporous

    anion resin NRW5010 or NRW5070 on top of either the strong acid cation bed or the mixed

    bed will effectively address this type of contaminant.

    The conventional radwaste mixed bed resin may be replaced with the higher-capacity mixed

    bed, NRW3560. It should be noted that the resins used for the treatment of wastewater do

    not necessarily have to be nuclear quality since this water is to be released into cooling ponds

    under the guidelines of the Off-site Dose Calculation Manual (OCDM) following treatment.

    They must however be highly regenerated to maximize loading of activity.

    Cleanup Bed Activity

    0

    0.5

    11.5

    2

    2.5

    3

    3.5

    4

    4.5

    NRW400 NRW5010

    uSv/h

    Top

    Middle

    Bottom

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    20/34

    The WolffPaper Apr 2012 19

    Secondary Circuit Treatment

    Ion exchange is used to treat three circuits within the secondary circuit in a PWR nuclear plant.

    They are the makeup water, returned condensate and steam generator blowdown.

    The secondary water circuit generates steam which is fed directly to the turbines and is non

    radioactive. It is possible for it to become radioactive if a leak in the steam generatordevelops or a small amount of tritium passes through the steam generator. The system feed

    water consists of condensate return, steam generator blowdown and demineralized makeup.

    This water must have a high purity. During full power, the makeup water system will

    compensate for blowdown losses and any possible leaks.

    Figure 8: PWR Secondary Circuit Treatment

    5. Makeup Water TreatmentMany makeup water treatment systems have moved to build, own and operate (BOO)

    generally consisting of clarification or ultra-filtration (UF), carbon filters, reverse osmosis (RO)

    technology, electronic deionization (EDI), followed by polishing using mixed bed ion exchange

    systems. This approach allows plants to move away from chemical-based regeneration,

    which contributes to plant waste. This approach also minimizes frequent replacement of

    service DI trailers. These makeup systems are commonly operated by offsite contract

    suppliers.

    When resins are used to treat makeup water, they must be highly regenerated and specially

    processed to meet tight specifications for chloride, sulfate, sodium, iron and TOC (also known

    as POC or purgeable organic carbon). Regeneration is generally carried out offsite.

    NRW3240 can be used as a polisher in makeup systems. This mixed bed resin is composed of

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    21/34

    The WolffPaper Apr 2012 20

    resins that are characterized by high total capacity and selectivity for influent cations such as

    sodium, and anions such as silica and chloride. This resin is also easily regenerated to a high

    level of conversion with minimal release of impurities.

    As a final polishing step before water enters the deionized water storage tank (DWST), a

    non-regenerable, high-purity mixed bed resin, such as UltraClean UCW9964 may be used.

    For a less separable mixed bed, UCW9966 can also be used. The makeup water quality will

    achieve 17.9 M, residual silica

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    22/34

    The WolffPaper Apr 2012 21

    closely and when effectiveness decreases, the resins must be replaced. They should be

    replaced even if the ionic operating capacity has not been depleted completely. Plants using

    ETA-naturalizing amines may require a cation resin that has been specially manufactured and

    post treated to minimize foulants that degrade anion kinetics.

    Condensate polishing, which removes corrosion products and in-leakage, is accomplished

    primarily with deep mixed bed polishers and less frequently with precoat filters. Precoat

    filters are vessels that have several filter elements that are coated with a layer of powdered

    resins and are typically used where steam condenser water has a relatively low salinity and

    when the risk of leakage is considered small. When plants use fresh water for cooling,

    deep-bed condensate polishers are operated during startup or upset conditions. When plants

    cool with brackish or salt water, the deep beds are operated continuously.

    Care is required to ensure that the steam generator receives high-purity water containing

    0.02 ppb of Na+, Cl

    -and SO4

    -, as these dissolved solids will concentrate in the steam generator

    as steam is produced. A small number of PWR plants regenerate their condensate-polishing

    resins. However, the level of purity required from the polishing resin is critical and

    regenerating this resin to achieve levels where sodium, chloride and sulfate do not leach is

    often difficult to attain. Special efforts must be taken to ensure proper separation of resins,

    minimize cross-contamination and minimize residual ions from regeneration remaining in the

    resins. These ions are Na+on the strong acid cation and carboxylic groups that may form on

    the anion resin (See papers by Auerswald(7) and by Crone(8)). Polishing systems that are not

    regenerated will operate intermittently to extend the resin life. Once these

    condensate-polishing resins begin breaking on amine, the condensate-polishing resins must

    be replaced. A small number of condensate polishers do operate past the amine break,

    however, these plants have extremely high purity secondary systems and no cooling water

    leakage.

    The following Purolite deep-bed demineralizer resins are recommended for condensate

    polishing:

    1. Non-regenerable polishers will use the strong acid macroporous cation exchangerNRW160, or gel NRW 1160, followed by the complimentary mixed bed NRW3560, or

    NRW3670. This system has a lead strong acid cation exchange resin which removes

    unwanted cations, corrosion products, ammonia, and amines. The H+and OH

    -polishing

    mixed bed captures traces impurities and supports longer unit run times. This system is

    capable of operating the lead cation past the amine break and possibly to a sodium

    break as long as sodium on the cation (and anion) is low (

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    23/34

    The WolffPaper Apr 2012 22

    4. A non-regenerable mixed bed with 1:1 cation-to-anion ratio by volume addressingelevated amine chemistries is NRW3561 or 2:1 cation to anion by volume NRW3562.

    Items 3 and 4 above generally require the service cycle to stop at the ammonia break

    resulting in approximately 24 weeks service. If service continues beyond the ammonia

    break to a sodium break service time will be greater, approximately 6 weeks, but Na+

    leakage to the hot well will also be higher.

    Precoat filters (elements) are coated with a mixture of strong acid cation exchanger in H+

    form (Microlite PrCH) or an ammonia-form exchanger (Microlite PrCN) and a strong base

    anion exchanger in OH- form (Microlite PrAOH). Precoat filters have a relatively limited

    capacity for removing soluble salts and thus become rapidly exhausted in the event of a

    condenser leak. However, powdered resins have an inherent advantage over bead resins in

    that they have less capital cost associated with precoat facilities than a regeneration system.

    Furthermore, filtration of corrosion products is more efficient with powdered resins than with

    bead resins.

    Precoat products are available premixed as mixed bed products, without fiber (Microlite MB)

    and with fiber (CG range). If precoats exhaust on pressure drop due to excess corrosion or

    crud, precoat with fiber may allow extended runs.

    7. Steam Generator Blowdown TreatmentThe steam generator blowdown (SGBD) is required to maintain water quality within specified

    EPRI Secondary Water Chemistry Guidelines. SGBD is designed to remove and control

    dissolved solids in the steam generator, which can build up from 50 to 200 times higher than

    those concentrations in the makeup feedwater. The blowdown stream can be routed either

    to waste or to a demineralizer. Waste blowdown is sent to radwaste or to cooling lagoons if

    no radioactivity is present. Demineralized blowdown is typically returned to the condensate

    storage tank (CST), where it contributes to makeup water. Dissolved solids entering steamgenerators are primarily amines (MPA, ETA), ammonia, and hydrazine along with low levels of

    sodium, sulfate and chloride. Concentrations in the steam generator are low ppm levels for

    amines and low ppb or sub ppb levels for inorganic salts. If leakage from the primary circuit

    occurs, radioactivity will be removed by the blowdown demineralizer resins, which will then

    require disposal as low-level radioactive (Class A) waste or blown down overboard and

    quantified per the ODCM.

    A blowdown demineralizer system generally consists of two vessels: A strong acid cation

    exchange resin in the lead vessel and a mixed bed of strong acid cation and strong base anion

    in the second vessel. Blowdown resins require high purity cation and anion resins, both of

    which have low levels of sodium and TOC. High-capacity cation resins, generally macroporousNRW160 or gel NRW1160 with very low sodium (20g/kg), are typically used to control sodium

    in the steam generation. Using low-sodium and high-capacity cation resins, the cation bed can

    be operatedpastthe amine break as long as there are no leaks, which allows the cation bedto be operated 34 times longer than cation beds operated only to the amine break.

    Plants with any kind of condenser leak must operate only to the amine break. Plants that use

    ammonia and morpholine have more experience operating past the amine break to a sodium

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    24/34

    The WolffPaper Apr 2012 23

    break compared to plants using ETA. High cross-linked macroporous cations resins operated

    in the low sodium form will result in only a slight sodium excursion when the amine break is

    reached. However, sodium levels will drop back after a short time and be maintained at low

    levels until the sodium break occurs. Low-level sodium released from the lead cation will be

    removed by the downstream mixed bed (NRW3560 or NRW3670). The mixed bed following

    the cation bed may also be operated past an amine break to a sodium break. However, thesodium break is much sooner (typically occurring in a matter of weeks) compared to what is

    often experienced on the cation bed (several months). For plants with higher ammonia and

    amine levels, use of a mixed bed resin with a higher cation capacity may add additional bed

    life. NRW3562 has a 2:1 cation-to-anion ratio by volume, which provides approximately 4.2:1

    equivalence cation-to-anion.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    25/34

    The WolffPaper Apr 2012 24

    C.Boiling Water Reactor (BWR) (Figure 9)The Boiler Water Reactor (BWR), originally designed by General Electric and Idaho National

    labs, is the second most widely used type of light-water reactor. GE Hitachi Nuclear Energy is

    the main current manufacturer of this type of reactor.The BWR has a single circuit, which is used to supply steam directly to turbines. The drawback

    of the system is the presence of radioactivity in the steam. This requires a more robust

    protection system for the entire circuit. The fuel used in the BWR is similar to the fuel used

    for a PWR but the fuel rods have a larger diameter and the bundles contain only about 50

    sheaths.

    The moderator and coolant water temperature reaches 286C at the core. The water is

    maintained at a pressure of only 70 bars (1000 psig) where it is transformed into steam.

    Consequently, the reactor itself acts as the steam generator.

    Similar to the PWR, periodic fuel replacement requires the power plant to be shut down for

    two to six weeks, after approximately 1824 months of service.

    Figure 9: Boiling Water Reactor Configuration

    Source: US Nuclear Regulatory Commission

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    26/34

    The WolffPaper Apr 2012 25

    BWR Treatment Circuits (Figure 10)

    The Boiling Water Reactor (BWR) reactor serves as a steam generator(9)

    , which means the

    whole circuit is radioactive and the water must be of very high purity. Ion exchange is used

    to treat five systems in a BWR nuclear power plant. They are the makeup water, returned

    condensate, spent fuel pool, reactor coolant purification and radwaste treatment.Figure 10: BWR Treatment Circuits

    1. Makeup Water TreatmentThe specifications for makeup water indicated by General Electric Company are shown in

    Table 2.

    Table 2: GE Makeup Water Specifications

    Component Specification

    Conductivity

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    27/34

    The WolffPaper Apr 2012 26

    As in the case of other reactors, regenerable ion exchange resins are typically used to produce

    demineralized water that meets the required quality of the plant, while non-regenerable,

    highly regenerated mixed beds are used for final polishing. These final polishing mixed bed

    resins are re-used in regenerable vessels after they are exhausted.

    Many nuclear units rely on service companies to supply makeup water in order to minimize

    the handling, storage and use of treatment chemicals and the production of chemical waste

    streams onsite.

    2. Condensate PolishingCondensate polishing is one of two methods to control purity of the BWR coolant after

    makeup polishing. This polishing is primarily accomplished by using precoat filters only on

    freshwater cooled units and deep bed ion exchange vessels for brackish and salt water cooled

    units.

    Units that rely on low-salinity cooling water commonly use precoat filters with powder resins

    (Microlite PrCH, PrAOH, MB and CG range). Although powdered resins have a disadvantage

    of rapid exhaustion in the event of a condenser leak, they do present the following

    advantages:

    Lower capital cost because regeneration facilities are not required Good filtration of corrosion products. For instance, the quantity of suspended

    matter in treated condensate is only a few ppb, and will generally be

    controlled under 0.8 ppb at the filter outlet, even when startup levels of inlet

    impurities (such as iron and copper) may be on the order of several ppm

    Powdered resins are used once and therefore are a minimal risk ofdeteriorating chemically, even at relatively high temperatures. It is thus

    possible to install the precoat filters after one of the low-pressure heat

    exchangers, to improve filtration. Consequently, powder-form resins are very

    widely used in BWR power plants in many countries

    In brackish and saltwater-cooled systems, resins in bead form used in deep-bed polishers are

    primarily high-capacity gel form resins. However, macroporous exchange resins offer

    exceptional selectivity for cobalt-60 and iron compared to gel-type resins. Macroporous

    anion resins also have a greater affinity for particulate iron compared to gel resins. Mixed

    beds with an equivalent cation-to-anion ratio are preferred. Compared to the precoat

    polisher, deep-bed polishing systems ensure several hours of operation in the event of a leak

    in the cooling condenser.

    After the polishing step, condensate is sent directly to the reactor through the makeup line.

    Condensate polishing must both demineralize the stream and filter corrosion products, which

    are predominately iron.

    Note: No chemical condensate conditioning (amines) or reducing chemistry are used in BWR

    systems.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    28/34

    The WolffPaper Apr 2012 27

    3. Reactor Coolant PurificationThe reactor water or coolant purification system is the primary system for cleaning the

    reactor coolant. Reactor coolant water becomes charged with radioactive corrosion products

    during the power cycle, therefore it becomes necessary to remove impurities prior to a

    refueling outage. This is achieved by diverting water through the suppression pooldemineralizer. The suppression pool is a large reservoir located below the reactor that

    supplies cooling water for outage activity and in the event the reactor water pumps fail. This

    demineralizer is loaded with a mixed bed ion exchange resin in equivalent ratios. Mixed beds

    with macroporous type bead resins (NRW3560) layered with a macroporous anion NRW5010

    or NRW5070 have proven to be more effective for iron cleanup than gel resins. Cycling of

    reactor coolant is stopped when activity drops below 5.0E-2

    mRem. Additionally, the

    decontamination factor drops to low levels (single digits), which generally occurs when >90 %

    of cobalt, copper, iron as well as other elements have been removed. Submersible

    demineralizers also increase effectiveness with a similar resin configuration.

    Cleanup systems that use only powdered precoat resins have had success using a precoatmixed resin CG125H which has a blend of macroporous cation resins for removal of metals

    such as copper. Microlite precoat products used for RWC demineralizers include MB1:1H and

    CG1:1H.

    4. Spent Fuel Pool TreatmentThe exhausted or spent fuel is stored in large pools of cooling water to remove residual heat.

    This coolant becomes loaded with radioactive isotopes, primarily cobalt-60, that are released

    from the fuel bundles with low levels of iron. These pools must be treated to control clarity

    and remove activity. As noted above, suppression pool demineralizers and/or submersible

    demineralizers are used for this cleanup and are loaded with mixed bed resins such as

    NRW3560 or NRW3660. Also, topping these beds with NRW5010 or NRW5070 facilitatescleanup. Powdered resins MB1:1H, CG1:1H and CG125H are also used in the RWC

    demineralizers to clarify these fuel pools.

    5. Radwaste TreatmentService water and wasted coolant from BWR operations must be treated to ensure that no

    radioactivity is released. Radioactivity originating from the plant is treated with mixed bed

    ion exchange resins to reduce activity to a level that is appropriate for release back to the

    environment. The mixed bed resin that is most appropriate for this application is NRW3240.

    If pretreatment clarification is not employed, the addition of a top layer of the macroporous

    anion NRW5010 or NRW5070 will significantly improve the removal of suspended colloidssuch as activated iron. Contract companies are often used to provide this waste-treatment

    service.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    29/34

    The WolffPaper Apr 2012 28

    D.Fast breeder reactor (fast neutrons) (Figure 11)In a fast breeder reactor or more recently named liquid metal fast breeder reactors (LMFBR),

    splitting atoms generates more fissionable material (fissile) than it consumes. LMFBRs are

    able to reduce nuclear fuel requirement by two orders of magnitude compared to an LWR

    that uses less than 1% of the U235 in the fuel.Breeders use mixed oxide fuels (MOX) composed of primarily of U238 and other minor

    Actinides (i.e., Plutonium, Americium and Curium). The typical design of the fast breeder

    begins with the center of the reactor core coated with impoverished uranium (238U). The

    initial fuel, 235U, harnesses the fast neutrons emitted by the impoverished 238U and

    becomes 239Pu. The active isotope production rods are replaced approximately every week

    and the 239Pu is extracted to be used once more in the same or in another power plant.

    The coolant in an LMFBR (commonly liquid sodium) is operated at a temperature of

    approximately 600oC and the reactor is enclosed within a concrete protection shield. The fact

    that this temperature can be maintained virtually without any pressure allows the use of

    sheaths barely 0.5 mm thick. The liquid metal coolant does not limit the neutron energy fromU235. Unlike a PWR or BWR which uses water as a moderator, the neutrons emitted by the

    fission of active nuclei are virtually not slowed down.

    Figure 11: Liquid Metal cooled Fast Breeder Reactor

    Source: English Wikipedia.

    In spite of its advantages, the LMFBR has gained limited interest due to shorter fuel life,

    higher operating cost and a plentiful supply of uranium fuel. Government regulations related

    to reprocessing Pu239, which is a weapons grade isotope, has limited the number of

    operating LMFBR to 20 units worldwide.

    To ensure better safety, the primary circuit transfers its heat to a secondary circuit, which also

    contains liquid sodium. The steam generator is part of the tertiary circuit. As you can see, an

    LMFBR offers limited ion exchange resin opportunities.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    30/34

    The WolffPaper Apr 2012 29

    SECTION 3: NUCLEAR ION EXCHANGE RESIN

    1.NUCLEAR RESIN QUALITYIon exchange resins used in nuclear power plants (Table 3) are quality rated and must meet

    nuclear-grade specifications that are established by plant chemical engineers. These quality

    specifications establish limits on low levels of residual inorganic and organic constituents

    found in the resin that remain after resin manufacturing. Resins designed to treat radwaste

    although not requiring the high degree of cleanliness, do require a high degree of conversion

    to the regenerated form so that the operating cycle can maximize resin loading.

    Table 3: Purolite Resins for Nuclear Circuits

    Circuit Type of reactor Ion Exchanger Resin

    Condensate Graphite-gas reactors,

    PWR

    Cation:NRW1100, NRW1160

    Anion:NRW6000, NRW7000, NRW5050

    MB:Supergel SGC650H,

    SupergelSGA550OH

    Microlite: PrCN-PrAOH, CG-MB range

    BWR Deep Bed MB:NRW3670

    Microlite:MB1:1H

    Turbo-blower Graphite-gas reactors Cation:NRW1000, NRW1100

    Anion:NRW4000, NRW6000

    MB:NRW3240, NRW3460

    Spent fuel pool Graphite-gas reactors Anion: NRW5010, NRW5070

    MB:NRW3560, NRW3660, NRW3860

    PWR-BWR Anion: NRW5010, NRW5070

    MB:NRW3560

    Steam generator

    blowdown

    PWR Cation:NRW160, NRW1160

    MB:NRW 3560, NRW3660

    Primary coolant

    purification (CVCS, RCV)

    PWR Cation:NRW160, NRW1100

    Anion: NRW5010, NRW5070

    MB: NRW3560, NRW3460, NRW3562

    pH control PWR MB:NRW3560(Li/Li7), NRW3460(Li/Li7)

    Refueling Outage (RFO) PWR Cation:NRW1160, NRW160

    Anion:NRW5010, NRW5070

    MB:NRW3240, NRW3560

    Radwaste PWR-BWR Cation:NRW1000, NRW160

    Anion:NRW5010, NRW5070

    MB:NRW3240

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    31/34

    The WolffPaper Apr 2012 30

    2.OPERATING CAPACITY OF RESINSThe operating capacity of nuclear-grade ion exchange resins, whether in bead form or powder

    form, is a function of the impurities to be removed from the influent, the amount of ionic

    leakage tolerated, the concentration of ions remaining on the resin treating the influent after

    regeneration, and the pH of the influent stream. If exchange conditions are favorable (lowvelocity), the operating capacity of new nuclear-grade ion exchange resins should be close to

    the total capacity. However, given the fixed time of a power generating cycle, resins are

    generally sacrificed well before they reach useful exhaustion. This is particularly true with the

    CVCS resins because of its relatively light service.

    The use of boric acid as a neutron moderator in PWR primary units is an exception to the ion

    exchange resin capacity explanation above. Levels of boron will be in the thousands of ppm

    therefore the use of boric acid will convert anion resins to the boron form in a short time.

    Because of polyborate formation resulting from high concentrations and pH changes in the

    anion bed, the concentration of boron on the anion resin will rise in proportion to boron

    concentrations in the influent stream. Thus the capacity of an anion exchange resin for boricacid increases with increased boron concentrations.

    Resins used to treat the water in the spent fuel pool will reach the end of life sooner than

    resins in other systems because the cation component of the mixed bed will degrade in the

    presence of peroxide releasing organo-sulfonic compounds. Energy from fuel will support

    radiolysis of water forming peroxide and hydrogen. Organo-sulfonic compounds will foul the

    anion resin and leach into the pool where they will subsequently degrade to sulfate. A

    sufficient rise in sulfate generally requires this resin to be replaced. Higher cross linked gel

    and macroporous cation resins have been employed to extend mixed bed resin life with

    limited success. Concentration of fuel volume and temperature of pool water are related to

    cation resin life.Condensate polishing resins are subjected to high linear flow rates. Thus, they are prone to

    ionic leakage and kinetic fouling of the anion. Resins used to polish BWR condensate streams

    will operate until the conductivity (sodium break) or silica break occurs or the radioactivity

    limit on the bed is exceeded. BWR plants will not regenerate their resins so replacement with

    new resin is required.

    Resins used to polish PWR condensate resins are impacted by multiple chemistries being fed

    to the steam generator. The presence of different amines at different concentrations will

    quickly load the resin. Ammonia will compete with ions left on the resin, so if the cation resin

    has residual sodium generally above 40 ppm, the resin will need to be replaced at the amine

    break. If the cation resin has sodium < 20 ppm, it is possible to operate these resins for manymonths past the ammonia break. Anion fouling by organo sulfonates or ionic leakage of

    sulfate or silica from the anion will generally determine resin replacement or regeneration.

    Regeneration of PWR condensate is challenging in order to meet the low ionic sodium and

    chloride leakage required; therefore, service companies are often contracted to provide this

    service offsite.

    Resins used to treat steam generator blowdown encounter the same issues as the condensate

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    32/34

    The WolffPaper Apr 2012 31

    resin but at a lower flowrate because of higher concentrations of dissolved solids in the

    generator. Additionally, this resin is designed to primarily remove sodium, metals, chlorides

    and sulfate. Because of the competition between sodium and ammonia, the resins are

    replaced when sodium leakage reaches a design level. Resin life can be as long as two years

    for very clean systems, but generally the life expectancy of resins in this service is between six

    weeks and six months. However, systems that are susceptible to condenser leaks may bechanged every two weeks. There are a few plants that regenerate their steam generator

    blowdown resins. This is generally done for a lead cation resin. When the mixed bed exhausts

    both cation and mixed bed resins are replaced.

    Makeup resins are regenerable and these resins may last many years depending on influent

    water impurities. Service companies supply these resins under contract.

    3.DECONTAMINATION CAPACITYResin capacity for radioactive isotopes is defined by the decontamination factor (DF), which isinfluent radioactivity divided by effluent radioactivity. This capacity depends on the nature

    and concentration of radioactivity isotopes being addressed and the density of functional

    groups on ion exchange resins used. Table 4 (below) presents relative affinities (ion

    selectivity) for cobalt and cesium, compared with lithium and hydrogen, for different degrees

    of cross-linking.

    Table 4: Ion selectivity for principal soluble cations on varying cross-linked cation resins

    DVB% 4% 8% 12% 16%

    Li 0.9 0.85 0.81 0.74

    H 1.0 1.0 1.0 1.0

    Co 2.65 2.8 2.9 3.05

    Cs 2.0 2.7 3.2 3.45

    Table 4 shows that the affinity for cesium over H+and Li

    +ions increases with the cross-linking

    of the strong acid cation exchange resin, while the affinity for cobalt is slightly lower than

    cesium. Therefore, an exchange resin with high DVB (divinyl benzene) cross-linking has higher

    removal rates and therefore a longer cycle for removing cesium (NRW160) compared to

    the mixed beds containing this component (NRW3560 and NRW3540(Li/Li7). High

    cross-linked macroporous cation exchange resins have greater porosity, which allows highermolecular weight divalent ions greater access to the active sites within the bead.

    By contrast, highly cross-linked gel-type exchanger resins have a tighter matrix, and thus

    insufficient porosity. This results in lower operating capacity. However, certain higher

    cross-linked gel resins may have a greater capacity for smaller molecular weight ions, such as

    lithium and sodium, compared to comparable cross-linked macroporous resins.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    33/34

    The WolffPaper Apr 2012 32

    Table 5 presents results of tests carried out on coolant purification (primary circuit)

    containing lithium and boric acid. The tests compared a mixed bed resin with a gel type strong

    acid cation NRW3260 (normal cross-linkage) and a mixed bed resin with a macroporous type

    strong acid cation NRW3560 (high cross-linkage). The average influent was Co58 1.0E-3

    Ci/cm, Cs137 3.0E-1

    Ci/cm.

    Table 5:Decontamination Factors (DF)

    Mixed bed with

    gel type SAC

    NRW3260

    Mixed bed with

    macroporous type SAC

    NRW3560

    Bed Volumes

    Treated

    DF for

    Cs 137

    DF for

    Co 58

    DF for

    Cs 137

    DF for

    Co 58

    11,000 3

    33,000 1 61 32 127

    Note:The DF are averaged over total treated volume.

    The DF increases when the concentration of activity increases in the solution. The DF will vary

    noticeably during the cycle and as the influent concentration changes.

  • 5/28/2018 Purolite Ion Exchange Resins for Use in Nuclear Power

    34/34

    The WolffPaper Apr 2012 33

    SECTION 4: REFERENCES

    References

    The following references were reviewed:

    1. EPRI, Fruzzetti, K.P. et al., Pressurized Water Reactor Secondary Water ChemistryGuidelines, Revision 6, EPRI, Palo Alto, CA: 2004. 1008224

    2. WANO, Guidelines for Chemistry at Nuclear Power Plants, WANO GL 2001 08, August

    2002

    3. INPO, Guidelines for Chemistry at Nuclear Power Stations, INPO 88-021, Rev. 02, October

    1995.

    4. EPRI, Passell, T. O., Effect of Organics on Nuclear Cycles, EPRI TR-100785, Project 2977-08,

    July 1992

    5. McGaffic V.J., and Bishop W.N., Nuclear Power Plant Water Quality in the 1990s An INPO

    Perspective, ASTM STP 1102, Philadelphia, 1991.

    6. OPGs REVIEW OF TOC AND TOX AS MAKEUP WATER PARAMETERS, Makeup Water

    Specifications, October 6, 2005.

    7. Auerswald, D.C., 20 Years of Condensate Polishing at San Onofre Nuclear Generation

    Station, IWC 07-61 International Water Conference, Oct. 2007.

    8. Crone, L., Amine form operation of deep bed condensate polishing ion exchange resins,

    IWC 10-02, October 2010

    9. Boiler Water Reactor (BWR) System, USNRC Technical Training Center Reactor Concept

    Manual, 0400.

    10. IAEA.org Current Trends in Nuclear Fuel for Power Reactors