Pserc Smart Grid White Paper March 2009 Adobe7

Embed Size (px)

Citation preview

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    1/17

    U.S. Energy Infrastructure Investment:Large-Scale Integrated Smart Grid

    Solutions with High Penetrationof Renewable Resources, Dispersed

    Generation, and Customer Participation

    White Paper

    Power Systems Engineering Research Center

    A National Science FoundationIndustry/University Cooperative Research Center

    since 1996

    PSERC

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    2/17

    Intentionally Blank Page

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    3/17

    U.S.EnergyInfrastructureInvestment:

    LargeScaleIntegratedSmartGridSolutions

    withHighPenetrationofRenewable

    Resources,DispersedGeneration,

    andCustomerParticipation

    APSERCWhitePaper

    PSERCPublication0901

    March2009

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    4/17

    InformationaboutthiswhitepaperForinformationaboutthiswhitepapercontact:

    VijayVittal

    Director,Power

    Systems

    Engineering

    Research

    Center

    IraA.FultonChairProfessor,DepartmentofElectricalEngineering

    IraA.FultonSchoolofEngineering

    ArizonaStateUniversity

    Phone:(480)9651879

    Email:[email protected]

    PowerSystemsEngineeringResearchCenterThe Power Systems Engineering Research Center (PSERC) is amultiuniversity Center

    conductingresearchonchallengesfacingtheelectricpowerindustryandeducatingthe

    nextgenerationofpowerengineers.

    Ourcorepurpose: Empoweringmindstoengineerthefutureelectricenergysystem

    Whatsimportanttous: Pursuing,discoveringandtransferringknowledge Producinghighlyqualifiedandtrainedengineers Collaboratinginallwedo

    Moreinformation

    about

    PSERC

    can

    be

    found

    at

    the

    Centers

    website:

    http://www.pserc.org.PSERCcanbecontactedat:

    PowerSystemsEngineeringResearchCenter

    ArizonaStateUniversity

    577EngineeringResearchCenter

    Tempe,Arizona852875706

    Phone:4809651643

    Fax:4809650745

    NoticeConcerningCopyrightMaterialAllpagesofthiswhitepaperincludingthecovermaybefreelycopied,distributed,and

    postedonwebsites.Allusesofthisdocumentmustacknowledgeitspublicationbythe

    PowerSystemsEngineeringResearchCenter.

    2009BoardofRegentsofArizonaStateUniversity.Allrightsreserved.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    5/17

    Power Systems Engineering Research Center

    Letter from the Director

    March 2009

    The 21st

    century will witness unprecedented growth of electricity as the dominant energy carri-

    er. Such reliance on electricity requires resolution of numerous challenges related to the exist-

    ing electricity grid. Much attention is being given to smart grid development in the U.S. and

    around the world. In the future, the name smart grid may be associated with a period in time

    in which the evolution of grid technologies moved quickly toward their convergence with com-munications, sensor, and information technologies. The goals of this evolutionary change in-

    clude harmonizing old with new energy production technologies, enabling bidirectional energy

    exchange between service providers and customers, and facilitating system integration across

    the electricity enterprise.

    This white papers purpose is to advance progress toward a future grid that is even more relia-

    ble, safe, efficient, secure, resilient, flexible and economic than the present grid. PS ERC has tak-

    en a step back from current discussions of particular smart grid technologies, functionality, and

    standards to try to answer commonly heard questions about the vision of a smart grid and how

    to make it a reality. We suggest what the next steps could be for research, development, dem-

    onstration, and deployment activities that will help in achieving successful implementation ofan envisioned smart grid.

    We hope that this white paper will contribute to solving the challenges in the evolution of the

    legacy electric energy system to meet changing national priorities while improving service to

    customers and society at-large using leading-edge concepts, architectures, technologies and

    analytical tools.

    Sincerely,

    Vijay Vittal

    Director

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    6/17

    AcknowledgementsandDisclaimerThiswhitepaperisintendedtopromotediscussiononthevisionofasmartgridandthetasks

    neededforitstimelyimplementation.ThewhitepaperwaspreparedbythePowerSystemsEn

    gineeringResearchCenter(PSERC)inanindustryuniversitycollaborativeeffort.Itscontentsdo

    notnecessarily

    reflect

    the

    views

    of

    any

    of

    the

    organizations

    who

    are

    PSERC

    members,

    including

    thoseorganizationsofthemajorcontributorstothewhitepaper.

    Themajorcontributorstothiswhitepaperwere:

    LisaBeard TVA

    NavinBhatt AEP

    AnjanBose WashingtonStateUniversity

    IanDobson UniversityofWisconsinMadison

    FloydGalvan Entergy

    JayGiri AREVAT&D

    GeraldT.

    Heydt

    Arizona

    State

    University

    WardJewell WichitaStateUniversity

    MladenKezunovic TexasA&MUniversity

    JimMcCalley IowaStateUniversity

    SakisMeliopoulos GeorgiaTechUniversity

    JamesMomoh HowardUniversity

    DennisRay PSERC

    PeterSauer UniversityofIllinoisatUrbana/Champaign

    VijayVittal ArizonaStateUniversity

    Ourthanks

    go

    to

    others

    in

    PSERC

    who

    also

    made

    contributions.

    PSERCacknowledges itsaffiliationwithNationalScienceFoundation Industry/UniversityCo

    operativeResearchCenterprogramunderwhichPSERCwascreated.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    7/17

    U.S.EnergyInfrastructureInvestment:

    LargeScaleIntegratedSmartGridSolutionswithIncreasedPenetration

    ofRenewableResources,DispersedGeneration,andCustomerParticipation

    The evolutionary path of theU.S. electricity grid is at an historical crossroad.Decisions are

    going tobemadeabout thedirectionofgriddevelopment so that itcanmeetextraordinary

    economicchallenges,criticalneeds forenergysecurity,andessential requirements forasus

    tainablewayoflife.Thisisadefiningmomentintermsofournationscommitmenttoprovid

    ing an electric energy system, including the bulk transmission network, thatmeets societal

    needsofthe21stcenturyandbeyond.Amajorevolutionarystepinthegridsdesign,planning,

    andoperation isneededusingnewdesignconceptsand innovative technologies thatcanbe

    integratedintoamoderninfrastructure.TheAmericanRecoveryandReinvestmentActof2009

    providesopportunitiestoachievethesefarreachingobjectives.

    ThiswhitepaperwascreatedbythePowerSystemEngineeringResearchCenter(PSERC),ana

    tionalconsortiumofuniversities,government,andindustry.Drawingonthedifferingperspec

    tivesofmembersofthatcollaborativeprovidesinsightsintohowtointegratetheoreticalcon

    ceptswithpracticalconsiderations.Thepaperdescribesavisionandneededstepsforreaching

    anationalobjectiveofhavingasmartgrid infrastructure.Demonstrationsofasmartgridare

    neededtoidentifypossibleimprovementsandtoshoweffectivenessfromthegenerationsys

    tem,tothebulktransmissionanddistributionnetworks,andfinallytothecustomerpremises.

    Thevisiondescribed inthiswhitepapercanmakeasignificantcontributiontotheU.S.DOEs

    effortstoleadthenationindevelopinganddeployingasmartgridsolutionthatwillefficiently

    supportalowcarbonenergyinfrastructureportfolio.

    Thispapersfocusisontechnologicalconsiderationsindevelopingsmartgridsolutions.Howev

    er,tomaximizethebenefitsofasmartgrid,demonstrationsshouldallowforrigorousassessmentofcustomerparticipationchallenges,too. Inaddition,publicpolicyscenariosshouldbe

    consideredwhentheyaffectdecisionsonsmartgridimplementation.

    Thesevenobjectivesofthesmartgrid,asidentifiedbytheU.S.DOE,are:

    1. Enablinginformedparticipationbycustomers2. Accommodatingallgenerationandstorageoptions3. Enablingnewproducts,services,andmarkets4. Providingthepowerqualityfortherangeofneedsinthe21stcenturyeconomy5. Optimizingassetutilizationandoperatingefficiently6. Addressingdisturbancesthroughautomatedprevention,containment,andrestora

    tion

    7. Operatingresilientlyagainstallhazards.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    8/17

    2

    Meetingthesefunctionalneedsofasmartgridwillrequireconsiderationnotonlyoftheend

    statewhenasmartgridvisionisrealized,buttheevolutionaryperiodtothatstateduringwhich

    thelegacyinfrastructurewillbeusedsidebysidewithnewtechnologies.

    Asmartgridresearchanddevelopmentefforthastoharmonizethreeprincipalaspectsofthe

    futuregrid:

    Expansionoftheelectricitygridinfrastructure.Thisaspectincludes(1)buildingnewinfrastructuretoreplaceaginginfrastructurewhileexpandinggridcapacity,(2)improving

    theoperationandefficiencyoftheexistinginfrastructure,and(3)developingnovelcon

    cepts,technologiesandapplications.Thesmartgridwillintegraterenewablegeneration

    anddistributedenergysources.Itwillalsoenablecreativeoptionsforcustomerstopar

    ticipate insystemoperationsbyofferingtheir loadsandstoragecapability(suchasby

    using plugin hybrid electric vehicles) as resources. Customers alsowant options for

    makingtheirownusagemoreenergyandcostefficient(suchasthroughbuildingenergy

    managementsystems.

    Introductionof information technology, communications infrastructure,andmodernsensorsatlargescalesforbothonlineandbackofficeservicestofacilitatetheoperationandmanagementofassets.Smartgridinnovationswillexpandtheuseofcomput

    ersand communications.Theywillalsoaddnew sensor technologies,databaseman

    agementsystems,dataprocessingcapabilities,computernetworkingfacilities,meansof

    cybersecurity,andvisualizationtoolsforassetoperatorsandmanagers.

    Incorporationofnewmonitoring, control,andprotectionapplications thatare integratedandoperateseamlessly.Thesmartgridwillhavetechnologicaladvancesinmon

    itoring, datatoinformation conversion and visualization technologies, and advanced

    controlandprotectionschemes.Theseadvanceswillbe for integrating renewable re

    sourcesand

    distributed

    generation,

    for

    supporting

    customer

    choices,

    for

    facilitating

    risk

    basedassetmanagementandcontrolstrategies,andfor improvingefficiencyandpro

    tectionofthegrid.

    Thesmartgriddemonstrationscompletedsofarhavenotbeensufficientlycomprehensive,in

    tegrative,andatascalesufficienttoprovidetheinsightsneededforlargescalesmartgriddep

    loyment.Mostdemonstrationprojectshavebeenlimitedtoadvancedmeteringinfrastructure

    (AMI) that includes smartmeters. Demonstrations have used communications technologies

    suchasbroadbandoverpower line (BPL)andwirelesscommunications, andhave testedcus

    tomertechnologiesfordemandsidemanagement(DSM).

    Suchdemonstrationshaveprovided insightsonportionsofacomprehensivesmartgridsolu

    tion.Most

    AMI

    and

    DSM

    applications

    were

    limited

    either

    by

    the

    technology

    (e.g.,

    no

    two

    way

    communicationbetweenthecustomerandtheutility)orbythescope(e.g.,limitedoptionsfor

    controllingloadsornotestingoftimeofusepricing).Whatisneedednowisaclearvisionofa

    systemwidesmartgrid.Withthatvision,itwillbepossibletoconductthenecessaryresearch,

    developmentanddemonstrationofintegratedsolutionsthatmeettheoverarchingobjectiveof

    enhancingperformanceoftheentiresystemranging fromthegenerationsource,tothegrid,

    andfinallytothecustomer.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    9/17

    3

    Admittedlythestateofknowledgeneedstogrowontheuseofsmartgridtechnologiesatthe

    bulktransmission level.Forexample,asignificanteffort indeploying technology forsynchro

    nizedphasormeasurementsisunderwaythroughtheNorthAmericanSynchrophasorInitiative;

    however,thebenefitsandramificationsofthistechnologyareyettobefullyexplored.

    There isacriticalneedforresearch,development,anddemonstrationof largescalesolutions

    thatwill

    revolutionize

    the

    design,

    planning,

    and

    operation

    of

    the

    electric

    energy

    network.

    A

    largescaledemonstrationcanbeused tocomprehensivelyassessandevaluatethe feasibility

    andmeritofapplyingsmartgridtechnologiesonthebulktransmissionsystem,distributionsys

    tem,andcustomerpremises.Thus,thereisaneedtobroadenthefocusofthesmartgriddem

    onstrationsbeyondtheexistingdistributionandcustomerorientedprojects.Aholisticperspec

    tiveisneededusingasystemvisionofasmartgridthatincludesbulktransmission.

    Inthiswhitepaper,asystematicapproachissuggestedtoidentifyingthechallengesofintegrat

    ingamixofenergygeneration,storage,andcustomer resources;and todevelopingan inte

    gratedoperationsframeworkacrosstheelectricenergyenterprise.Thisframeworkcanbeused

    (1)tomeetestablishedandupdatedreliabilitycriteria,(2)tofacilitatemarketmechanisms,and

    (3)to

    ensure

    efficiency

    and

    economy.

    The

    approach

    incorporates

    the

    smart

    grid

    functions

    se

    lectedby theU.S.DOE. Itaddresses thePresidentsgoalof facilitatingagreeneconomyand

    makingtheU.S.moreselfsufficientinmeetingitsenergyneeds.

    Therearefourcrucialstepsinadvancingasmartgrid:

    Defineavisionofanintegratedsolution Conceptualizetheoverallsmartgridarchitecture Conductresearchanddevelopmenttocreateanintegratedsolution Moveforwardwithstakeholdercollaborationandlargescaledemonstrations.

    Thesestepsaredescribedinthenextfoursections.

    I. DefineaVisionforIntegratedSystemsOperationsTheproposedvisionfor integratedsystemsoperationmustsatisfytheobjectivesofthesmart

    grid, suchas those identifiedby theU.S.DOE.To satisfy theobjectives, thereneeds tobea

    novelmappingofsmartgridapplicationtotheproposed infrastructure.Fig.1 illustrateshow

    infrastructureandapplicationsolutionsmaybemappedtoobjectives.Thevisionneedstoes

    tablishcategoriesofnewapplicationsthataremoreeffectivethantheexistingonesinachiev

    ing the smartgridgoals.Thiswhitepaperplacesanemphasison researchanddevelopment

    needstodefine,create,andtestnewapplicationsthatintegratetheoperationsacrosstheen

    tire grid enterprise including generation, transmission, distribution, and enduse customers.

    Thecoreofthenewapplicationsis integrationofmassivesourcesofdatameasuredfromthe

    grid,andextractionofinformationthatcanservetheneedsofthestakeholders:marketopera

    tors,generatorowners,wirescompanies,and,mostofall,customers.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    10/17

    4

    Fig.1:Mapping

    Solutions

    to

    Objectives

    Integration of smart grid solutions requires a versatile communication infrastructure that is

    muchmore flexible than theexistingone.Fig.2 illustratesacommunicationsystem thatwill

    providetheneededintegration.Thecommunicationrequirementsofthesmartgridaremuch

    moredemandingthanofthelegacygrid.Therealtimerequirementsforexchangeofdataand

    informationrequirelowlatencyandredundancyincommunicationpaths.Thebackofficedata

    processing and storage requires communication support for distributed databases and

    processingfacilities.Thecommunicationinfrastructurealsohastoenablethespecialprotection

    schemes critical to reliable system operation and control. Recent developments of modern

    communicationarchitectures,

    such

    as

    the

    North

    American

    Synchrophasor

    Initiative

    net,

    are

    a

    stepforward,butmoreworkisneededtofullyunderstandthecommunicationrequirementsof

    newapplicationsinasmartgrid.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    11/17

    5

    Control

    Center

    Substation 1

    Measurement1

    Measurement i

    Substation

    Server 1

    L

    A

    N Executive Unit1

    Executive Unit i

    Substation 2

    Measurement1

    Measurement i

    Substation

    Server 2

    L

    A

    N

    Executive Unit1

    Executive Unit i

    Substation 3

    Measurement1

    Measurement i

    Substation

    Server 3

    L

    A

    N

    Executive Unit1

    Executive Unit i

    SPS 1

    Power System

    Communication Systems

    SPS 2

    R

    R

    R

    R

    R

    R

    R

    R

    Fig.2:CommunicationamongSystemElements

    II. ConceptualizetheOverallSmartGridArchitectureAconceptualarchitectureofthesmartgridisdepictedinFig.3.Theproposedarchitecturead

    vocatesa synergyof computingandphysical resources,andenvisionsa trustworthymiddle

    wareprovidingservicestogridapplicationsthroughmessagepassingandtransactions.Thear

    chitecturealsoaccounts forapower system infrastructureoperatingonmultiple spatialand

    temporal scales.That infrastructuremust support growingpenetrationofdistributedenergy

    resources.Therewillalsobethousandsofsensorsandactuatorsthatwillbeconnectedtothe

    gridand

    to

    its

    supporting

    information

    network.

    Energy

    generation,

    transmission,

    and

    distribu

    tionwillbe controlledbyanew generationof cyberenabledand cybersecureenergyman

    agement systems (EMS)withahigh fidelitysupervisorycontrolanddataacquisition (SCADA)

    frontend.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    12/17

    6

    LOADS

    legacysystems

    withlargeDERs

    legacysystemswith

    manysmallDERs

    LOADS

    LOADS

    LOADS

    Fig.3:ArchitectureforProposedIntegratedSmartGridSystem

    TheinformationnetworkwillmergethecapabilitiesoftraditionalEMSandSCADAwiththenext

    generationofsubstationautomationsolutions.Itwill(1)enablemultiscalenetworkedsensing

    andprocessing,(2)allowtimelyinformationexchangeacrossthegrid,and(3)facilitatetheclos

    ingofa largenumberofcontrol loops inrealtime.Thiswillensuretheresponsivenessofthe

    commandandcontrolinfrastructureinachievingoverallsystemreliabilityandperformanceob

    jectives.

    III. ConductResearchandDevelopmenttoCreateanIntegratedSmartGridSolution

    Muchattentionisbeingpaidtocustomerlevelsmartgriddevicesincurrentsmartgriddiscus

    sions. There also needs to be planning for the implementation of a smart grid at the bulk

    transmission level. Thisplanningmustaddress challenges toachievehighpenetrationof re

    newableenergyresourcesatdifferentvoltageandpowerlevelsinanenvironmentwhereoper

    atingmarginsaredecliningduetoloadgrowthandretirementoflegacygenerationresources.

    The following tasksareneeded tocreatean integrated smartgridbulk transmissionsolution

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    13/17

    7

    thatensurestheseamlessaccommodationofgreen resourcesandguarantees thatoperating

    criteriawillbesatisfiedevenunderextremesystemloadingconditions.

    1. Developandestablishforwardlooking,updatedoperationscriteriaincludingmethods,tools,andoperationalstructureoftheinterconnection

    Regionalentities

    of

    the

    North

    American

    Electric

    Reliability

    Corp.

    (NERC)

    establish

    reliability

    cri

    teriathatarenecessaryto implement,toaugment,ortocomplywithreliabilitystandards. In

    broadterms,theregionalcriteriadescribehowplanningandoperationsneedtobedonetoen

    suregridreliability.Thus,thecriteriacan include,forexample,operatingpracticesandproto

    cols,tools,methods,andorganizationalprocesses.Acriticalelementofanintegratedsolution

    approachwillbedevelopingappropriate systemoperations criteria thataccount forvariable

    power output from renewable resources. New riskbased operations criteria will also be

    neededtobalanceeconomicandreliabilitygoalswhileaccountingfortheincreaseduncertainty

    inthesystem.

    Theupdatedoperationscriteriawillneed to includecontrolareaandbalancingareadesigns

    thataccount

    for

    increased

    penetration

    of

    renewables.

    The

    criteria

    must

    provide

    interoperability

    standardsandcriteriathatenableflexibledeploymentofnewandoldgenerationsources.The

    criteriamustensurethatthegridcontinuestoberesilientunder increaseduncertaintyabout

    systemconditionsandresourceavailability.

    Models,operationalstructure,andanalysistoolsforstudyingrequirementsforinteroperability

    standardswillbeneeded.Thesetoolsmusthavethecapabilitytoallowexaminationoflegacy

    andnewcriteria,andtoquantifytheimpactofproposedcriteriaonpowersystemseconomics

    andreliability,particularlyunderextremeevents.

    Researchanddevelopmentshouldbeconductedinanumberofareas.

    a) Measurementsandsensors:Developmentofhighbandwidth,highaccuracycurrentandvoltagetransformers,andothertypesofsensors,suchassensorsthatmonitormechan

    icalvariablesof the transmission infrastructure.Phasormeasurementunitsandother

    GPSenabledintelligentelectronicdeviceswillplayacriticalroleintheenvisionedsmart

    gridsolution.Methodswillalsobeneededforintrasubstationdatacollectionandsto

    rage.

    b) Communications: A high bandwidth network capable of intrasubstation, intersubstation,andcontrolcentercommunicationwillberequired to facilitate largescale

    datacollection,localprocessing,anddistilledinformationtransfer.Akeyfeatureofthis

    architecturewillbecommunicationsmanagementviaadvancedmiddleware.

    c) Integration of information technology: The envisioned information technology infrastructurewillalsoincludedistributeddatabasesthatrequirelocalanddistributedman

    agementaddressingrealtimeandofflinerequirements.Thearchitecturereliesonlocal

    processing capabilities toperformdata integration and information extraction.Cyber

    securityanddata integrity issueswillneedtobeaddressedtoensurethatoperational

    criteriaaremet.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    14/17

    8

    d) Monitoringandsupervisorycontrol:Theproposedsmartgridsolutionneedstoprovideadvanced visualizationand situationawareness, intelligent alarmingand alarmsman

    agement, theability toquantify reliabilityandmarketperformanceasoperationaids,

    andsupervisorycontrolaidsduringalertandemergencyconditions.

    e) Intelligentrecoveryandrestoration:Withtheneedtomonitorandcontrolasystemondiverse

    spatial

    and

    temporal

    scales,

    ahigh

    degree

    of

    coordination,

    and

    automation

    is

    imperativewhenrestoringasystemfollowingmajoroutages.Thiswillrequiredevelop

    mentof specialmonitoringmethodsandonlineanalytical toolsnot currently inuse,

    andwillalso involve thedevelopmentofoperatoraids to translate restorationproce

    duresintoactions.

    f) Wideareacontrolandprotection:Newrequirementsforcontrolandprotectionwillresult fromthewidediversityofthedistributedenergyresources interconnectedtothe

    gridatarangeofvoltagelevels.Tomanageandenhancethespeedandeffectivenessof

    suchfunctions,innovationswillbeneededinsynchrophasorbasedmonitoring,relaying

    andcontrol,fastutilizationofFACTSdevicesforsystemwidechangingconditions,sup

    pressionof

    inter

    area

    oscillations,

    system

    integrity

    protection

    schemes,

    and

    adaptive

    is

    landingasalastresort.

    g) Onlinegridcontrolandmanagement tools:The increasingcomplexityandsizeof theelectricenergysystemwillalsonecessitatenewdevelopments in(1)faststateestima

    tionthatwillreplaceSCADAdataforoperatordisplays,(2)intelligentintegrated(static,

    dynamic,voltage)contingencyanalysis,(3)OPFbasedcontroldecisionsduringreliability

    ormarketdeterioration, (4)direct statemeasurements that replace stateestimation,

    (5)fastsimulationtechniquesforrealtimecontingencyapplications,and(6)systemre

    presentation andmodeling for operations (real time) and planning (offline) applica

    tions.

    2. Analyzethelikelyinteractionsofrenewableresourcesandstoragewiththebulktransmissionsystem

    The increased penetration of renewable resourceswill necessitate the need for largescale

    energystorageatthebulktransmissionlevel.Itwillbecomplextoconductarigorousinvestiga

    tion of the interactions between renewable resources and largescale storage in the bulk

    transmission system.The investigationwillneed to account for the variabilityofpower and

    energyoutputfromrenewableresources,andincorporateinteractionsamongdiverserenewa

    bleresources(e.g.,wind,solar,andbiomass).Theeffectofrenewableresourcesandstorageon

    powersystemoperationshouldbeexamined,suchasbalancingauthorityfunctions,automatic

    generationcontrol,

    and

    market

    operation.

    Theseanalyseshavenotbeencarriedoutforlargescaleintegrationofrenewables.Novelana

    lyticalapproachesandtoolswillhavetobedeveloped.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    15/17

    9

    3. Assesstheeffectsofhighpenetrationoflowcarbonsolutionsalongwithimplementationofpossiblepolicyscenarios(suchascapandtrade)oninvestmentandoperations,andon

    economicprofitabilityandriskundertodaysmarketdesignstodeterminewhetherthose

    designsneedtobechangedinthefuture

    Tofacilitatethepenetrationofrenewableresources,anintegratedapproachthataccountsfor

    bothsystem

    operations

    and

    the

    underlying

    market

    mechanisms

    is

    essential.

    This

    integrated

    analysisunderplausiblefuturescenariosshouldaccountforrenewableresources,demandre

    sourceprogramsenabledbyasmartgrid,massiveenergystorage,atransmissiongridbackbone

    ofHVDCandHVAC technologies,andcentralstationgeneration (including legacygeneration,

    andnewnuclear,cleancoal,andotherrelevantgenerationtechnologies).

    4.DeveloptechnologiesandtoolstofacilitatecustomerparticipationCustomerresponsetocommunications(suchasprices)fromserviceprovidersplaysanimpor

    tantroleintheschemeenvisagedforasmartgridthatisintegratingrenewablesources.Tech

    nologiesandtoolsthatfacilitatecustomerparticipationmustbedevelopedandincorporatedin

    thesmart

    grid

    vision.

    This

    research

    activity

    should

    consider:

    Demandsidemanagement Intelligentmetering Useofpluginhybridandallelectricvehicles Aggregationasameansofcollectiveparticipation Loadasaresource Newdesignsforinformationsharingandtransactinginanenergyexchangesystem Factorsthatdrivecustomerandbusinessadoptionofnewtechnologiesandwaysof

    transacting

    Businessmodelsinthenewenergyenterprise.IV. Moveforwardwithstakeholdercollaborationandlargescaledemonstra

    tions

    Thenext step in thepath to smartgrid implementation is toconduct largescaledemonstra

    tionsusingthevisionofanintegratedsolutionandarchitecture,andtheapplicationsfromgen

    erationsourcestoenduses.Largescaledemonstrationswillfacilitatecontinuingresearchand

    development,testing,

    and

    implementation

    of

    proposed

    solutions.

    Anumberofkeystepsshouldbetakentoensureasuccessfullargescaledemonstration.

    1. Engagestakeholdersfromthebeginning indefiningthescale,scope,andobjectivestothe endwhen results are evaluated and next steps are discussed. A comprehensive

    smartgridsolutionwillrequiresubstantial investment intransmissionanddistribution

    systems,willaffectcustomersandenergyserviceprovidersthroughoutaserviceterrito

    ry,andwillrelyonmanufacturerstosupplyneededhardwareandsoftware.Themore

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    16/17

    10

    the stakeholder collaboration is from the beginning, the less the uncertainty there

    shouldbeabouttheappropriatetechnologies,andtheeffectsandacceptabilityof im

    plementationofthosetechnologies. Inaddition, it isusefultoclarifysmartgriddesign

    conceptsbasedondiscussionsbetweenacademicsand industryparticipants fullyen

    gagedinresearchanddevelopmentaswellasdeploymentofsmartgridtechnologies.

    2. Linkthescale,scopeandobjectivestothe informationneededtocommitresourcestobuildingasmartgrid.Ifthedemonstrationdoesnotfillgapsintheinformationneeded,

    thentherewillstillbequestionsattheendofthedemonstrationastowhetherandhow

    thesmartgridshouldbebuilt.Collaborationamongstakeholderswillbeveryimportant

    inidentifyingtheinformationthatneedstobegainedfromthedemonstration.

    3. Define themetricsfor evaluating the demonstrations results. The evaluationmetricsshouldbespecifiedfromthebeginningtoensurethatthenecessarydataaregathered

    duringthecourseofthedemonstration.Ofcourse,themetricsshouldberelatedtothe

    informationgapsthatthedemonstration isseekingtofill.Anevaluationanalysisteam

    shouldbeformedasthedemonstrationisbeingplannedsothattheirinputcanbecon

    sideredin

    the

    design.

    This

    team

    should

    be

    multi

    disciplinary

    (such

    as

    engineers,

    statisti

    cians,consumermarketresearchers,andeconomists)toprovidethemultidisciplinary

    informationneededtodecidewhetherandhowtoimplementasmartgridsolution.

    4. Coordinatetheplanningofthedemonstrationwithotherdemonstrationprojects.Largescaledemonstrationprojectstakeconsiderableresourcesandtime.Efficiencyandeffec

    tivenessof thedemonstrationwillbewellservedby coordinatingwithotherdemon

    strationprojectsthatarebeingplannedorthatareinprogress,andbyreviewingresults

    ofcompleteddemonstrationprojects.Thiscoordinationwillbefacilitatedbythecom

    mondemonstrationprojectdatabasethatisbeingplannedbytheU.S.DOE.

    5. Use scientific studymethodologies rather thanjust technology demonstrationswhenappropriate.Justbecauseaproposedsolutionworkstechnicallydoesnotmeanthatitisthepreferredsolution.Resultsinatechnologybaseddemonstrationmaynotbeuseable

    inmaking inferencesabouthowallcustomers(betheyendusecustomers,distributed

    generation customers, or other types of customers)will change their electric energy

    consumptionorproductiondecisionsinresponsetoaparticularsolution.Theremayal

    sobecustomeradoptionbarriersthatshouldbeconsideredindevelopingorsellingthe

    solution to them.Using scientificapproacheswhereappropriate, suchas in trying to

    understandcustomerresponse,couldprovideresultsthatcanbegeneralizedtoanen

    tire service territory. Good estimates of customer response are needed to evaluate

    smartgridsolutionsevenatthebulktransmission levelwhereplannersneedtoknow

    howtransmission

    flows

    will

    be

    affected

    by

    customer

    response

    to

    smart

    grid

    solutions.

  • 8/2/2019 Pserc Smart Grid White Paper March 2009 Adobe7

    17/17

    11

    V. ConclusionsThefourtasksdescribedabovearecrucialtosmartgridresearchanddevelopment,demonstra

    tion,andeventualdeployment.Aslearningandinnovationoccursduringthecourseofadem

    onstration,changesmaybeneededinthearchitecture,thecomponents,andhowtheyarein

    tegratedoperationally.

    The

    goal

    is

    to

    acquire

    the

    best

    information

    possible

    for

    the

    eventual

    de

    cisionsonwhetherandhowan integratedsmartgridsolutionshouldbe implemented,soad

    justingdemonstrationsasneededtoprovidethatinformationcouldbeveryappropriate.

    Itisalso importantthatdemonstrationsbedesignedand implementedtogaintheknowledge

    neededforasystemwidedeploymentofasmartgrid.Thebulktransmissionsystemshouldbe

    includedinthedesign.

    Thereareagreatnumberofunknownsinmovingtowardanationalgoalofalowcarbonecon

    omy.Thatuncertaintycanbereducedbyeffectivelydesignedlargescaledemonstrationsdraw

    ingonresultsofresearchanddevelopmentwork.