5
3.091 Intro. to SolidState Chem. PS 4 3.091 Introduction to SolidState Chemistry Fall 2011 Problem Set 4 No problem set quiz scheduled for PS4 Material will be covered on Test 1, October 1 1. Silicon (Si) reacts with chlorine (Cl), forming the compound SiCl 4 (which is a homologue of CCl 4 , a liquid used as a spot cleaner). (a) Using Lewis notation, sketch this compound assuming that it has achieved octet stability. (b) List the atomic orbitals which, on overlap, result in the formation of this compound as well as the final molecular orbitals. (c) What do you expect to be the state of aggregation of this compound at room temperature (a liquid, solid or gas), and what do you assume is the nature of the intermolecular forces acting (if any are active)? (d) Knowing that the bond energies for SiSi and ClCl are respectively, 176 and 240 kJ/mol, determine the bond energy for the SiCl bond (in kJ/mol) according to Pauling. 2. Determine the minimum frequency (v) of radiation capable of breaking CCl bonds, given BE ClCl = 243 kJ/mole and BE CC = 245.4 kJ/mole. (a) Draw a 3dimensional representation of the molecular geometry (not simply the Lewis structure) of hydrazine, H 2 NNH 2 . (b) Hydrazine and hydrogen chloride have nearly identical molecular weights, yet hydrazine boils at 113.5°C and is a liquid at room temperature, while hydrogen chloride boils at 85°C and is a gas at room temperature. Explain with reference to electronic structure and bonding. (c) Can visible light (400 <λ< 700 nm) break any bonds in hydrazine? Support your answer with calculations. Bond dissociation energies (kJ/mol): NN = 160: HH = 435. 3. (a) Draw a 3dimensional representation of the molecular geometry around the central atom (not simply the Lewis structure) of AsClF 4 2 . (b) Name the type of hybrid orbitals that the central atom forms. (c) Name the molecular geometry of the compound. (d) Estimate the ClAsF bond angle. Justify.

PS4

Embed Size (px)

DESCRIPTION

fasdfadsf

Citation preview

Page 1: PS4

3.091  Intro.  to  Solid-­‐State  Chem.     PS  4  

 3.091  Introduction  to  Solid-­‐State  Chemistry  -­‐  Fall  2011  

Problem  Set  4  No  problem  set  quiz  scheduled  for  PS4  

Material  will  be  covered  on  Test  1,  October  1    

1. Silicon  (Si)  reacts  with  chlorine  (Cl),  forming  the  compound  SiCl4  (which  is  a  homologue  of  CCl4,  a  liquid  used  as  a  spot  cleaner).  (a)   Using  Lewis  notation,  sketch  this  compound  assuming  that  it  has  achieved  octet  

stability.  (b)   List  the  atomic  orbitals  which,  on  overlap,  result  in  the  formation  of  this  

compound  as  well  as  the  final  molecular  orbitals.  (c)   What  do  you  expect  to  be  the  state  of  aggregation  of  this  compound  at  room  

temperature  (a  liquid,  solid  or  gas),  and  what  do  you  assume  is  the  nature  of  the  intermolecular  forces  acting  (if  any  are  active)?  

(d)   Knowing  that  the  bond  energies  for  Si-­‐Si  and  Cl-­‐Cl  are  respectively,  176  and  240  kJ/mol,  determine  the  bond  energy  for  the  Si-­‐Cl  bond  (in  kJ/mol)  according  to  Pauling.  

   

2. Determine  the  minimum  frequency  (v)  of  radiation  capable  of  breaking  C-­‐Cl  bonds,  given  BECl-­‐Cl  =  243  kJ/mole  and  BEC-­‐C  =  245.4  kJ/mole.  (a)     Draw  a  3-­‐dimensional  representation  of  the  molecular  geometry  (not  simply  the  

Lewis  structure)  of  hydrazine,  H2N-­‐NH2.  (b)   Hydrazine  and  hydrogen  chloride  have  nearly  identical  molecular  weights,  yet  

hydrazine  boils  at  113.5°C  and  is  a  liquid  at  room  temperature,  while  hydrogen  chloride  boils  at  -­‐85°C  and  is  a  gas  at  room  temperature.    Explain  with  reference  to  electronic  structure  and  bonding.  

(c)   Can  visible  light  (400  <λ<  700  nm)  break  any  bonds  in  hydrazine?    Support  your  answer  with  calculations.    Bond  dissociation  energies  (kJ/mol):  N-­‐N  =  160:  H-­‐H  =  435.  

     

3. (a)       Draw  a  3-­‐dimensional  representation  of  the  molecular  geometry  around  the     central  atom  (not  simply  the  Lewis  structure)  of  AsClF4

2-­‐.  (b)   Name  the  type  of  hybrid  orbitals  that  the  central  atom  forms.  (c)   Name  the  molecular  geometry  of  the  compound.  (d)   Estimate  the  Cl-­‐As-­‐F  bond  angle.    Justify.  

Page 2: PS4

3.091  Intro.  to  Solid-­‐State  Chem.     PS  4  

(e)   Calculate  the  maximum  wavelength,  λ,  of  electromagnetic  radiation  capable  of     breaking  the  weakest  bond  in  of  AsClF4

2-­‐.    Bond  Energies  (kJ/mol):  As-­‐As  180;  F-­‐F     160;  Cl-­‐Cl  240.      

4. (a)   The  ionization  energies  of  aluminum.  (gas-­‐phase)  are  as  follows:     1s   2s   2p   3s   3p     151   12.1   7.79   1.09   0.58   (MJ/mol)  Sketch  the  photoelectron  spectrum  of  Al  (intensity  vs  energy).  The  diagram  need  not  be  drawn  to  scale;  however,  you  must  pay  attention  to  relative  magnitudes.  (b)   Calculate  the  average  valence  electron  energy  of  aluminum.      

5. (a)  Construct  an  energy-­‐level  diagram  using  LCAO-­‐MO  theory  (linear  combination  of  atomic  orbitals  into  molecular  orbitals)  to  show  that  the  nitric  oxide  ion,  NO+,  is  stable.    The  filling  sequence  of  the  molecular  2p  orbitals  in  NO+  is  π2p,  σ2p,  π*2p,  σ*2p.    Indicate  relative  positions  of  the  atomic  and  molecular  energy  levels  as  well  as  electron  occupancy  of  the  valence  shell  of  each  species.  (b)  The  cyanide  ion.    CN-­‐  is  isoelectronic  with  NO+.    Explain  with  reference  to  the  relevant  underlying  physics  why  the  C-­‐N  bond  length  in  CN-­‐  is  greater  than  the  N-­‐O  bond  length  in  NO+.        (c)  Draw  a  3-­‐dimensional  representation  of  athe  molecular  geometry  around  the  central  atom  (not  simply  the  Lewis  structure)  of  arsine,  AsH3.  (d)  Estimate  the  As-­‐H  bond  angle  in  AsH3.  (e)  Is  AsH3  polar  or  nonpolar?    Justify.      

   

Page 3: PS4

3.091  Intro.  to  Solid-­‐State  Chem.     PS  4  

 6. (a)  Draw  a  3-­‐dimensional  representation  of  the  molecular  geometry  around  the  central  

atom  (not  simply  the  Lewis  structure)  of  the  bromoiodate  anion,I2Br-­‐.  (b)  Name  the  type  of  hybrid  orbitals  that  the  central  atom  forms.  (c)  Name  the  molecular  geometry  of  the  compound.  (d)  Is  the  molecule  polar  or  nonpolar?    Explain.  (e)  Calculate  the  bond  energy  of  I-­‐Br.    Express  your  answer  in  kJ/mol.    DATA:  bond  dissociation  energies  (kJ/mol):  I-­‐I  =  150:  Br-­‐Br  =  195.  

 

7. Given  the  compound  C2Cl4:  (a)  Draw  a  sketch  for  this  compound  with  the  electronic  orbitals  which  on  overlap  form  the  intramolecular  bonds  (in  this  molecule)  and  label  the  orbitals  involved.  (b)  List  the  total  number  of  molecular  orbitals  formed  in  the  compound  and  give  the  corresponding  atomic  orbitals  involved  in  their  formation.  

 

 

8. Hydrogen  and  selenium  react  with  each  other  (like  hydrogen  and  oxygen).    Do  you  expect  the  compound  H2Se  formed  to  be  a  solid,  liquid  or  gas?  (Rationalize  your  answer.)  (a)  Draw  the  Lewis  structure  of  nitrosyl  chloride  (NOCl).  (b)  Is  NOCl  polar  or  nonpolar?    Explain.  (c)  The  value  of  the  N-­‐N  bond  energy  is  not  easy  to  measure.    Given  the  values  of  190  kJ/mol  for  the  N-­‐Cl  bond  energy  and  240  kJ/mol  for  the  Cl-­‐Cl  bond  energy,  calculate  the  value  of  the  N-­‐N  bond  energy.      

   

Page 4: PS4

3.091  Intro.  to  Solid-­‐State  Chem.     PS  4  

 9. (a)  Write  the  Lewis  structure  of  BH4

-­‐.  (b)  Is  BH4

-­‐  polar  or  nonpolar?    Explain.      

10. DATA:  Compound   boiling  point   compound   boiling  point   compound   boiling  point       (°C)         (°C)         (°C)  CF4     -­‐128     CCl4     76     CBr4     193  CH2F2     -­‐52     CH2Cl2     40     CH2Br4     97  CH4     -­‐162     CH4     -­‐162     CH4     -­‐162  (a)  Explain  why  methane  (CH4)  boils  at  a  lower  temperature  than  carbon  tetrafluoride  (CF4).  (b)  Explain  why  difluororomethane  (CH2F2)  boils  at  a  higher  temperature  than  carbon  tetrafluoride  (CF4).  (c)  Explain  why  difluororomethane  (CH2F2)  boils  at  a  higher  temperature  than  carbon  tetrafluoride  (CF4)  yet  dichloromethane  (CH2Cl2)  boils  at  a  lower  temperature  than  carbon  tetrachloride  (CCl4),  and  dibromomethane  (CH2Br2)  boils  at  a  lower  temperature  than  carbon  tetrabromide  (CBr4).    

11. Use  molecular  orbital  theory  to  explain  why  the  oxygen-­‐oxygen  bond  is  stronger  in  the  O2  molecule  than  in  the  O2

2-­‐  (peroxide)  ion.  

 

12. Use  molecular  orbital  theory  to  predict  whether  the  bond  order  in  the  superoxide  ion,  O2-­‐,  

should  be  higher  or  lower  than  the  bond  order  in  a  neutral  O2  molecule.  

 

13. Use  molecular  orbital  theory  to  predict  whether  the  peroxide  ion,  O22-­‐,  should  be  

paramagnetic.  

 

14. Write  the  electron  configuration  for  the  following  diatomic  molecules.    Calculate  the  bond  order  in  each  molecule.  (a)  HF     (b)  CO     (c)  CN-­‐  (d)  ClO-­‐   (e)  NO+  

 

 

 

Page 5: PS4

3.091  Intro.  to  Solid-­‐State  Chem.     PS  4  

 

15. Classify  the  following  molecules  as  paramagnetic  or  diamagnetic.  (a)  HF     (b)  CO     (c)  CN-­‐  (d)  NO     (e)  NO+