342
DNA FINGERPRINTING AND CHARACTERIZATION OF MUTATIONS ASSOCIATED WITH FIRST LINE ANTI- TB DRUG RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS STRAINS PREVALENT IN PAKISTAN Submitted in partial fulfillment of Ph.D. By Memona Yasmin Department of Biotechnology (NIBGE) Nilore - 45650 Islamabad, Pakistan Pakistan Institute of Engineering and Applied Sciences

prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

DNA FINGERPRINTING AND CHARACTERIZATION OF MUTATIONS ASSOCIATED WITH FIRST LINE ANTI-

TB DRUG RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS

STRAINS PREVALENT IN PAKISTAN Submitted in partial fulfillment of

Ph.D.

By

Memona Yasmin

Department of Biotechnology (NIBGE)

Nilore - 45650 Islamabad, Pakistan

Pakistan Institute of Engineering and Applied Sciences

Page 2: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

National Institute for Biotechnology and Genetic Engineering

P. O. BOX 577, JHANG ROAD, FAISALABAD.

(Affiliated with PIEAS, Islamabad)

Declaration of Originality I hereby declare that the work accomplished in this thesis is the results of my own research carried out in Health Biotechnology Division (NIBGE). This thesis has not been published previously nor does it contain any material from the published resources that can be considered as the violation of international copyright law.

Furthermore I also declare that I am aware of if any copyright violation was found out in this work I will be held responsible of the consequences of any such violation.

Signature: _______________ Memona Yasmin Registration No: 10-7-1-060-2011

Date: Place: NIBGE, Faisalabad

Page 3: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

National Institute for Biotechnology and Genetic Engineering

P. O. BOX 577, JHANG ROAD, FAISALABAD.

(Affiliated with PIEAS, Islamabad)

Research Completion Certificate Certified that the research work contained in this thesis titled ““DNA fingerprinting and characterization of mutations associated with first line anti-TB drug resistance in Mycobacterium tuberculosis strains prevalent in Pakistan” has been carried out and completed by “Memona Yasmin” under my supervision during her PhD studies in the subject of Biotechnology.

Date Dr. Rubina Tabassum Research Supervisor

Submitted through

Dr. Shahid Mansoor Director NIBGE

Page 4: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

Certificate of Approval This is to certify that the work contained in this thesis titled “DNA fingerprinting and characterization of mutations associated with first line ant-TB drug resistance in Mycobacterium tuberculosis strains prevalent in Pakistan” carried out by “Memona Yasmin” in our opinion is fully adequate, in scope and quality, for the degree of Ph.D. Biotechnology from Pakistan Institute of Engineering and Applied Sciences (PIEAS).

Approved by:

Signature: _____________________

Dr. Rubina Tabassum

Internal Examiner/Supervisor

Signature: _______________________

Name

External Examiner:

Verified by:

Signature: _____________________

Dr. Shahid Mansoor

Head, Department of Biotechnology (NIBGE)

Stamp:

Page 5: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

Dedicated to my family

and to all those

who burnt themselves

to make me a candle

Page 6: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

Acknowledgment

Thank God for the wisdom and perseverance that He has been bestowed upon me during this research project, and indeed, throughout my life. All respects and reverence for Holy Prophet (PBUH) whose teachings are complete guidance for humanity.

It is my utmost pleasure to avail the opportunity to extend my heartiest gratitude to Dr. Shahid Mansoor, director NIBGE, along with ex-directors for providing me and facilitation an encouraging environment for competitive research.

I am deeply acknowledged to Dr. Shahid Baig, Head Health Biotechnology Division at NIBGE, for providing an open access to all available facilities in the division.

I wish to thank my advisor Dr. Rubina Tabassum for her guidance, caring attitude, patience and for providing me with an excellent atmosphere for doing research. Indeed, without her guidance, I would not be able to put the topic together.

I would like to express my deep gratitude and respect to Dr. Christophe Sola of Institut de Génétique et Microbiologie at University of Paris for his inspiring guidance and ever encouraging attitude during my six months training in his laboratory funded by French Embassy. It gives me great pleasure in acknowledging the support and help of Dr. Guislaine Refregier, associate professor in Institut de Génétique et Microbiologie at University of Paris for her productive discussions and opinions regarding research work carried out under her kind guidance.

I would like to offer my heartiest appreciation to my loving and caring parents, brothers and sister for their great sacrifice, moral support, cooperation encouragement, patience and prayers for me during the completion of this work. No acknowledgement would ever adequately express my obligation to my family who always wished to see me glittering high on the skies of success.

Special thanks to my friends for their marvelous behavior, friendly attitude, valuable help and their everlasting moral support.

May Allah grant success and honour to all the above mentioned personalities along with all those who contributed at any level and in any capacity for the fulfillment of this achievement.

Memona Yasmin

Page 7: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

i

TABLE OF CONTENTS

Table of contents i

List of tables Iv

List of figures vii

List of abbreviations x

Abstract xiii

1. Introduction and review of literature 1

1.1 History of tuberculosis 1

1.2 Morphology of M. tuberculosis 2

1.3 Genome and phylogeny of M. tuberculosis 3

1.4 Burden of tuberculosis 7

1.5 Epidemiology of tuberculosis 9

1.6 Latent tuberculosis infection 10

1.7 Tuberculosis and HIV 10

1.8 Types of tuberculosis 11

1.9 Clinical presentation 11

1.10 Diagnostic tools 11

1.11 DNA fingerprinting of M. tuberculosis 15

1.12 Drug resistance 20

1.13 Epidemiology of Multiple drug resistance 24

1.14 Drug susceptibility testing 24

1.15 Treatment of tuberculosis 31

1.16 Molecular mechanisms of drug resistance 32

1.17 Tuberculosis control strategy 36

1.18 Objectives of the study 38

2. Material and methods 40

2.1 Collection of M. tuberculosis culture isolates and clinical specimens 40

2.2 M. tuberculosis culture on Lowenstein Jenson (LJ) medium from clinical specimens

41

2.3 Isolation of M. tuberculosis genomic DNA 41

Page 8: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

ii

2.4 Analysis of DNA extracted from M. tuberculosis isolates on agarose gel electrophoresis

44

2.5 DNA fingerprinting of M. tuberculosis isolates 45

2.6 Determination of recent transmission index (RTI) 60

2.7 Hunter and Gaston discriminatory index (HGDI) 61

2.8 Lineage assignation and evaluation of performance of different online tools

61

2.9 Development of reverse line blot hybridization assay to characterize mutations associated with rifampicin resistance

62

2.10 Cloning of PCR amplified hotspot region of rpoB gene from M. tuberculosis

73

2.11 DNA Sequencing of hotspot region of rpoB gene of M. tuberculosis

76

2.12 Characterization of mutations associated with isoniazid resistance 77

2.13 Characterization of mutations associated with pyrazinamide resistance using single strand conformational polymorphism (SSCP)

78

2.14 Characterization of mutations associated with Isoniazid, Ethambutol, Streptomycin and Pyrazinamide with sequencing

80

2.15 Statistical analysis 80

3. Results 83

3.1 M. tuberculosis culture on LJ slants from clinical samples 83

3.2 Description of study subjects 83

3.3 Analysis of DNA extracted from M. tuberculosis isolates by agarose gel electrophoresis

83

3.4 Analysis of PCR products of MIRU-VNTR loci 84

3.5 Spoligoriftyping of M. tuberculosis isolates 91

3.6 Assessment of global and local transmission dynamics by the combination of 24 MIRU-VNTR and spoligotyping patterns

94

3.7 M. tuberculosis strain differentiation by 25 additional spacers (68 spacer format spoligotyping)

100

3.8 Discriminatory power of genotyping techniques 119

3.9 Assessment of freely available databases for lineage assignation 120

3.10 Characterization of mutations in rpoB gene associated with 135

Page 9: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

iii

rifampicin resistance by Spoligoriftyping

3.11 Reverse hybridization line probe assay 168

3.12 Characterization of mutations associated with Isoniazid resistance using micro beads based assay

189

3.13 Poor standards of phenotypic drug susceptibility in the country 196

3.14 Cumulative genotypic drug susceptibility to Rifampicin and Isoniazid

196

3.15 Association of M. tuberculosis lineages with specific mutations 196

3.16 Characterization of mutations in embB gene associated with ethambutol resistance in M. tuberculosis culture isolates

225

3.17 Characterization of mutations in rrs and rpsL genes associated with streptomycin resistance in M. tuberculosis culture isolates

227

3.18 Characterization of mutations in pncA gene associated with pyrazinamide resistance in M. tuberculosis culture isolates

223

4. Discussion 247

5. Recommendations and future research directions 262

6. References 265

7. Appendix I 309

Page 10: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

iv

LIST OF TABLES

Table 1.1 Estimate of TB Burden in Pakistan 9

Table 1.2 Molecular Mechanism of Resistance in M. tuberculosis 37

Table 2.1 MIRU-VNTR Loci Designation and Parameters for PCR Primers

45

Table 2.2 Reaction Mixture for MIRU-VNTR PCR 48

Table 2.3 Allele Designation Table for MIRU-VNTR Analysis of M. tuberculosis Isolates

50

Table 2.4 Parameters of Oligonucleotides used for Spoligoriftyping Assay 53

Table 2.5 PCR Primers for Spoligoriftyping Assay 56

Table 2.6 PCR Reaction Mixture for Spoligoriftyping 57

Table 2.7 Reaction Mixture for Hybridization 57

Table 2.8 Parameters of 25 Additional Spacer Oligonucleotides 59

Table 2.9 Regular PCR Primer Parameters 64

Table 2.10 Reaction Mixture for Regular PCR 64

Table 2.11 Nested PCR Primer Parameters 65

Table 2.12 Reaction Mixture for Nested PCR 65

Table 2.13 Parameters of Oligonucleotides Used in RHLiP Assay 69

Table 2.14 Optimization of Hybridization Conditions 72

Table 2.15 Ligation Mix 74

Table 2.16 Restriction Mix for Restriction Analysis 76

Table 2.17 Oligonucleotides used for Characterization of Mutations in katG and inhA genes

77

Table 2.18 PCR Primers for Amplification of katG and inhA Genes 77

Table 2.19 PCR Primers to Amplify pncA gene 78

Table 2.20 Reaction Mixture of PCR Amplification of pncA Gene 79

Table 2.21 Polyacrylamide Gel Composition for SSCP of PncA2 PCR Products

79

Table 2.22 PCR Primers used for Amplification of Hotspot Regions of katG, inhA, rrs, rpsL, embB and pncA Genes for DNA Sequencing

81

Page 11: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

v

Table 2.23 Reaction Mixture of PCR for DNA Sequencing 81

Table 3.1 Discriminatory Power of MIRU-VNTR Loci 89

Table 3.2 Determination of Most Discriminatory Subset of MIRU-VNTR loci as “Fast Lane” Screening Markers

90

Table 3.3 HGDI of Different Tested Subset of Loci 90

Table 3.4 Mean Fluorescence Intensity Values Obtained from Luminex 92

Table 3.5 Interpretation of the MFI Values According to Defined Cutoff Values

93

Table 3.6 Local and Cumulative Recent Transmission Indices 95

Table 3.7 Strain Discrimination of M. tuberculosis Isolates by 68 Spacer Format Spoligotyping

100

Table 3.8 Spoligotyping using 43 Spacer and 68 Spacer Format 102

Table 3.9 Discriminatory Powers of Genotyping Techniques 119

Table 3.10 Assessment of Freely Available Databases for Lineage Assignation 122

Table 3.11 Characterization of Mutations in rpoB Gene Associated with Rifampicin Resistance in M. tuberculosis Strains

137

Table 3.12 Probe Hybridization and Signal Detection at Different Conditions

170

Table 3.13 Detected Mutations in rpoB Gene of M. tuberculosis Culture Isolates by In-house Line Probe Assay

177

Table 3.14 Approximate Cost of In-house Line Probe Assay 182

Table 3.15 Overall Spectrum of Mutations Observed in rpoB Gene of M. tuberculosis Culture Isolates

184

Table 3.16 Percentage Concordance of Phenotypic and Genotypic DST for Rifampicin

186

Table 3.17 Mutations in “Hotspot” Region of rpoB Gene in Clinical Specimens

188

Table 3.18 Frequency of Mutations in katG and Promoter Region of inhA Gene Associated with Isoniazid Resistance in M. tuberculosis Isolates

193

Table 3.19 Percentage Concordance of Phenotypic and Genotypic DST for Isoniazid

194

Table 3.20 Detected Mutations in katG and Prmoter region of inhA Gene Associated with Isoniazid Resistance in M. tuberculosis Isolates

197

Page 12: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

vi

Table 3.21 Frequency of Mutations in embB Gene Associated with Ethambutol Resistance in M. tuberculosis Isolates

225

Table 3.22 Detected Mutations in embB Gene of M. tuberculosis 226

Table 3.23 Frequency of Mutations in rrs and rpsL Genes Associated with Streptomycin Resistance in M. tuberculosis Isolates

229

Table 3.24 Detected Mutations in rpsL and rrs Genes of M. tuberculosis 229

Table 3.25 Frequency of Mutations in pncA Gene Associated with Pyrazinamide Resistance in M. tuberculosis Isolates

236

Table 3.26 Detected Mutations in pncA Gene Associated with Pyrazinamide Resistance in M. tuberculosis Isolates

236

Page 13: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

vii

LIST OF FIGURES

Figure 1.1 M. tuberculosis under the electron microscope 3

Figure 1.2 Circular map of the chromosome of M. tuberculosis H37Rv 4

Figure 1.3 Schematic representation of the proposed evolutionary pathway of the tubercle bacilli

6

Figure 1.4 Comparison of four phylogenies of M. tuberculosis 8

Figure 1.5 Estimated TB incidence rates, 2012 9

Figure 1.6 Physical map of IS6110 element 17

Figure 1.7 Variable human minisatellite‐like regions in the M. tuberculosis genome

21

Figure 1.8 Chromosome of hypothetical strain X of M. tuberculosis and genotyping of M. bovis, the M. tuberculosis laboratory strain H37Rv, and strain X on the basis of IS6110 insertion sequences and mycobacterial interspersed repetitive units

33

Figure 1.9 Mutations and alleles in rifampicin resistant M. tuberculosis isolates reported by different groups

38

Figure 1.10 Directly observed treatment, short course (DOTS), 5-part framework

40

Figure 2.1 Description of the isolates collected from different locations of Pakistan

41

Figure 2.2 Schematic representation of spoligoriftyping principle 52

Figure 2.3 Principle of reverse hybridization line probe assay to detect mutations in rpoB gene

63

Figure 2.4 Distribution of oligonucleotide on hotspot region of rpoB gene 71

Figure 3.1 Ethidium bromide stained 0.8% gel of extracted DNA of M. tuberculosis

84

Figure 3.2 Resolution of ETR A and MIRU 39 PCR amplified products 84

Figure 3.3 Resolution of ETR B and Qub 26 PCR amplified products 85

Figure 3.4 Resolution of ETR C and MIRU 20 PCR amplified products 85

Figure 3.5 Resolution of MIRU 2 and MIRU 27 PCR amplified products 85

Figure 3.6 Resolution of MIRU 16 and Qub 11b PCR amplified products 86

Page 14: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

viii

Figure 3.7 Resolution of ETR D and MIRU 10 PCR amplified products 86

Figure 3.8 Resolution of MIRU 23 and Mtub 30 PCR amplified products 86

Figure 3.9 Resolution of ETR E and MIRU 24 PCR amplified products 87

Figure 3.10 Resolution of MIRU 26 and Mtub 29 PCR amplified products 87

Figure 3.11 Resolution of MIRU 40 and Mtub 34 PCR amplified products 87

Figure 3.12 Resolution of Mtub 39 and Mtub 21 PCR amplified products 88

Figure 3.13 Resolution of Mtub 04 and Qub 4156 PCR amplifications 88

Figure 3.14 Distribution of MFI across samples 92

Figure 3.15 Final display of the interpreted spoligoriftyping results 93

Figure 3.16 Minimum Spanning Tree based on 43 spacer format spoligotyping data

96

Figure 3.17 Distribution of lineages in various regions, as described by SpolDB4 database and expert visual inspection

97

Figure 3.18 Dendrogram showing clustering of M. tuberculosis strains from Rawalpindi district by 43 Spacer Spoligotyping and 24 MIRU-VNTR

98

Figure 3.19 Dendrogram showing clustering of M. tuberculosis strains from Lahore + Faisalabad District by 43 Spacer Spoligotyping and 24 MIRU-VNTR

99

Figure 3.20 Graphical representation of performance of the different online tools for lineage assignation

121

Figure 3.21 PCR amplification of rpoB gene of M. tuberculosis isolates by regular primers

168

Figure 3.22 PCR amplification of rpoB gene of M. tuberculosis isolates by nested primers

168

Figure 3.23 Optimization of conditions for reverse line blot 169

Figure 3.24 Elimination of nonspecific binding of PCR product 169

Figure 3.25 Optimization of different hybridization and washing conditions 170

Figure 3 26 Optimization of DNA cross linking time 171

Figure 3.27 Application of strip optimized conditions in Mini blotter45 171

Figure 3.28 Optimization of amplicon concentration 172

Figure 3.29 Reverse hybridization line blot 173

Figure 3.30 Reverse hybridization line blot 174

Figure 3.31 Reverse hybridization line blot 175

Page 15: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

ix

Figure 3.32 Restriction analysis of pTZ57R/T vector DNA containing cloned rpoB gene fragment

176

Figure 3.33 Percentage of different mutations observed in rpoB Gene of M. tuberculosis culture isolates

185

Figure 3.34 Final display of the interpreted microbead assay results for isoniazid

190

Figure 3.35 PCR amplification of katG gene of M. tuberculosis isolates 192

Figure 3.36 PCR amplification of promoter region of inhA gene of M. tuberculosis isolates

192

Figure 3.37 Percent frequency of different mutations observed in katG and promoter region of inhA gene of M. tuberculosis culture isolates

193

Figure 3.38 PCR amplification of emb gene of M. tuberculosis isolates 225

Figure 3.39 PCR amplification of rpsL gene of M. tuberculosis isolates 227

Figure 3.40 PCR amplification of rrs gene of M. tuberculosis isolates 228

Figure 3.41 PCR amplification of pncA1 segment of pncA gene of M. tuberculosis isolates

233

Figure 3.42 PCR amplification of pncA2 segment of pncA gene of M. tuberculosis isolates

233

Figure 3.43 SSCP analysis of pncA1 segment by polyacrylamide gel electrophoresis

234

Figure 3.44 SSCP analysis of pncA3 segment by polyacrylamide gel electrophoresis

234

Figure 3.45 PCR amplification of pncA gene in M. tuberculosis isolates 235

Page 16: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

x

LIST OF ABBREVIATIONS

AFB Acid-fast bacilli

ALMS Automated liquid media systems

APS Ammonium per sulphate

BCG Bacillus Calmette-Guérin

BMRC British Medical Research Council

CAS Central Asian strains

CRISPR Clustered regularly interspaced short palindromic repeats

CTAB Cetyltrimethylammonium bromide

DNA Deoxyribo nucleic acid

dNTP Deoxyribo nucleotide tri phosphate

DOTS Directly observed therapy scheme

DPO Dual priming oligonucleotide

DST Drug sensitivity testing

DVR Direct variant repeat

EAI Euro American Indian

EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride

EDTA Ethylenediaminetetraacetic acid

ELISA Enzyme linked immunosorbent assay

ETH Ethambutol

FM Fluorescent microscope

FQ Fluoroquinolone

H Haarlem

HGDI Hunter and Gaston discriminatory index

HIV Human immunodeficiency virus

IGRA Interferon gamma release assay

INH Isoniazid

IPTG Isopropyl Thio-beta-D-Galactoside

IUATLD International Union Against Tuberculosis and Lung Disease

Page 17: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

xi

LAM Latin American Mediteranian

LB Luria Bertani

LED Light emitting diodes

LJ Lowenstein Jenson

LM Light microscope

LTBI Latent tuberculosis infection

MDR Multiple drug resistance

MES 2-(N-morpholino) ethane sulfonic acid

MFI Mean fluorescence intensity

MGIT Mycobacterium growth indicator tube

MIC Minimal inhibitory concentration

MIRU-VNTR Mycobacterium Interspersed Unit Variable Number Tandem Repeat

MST Minimum Spanning Tree

MTBC Mycobacterium tuberculosis complex

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NAAT Nucleic acid amplification test

NaOAc Sodium acetate

NJ Neighbour Joining

OD Optical density

PAS Para-amino salt of salicylic acid

PCR Polymerase chain reaction

PGRS Polymorphic GC-rich repetitive sequence

POA Pyrazinoic acid

PPD Purified protein derivatives

PZA Pyrazinamide

PZase Pyrazinamidase

RD Region of difference

RFLP Restriction fragment length polymorphism

RIF Rifampicin

RRDR Rifampicin resistance determining region

RTI Recent transmission index

SLV Single locus variant

Page 18: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

xii

SNP Single-nucleotide polymorphism

SSCP Single-stranded conformation polymorphism

STR Streptomycin

TB Tuberculosis

TE Tris-EDTA

TEMED Tetramethylethylenediamine

TMAC Tetra-methyl ammonium chloride

TST Tuberculin skin test

UPGMA Unweighted Pair Group Method with Arithmetic Averages

UV Ultra violet

WHO World Health Organization

XDR-TB Extensively drug resistant tuberculosis

Xgal 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside

Page 19: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

xiii

ABSTRACT

Tuberculosis (TB) is one of the most devastating infectious diseases that is highly

endemic in Pakistan. Pakistan is ranked 5th amongst 22 high tuberculosis burden

countries of the world. Global as well as national tuberculosis control program is

further challenged by the spread of multiple drug resistant strains of Mycobacterium

tuberculosis, the causative agent of tuberculosis. For controlling the spread of M.

tuberculosis isolates, circulating in this region, it is important to explore the

transmission dynamics and characteristics of these strains. This information, in turn,

can help to implement better treatment and control measures.

The study provides the information about the population structure of M.

tuberculosis isolates in Pakistan. DNA fingerprinting of the strains was performed by

high throughput spoligoriftyping and 24 MIRU-VNTR typing techniques. CAS family

constituted the dominant group of the strains followed by the T family and EAI family

while Beijing family showed the low prevalence. However, EAI strains were found to

show high prevalence in Eastern part of the country.

Molecular epidemiological methods play an important role to identify

appropriate public health interventions and to measure their impact. Despite of the

fact that Pakistan is harboring high disease burden, no molecular epidemiologic

studies have yet been conducted to assess the disease transmission. Our study

explores, for the first time, TB epidemiology in the Punjab province of Pakistan, using

the gold standard tools of molecular epidemiology. We document a relatively low

disease transmission rate in the population.

The study also provides a good assessment of the discriminatory powers of the

various genotyping techniques and suggests the use of duplex format of MIRU-VNTR

typing to be used as genotyping technique in this setting because of its low cost and

relatively less turnaround time as compared to simplex format. We further suggest the

use of Qub 26, MIRU 10, Mtub 04, MIRU 26, MIRU 31 (ETR E), MIRU 16, Qub

4156 and Mtub 21 to be used as preliminary ‘fast lane’ screen to differentiate the M.

tuberculosis strains in this particular geographical setting.

Page 20: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

xiv

The use of high throughput techniques like spoligoriftyping is recommended

to be used as good tool to help the TB control programs in high disease burden

countries. This powerful technique also helped to identify unreliable standards of

phenotypic drug sencitivity testing (DST) in some local hospitals.

Besides this, an in-house low cost test platform is configured and validated for

the rapid screening of multiple drug resistance (MDR) in the present study. Being

highly sensitive and specific, not only in the culture isolates but also in clinical

samples, it could be used to screen MDR in point of care settings in the developing

world where the need is acute.

This study for the first time gives the comparative assessment of three freely

available databases used to assign lineage to the M. tuberculosis isolates, uncovering

the errors and inability of these databases in assigning lineages to isolates. Further,

our study also pinpointed the defects in lineage assignation at sublineage level that

arose due to the lack of database up gradation.

The study also covered the assessment of occurrence of mutations at various

target loci and their frequencies in M. tuberculosis isolates, resistant to first line anti-

TB drugs. Overall, the profile of the mutations at various loci was similar to that

found at other geographical locations worldwide. The most common mutations

responsible for the rifampicin resistance were found in codon 531, 526 and 516 of

rpoB gene, in isoniazid resistant isolates affecting the codon 315 of the katG and

position -15 of the promoter region of inhA gene, in ethambutol resistant isolates

affecting the codon 306 of embB gene and in streptomycin resistant isolates, targeting

the codon 43 of rpsL gene and codon 512, 513 and 516 of rrs gene. In case of

pyrazinamide, very few isolates showed mutations in targeted regions of pncA gene.

Besides this, some novel mutations were also observed in this study. The relationship

of specific mutations in rpoB and katG genes with M. tuberculosis lineages is also

explored. The information about these mutations can be used to develop novel

molecular diagnostic method that specifically could be implemented in Pakistan.

However, prospective thorough epidemiological studies are needed to monitor

continuously changing disease transmission dynamics in the community.

Page 21: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

1

INTRODUCTION AND REVIEW OF LITERATURE

Tuberculosis (TB) is one of the most devastating diseases that have affected mankind.

It is an infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis)

that primarily affects the lungs, but can spread to almost any part of the

body. The introduction of effective chemotherapy in 1950s and 1960s raised the hope

that tuberculosis may soon be controlled and ultimatey eliminated. Though, the

incidence of tuberculosis dramatically decreased in certain parts of the world (Zhang

and Young, 1994) but it did not last for long. In 1993, World Health Organization

(WHO) declared tuberculosis a “Global Public Health Emergency” (WHO, 2012). TB

had re-emerged with a new face leading to high rates of mortality and morbidity all

over the world. The combination therapy proposed by WHO was not administered in

its true essence and that led to emergence of multiple drug resistance (resistance to at

least two first line anti-TB drugs; rifampicin and isoniazid). Tuberculosis is now

ranked second leading cause of death by infectious diseases after HIV/AIDS (WHO,

2012). One third of the world’s population harbors M. tuberculosis and every second,

one person becomes newly infected with tuberculosis (Landry and Menzies, 2008).

1.1 History of tuberculosis

The history of tuberculosis appears to be as old as humanity itself. It has been

called “The Captain of all Diseases”, Man of War”, “The King of Diseases” and the

“White Plague” (Reichman, 1991). Historical evidences indicate that tuberculosis has

infected the humans for thousands of years. Its signs have been reported in skeletons

from the Neolithic Age, a time period ranging from about 8000 to 2000 B.C (Todar,

2009).

People worked on tuberculosis to find out the nature of the disease. Franciscus

Sylvius in 1679 described the lung nodules as “tubercula” (small knots) but

unfortunately was believed to be a form of tumor or abnormal gland for a long time.

Benjamin Maten made first credible speculation about the infectious nature of the

tuberculosis in 1722 (Doetsch, 1978). He proposed that TB is caused by the

“animaliculae” that can be transmitted by breath from the patient to healthy person.

Page 22: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

2

The contagious nature of the tuberculosis was demonstrated by Jean-Antonine

Villemin in 1865 (Doetsch, 1978), who successfully transmitted pus and fluid from

human and bovine lesions to rabbit that subsequently developed tuberculosis. His

contemporaries ignored his findings until 1882 when the work of Robert Koch was

presented. Koch successfully isolated and cultured M. tuberculosis from crushed

tubercles (Daniel, 2005). In 1890, Koch announced that culture filtrates can cure the

disease but his claim was strongly discredited at that time (Daniel, 2006). The Koch’s

filtrates were later on purified and were used to establish infection, the tuberculin skin

test.

Lack of effective treatment was major hurdle to the control of tuberculosis. In

England and France, it was believed that newly crowned kings have special healing

power for this disease so the only treatment of this “King’s Evil” was being touched

by the kings (Daniel, 2006). In 1854, Herman Brehmer established first sanatorium

with the belief that exercise and altitude could serve to cure (Bloom and Murray,

1992). Pasteurization of cow’s milk was the next measure to reduce the possibility of

M. bovis being a cause of human TB. Another speculative intervention was made by

Albert Calmette and Camille Guérin in 1908, the BCG vaccine, the most widely used

vaccine against tuberculosis throughout the world (Pym et al., 2003). Finally, the

introduction of antibiotics led to the effective treatment of tuberculosis, hence, ending

the sanatorium era.

1.2 Morphology of M. tuberculosis

M. tuberculosis is a large non motile, rod-shaped, facultative intracellular

parasite. The rods range in size from 2 to 4 µm in length and 0.2 to 0.5 µm in width.

It is an obligate aerobic bacterium, and is usually found in well aerated upper lobes of

the lungs, in classic cases of tuberculosis (Todar, 2009).

The distinctive feature of M. tuberculosis is its cell wall that is rich in

glycolipid contents, the mycolic acid that contributes not only to its virulence but also

promotes its growth as tight, rope-like aggregates of acid-fast bacilli (AFB)

(Yagupsky et al., 1990). The cell wall is hydrophobic, waxy and contains a

peptidoglycan layer held together with polysaccharide, arabinogalactan (Alderwick et

al., 2007). The lipid rich cell wall is important not only for the survival of the bacteria

Page 23: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

3

but also provides intrinsic resistance to many therapeutic agents (Brennan and

Nikaido, 1995) (Hong and Hopfinger, 2004). It is a slow grower as under optimum

conditions; it takes 16 to 18 hours to undergo one cycle of replication. Since M.

tuberculosis lacks cell membrane and does not retain crystal violet dye, a property

known as acid-alcohol fastness that largely depends on properties of cell wall so they

are characterized as acid fast bacilli. They are stained by special stains like Ziehl-

Neelsen stain, Fite's stain and Kinyoun stain (Smithwick, 1976).

Figure 1.1 M. tuberculosis under the electron microscope (Courtesy of

Institute Pasteur library (The Sanger Institute: TB website)

1.3 Genome and phylogeny of M. tuberculosis

M. tuberculosis belongs to the order Actinomycetales (Rastogi et al., 2001;

Smith et al., 2006). The M. tuberculosis H37Rv genome is 4.41 million bp long and

has approximately 4047 predicted genes (Cole et al., 1998). Re annotation of the

genome was done in 2002 and with the prediction of function of 2058 proteins (52%

of the proteome), the number of unknown proteins decreased from 606 to 272 (Camus

et al., 2002). Genome sequencing demonstrates that it has the potential to synthesize

all the necessary vitamins and coenzymes cofactors, amino acids, enzymes necessary

for glycolysis. It can metabolize large variety of carbohydrates, alcohols, ketones,

carboxylic acids and hydrocarbons. It also possesses the enzymes that are necessary

for the pentose phosphate pathway, glyoxylate cycle and the tricarboxylic acid cycle.

Besides this, several oxidoreductases, dehydrogenases and oxygenases are also

predicted. Components of several anaerobic phosphorylative electron transport chains

are also predicted.

Page 24: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

4

Figure 1.2 Circular map of the chromosome of M. tuberculosis H37Rv The outer circle shows the scale in Mb. 0 represents the origin of replication. The first ring denotes the positions of stable RNA genes (tRNAs are blue while others are pink) and the direct repeat region (pink cube); the second ring depicts the coding sequence by strand (clockwise, dark green; anticlockwise, light green); the third ring shows repetitive DNA (insertion sequences are orange; 13E12 REP family in dark pink; prophage in blue); the fourth ring denotes the positions of the PPE family members (green); the fifth ring dipicts the PE family members (purple, excluding PGRS); and the sixth ring shows the positions of the PGRS sequences (dark red). The histogram (centre) represents G + C content, 65% G + C in yellow, and .65% G + C in red (Cole et al., 1998)

It has been found that most of the bacterial species consist of distinct clones or

clonal complex (Achtman et al., 1999; Maiden, 2000) that possesses only 1% or more

difference at synonymous nucleotide sites (Feil and Spratt, 2001; Palys et al., 1997).

The basic mechanisms that constitute the intraspecies genetic diversity include

mutations and horizontal genetic exchanges. On the other hand, M. tuberculosis

complex (MTBC) (M. tuberculosis, M. bovis, M. microti, M. africanum, M.

pinnipedii, and M. caprae species) reflects the extreme example of genetic

homogeneity as reflected by only 0.01%–0.03% synonymous nucleotide variations

(Garnier et al., 2003; Sreevatsan et al., 1997) although members of the complex

Page 25: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

5

exhibit a broad spectrum of host range and phenotypic characteristics. There is also a

little evidence of horizontal gene transfer in M. tuberculosis reflecting that its

evolution has occurred in clonal manner (Gutacker et al., 2002; Hirsh et al., 2004;

Smith et al., 2003). Possible explanation of this little genetic variation may be due to

selective pressure or the hypothesis that M. tuberculosis has evolved through a recent

evolutionary bottleneck at the time of speciation estimated to have occurred

approximately 15,000 to 20,000 years ago (Brosch et al., 2002; Gutacker et al., 2002;

Hughes et al., 2002; Sreevatsan et al., 1997).

Although there is a very little genetic diversity among the strains, the

differences observed have been exploited to find out the global evolution of M.

tuberculosis complex. In 1997, Sareevatsan et al., sequenced two megabases in 26

structural genes of M. tuberculosis and the three members of the M. tuberculosis

complex (M. africanum, M. bovis, and M. microti) in 840 isolates collected

worldwide. On the basis of combinations of polymorphisms at codon katG463 and

codon gyrA95, members of MTC were assigned to one of three genotypic groups.

Organisms in Principal Group 1 were considered as the common precursor of the

MTBC possessing the allele combination katG463 CTG (Leu) and gyrA95 ACC (Thr).

This group included the strains M. tuberculosis, M. africanum, M. bovis, and M.

microti. Principal Group 2 organisms possessed katG463 CGG (Arg) and gyrA95 ACC

(Thr) while Principal Group 3 organisms had katG463 CGG (Arg) and gyrA95 AGC

(Ser) polymorphis.

The presence of deletions in genome further uncovered the evolution of

MTBC. Fourteen regions of difference (RD1–14) that range in size from 2 to 12.7 kb

were identified by differential hybridization arrays. These were found to be absent

from bacillus Calmette–Guérin Pasteur relative to M. tuberculosis H37Rv (Behr et al.,

1999; Gordon et al., 1999). In addition, comparative genomics approach revealed six

regions (H37Rv related deletions (RvD) 1–5, and M. tuberculosis specific deletion 1,

TbD1) that were absent from the M. tuberculosis H37Rv genome relative to other

members of the M. tuberculosis complex (Brosch et al., 1999; Gordon et al., 1999).

M. tuberculosis strains are divided into ancestral and “modern” strains on the

basis of presence or absence of M. tuberculosis specific deletion (TbD1). Further,

Page 26: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

6

characterization of strains by examining the number of regions of differences (RD)

and single nucleotide polymorphism in addition to presence or absence of TbD1

deletion resulted in discrediting of often-presented hypothesis that M. tuberculosis

evolved from M. bovis (Brosch et al., 2002).

Figure 1.3 Schematic representation of the proposed evolutionary pathway of the tubercle bacilli, illustrating successive loss of DNA in certain lineages (grey boxes) (Brosch et al., 2002)

Synonymous single-nucleotide polymorphisms (sSNPs) reflect neutral

genomic variation, which can be used to trace out the phylogeny. In 2004, Baker et

al., constructed a phylogeny of MTBC by analyzing genetically 37 neutral sSNPs for

seven unlinked loci (rpoB, katG, oxyR, ahpC, pncA, rpsL, and gyrA) that divided the

strains in 4 distinct groups (I-IV). These 4 groups showed the congruence between

previously defined 3 Principal Genetic Groups of Sreevatsan et al., (1997) and

“Ancestral” and “Modern” classification based on TbD1 by Brosch et al., (2002). This

study further reflected a highly significant association between continent of birth and

defined lineages. Lineages I, II, and III were associated with South-Eastern Asia,

Europe, and the Indian subcontinent, respectively while Lineage IV was globally

distributed but had a negative association with Europe. This finding provided strong

Page 27: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

7

evidence for geographic structuring in M. tuberculosis populations (Baker et al.,

2004).

Two other groups of scientists, Filliol et al., (2006) and Gutacker et al., (2006)

independently exploited the power of SNPs to further investigate the global

phylogeny of M. tuberculosis which placed the strains in 7 and 9 linages, respectively.

These studies also showed congruence with previous studies. Gagneux and colleagues

(2006a) identified 19 lineage specific large sequence polymorphisms (LSPs). The

constructed phylogeny revealed 6 main lineages and 15 sublineages of M.

tuberculosis. They also demonstrated that population genetics of M. tuberculosis is

geographically structured. Each of the six main lineages was associated with

particular geographical setting and that was reflected by their names. Their findings

further strengthen the scenario of the origin and evolution of human tuberculosis

demonstrating that M. tuberculosis had expanded and diversified during its spread out

of East Africa. Brudey et al., in 2006, analysed international spoligotyping database

(SpolDB4) and showed that most of the spoligotyping patterns can be classified

according to a limited number of prototype patterns. Some of these patterns were

found to show congruence with the lineage determination reviewed above.

In short, these five studies (Baker et al., 2004; Filliol et al., 2006; Gagneux et

al., 2006a; Gutacker et al., 2006; Sreevatsan et al., 1997) using phylogenetically

informative mutations to the analysis of a globally sampled collection of M.

tuberculosis isolates, can be used to demonstrate the global phylogeny of M.

tuberculosis as they have come to the same conclusion.

1.4 Burden of tuberculosis

In 2011, the global incidence of TB was reported to be 8.7 million (8.3 million–9.0

million), equivalent to 125 cases per 100,000 population. Most of the cases cropped

up in Asia (59%) and Africa (26%) while smaller proportions of cases occurred in the

Eastern Mediterranean Region (7.7%), the European Region (4.3%) and the Region of

the Americas (3%). The 22 high TB burden countries accounted for 82% of all

estimated cases. Five high TB burden countries, in 2011 were India (2.0 million–2.5

million), China (0.9 million–1.1 million), South Africa (0.4 million–0.6 million),

Page 28: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

8

Indonesia (0.4 million–0.5 million) and Pakistan (0.3 million–0.5 million). India and

China alone accounted for 26% and 12% of global cases, respectively (WHO, 2013b).

In Pakistan, the magnitude of TB burden in terms of the number of cases per

100,000 populations is reported to be 231. This figure ranks Pakistan 5th amongst high

TB burden countries (WHO, 2012). For the developing countries like Pakistan, this

situation is alarming as most of the victims of TB are found to be in their

economically productive years of life. Estimation of epidemiological burden of TB in

Pakistan is given in table 1.1.

Figure 1.4 Comparison of four phylogenies of M. tuberculosis (Gagneux and Small, 2007)

Page 29: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

9

Figure 1.5 Estimated TB incidence rates, 2012 (WHO, 2013b)

Table 1.1 Estimate of TB Burden in Pakistan

Number (Thousands) Rate (per 100,000

population)

Mortality (excludes HIV+TB) 59 (26–110) 33 (15–60)

Prevalence (includes

HIV+TB) 620 (280–1 100) 50 (158–618)

Incidence (includes HIV+TB) 410 (340–490) 231 (190–276)

Incidence (HIV+TB) 1.5 (0.99–2.1) 0.84 (0.56–1.2)

Case detection, all forms (%) 64 (54–78)

1.5 Epidemiology of tuberculosis

Understanding the epidemiology of tuberculosis is important to control TB

because the information on pattern of infection and disease can greatly assist in

identifying groups of people at risk for TB. At the same time information regarding

transmission of the disease helps in planning appropriate use of resources (Davies and

Pai, 2008) for the control of the disease. Global epidemiology of tuberculosis varies

significantly, however, poor infrastructure, overcrowded living conditions due to

poverty, prevalence of human immunodeficiency virus (HIV) infection, immigration,

Page 30: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

10

and multidrug resistant TB (MDR-TB) are major contributors of resurging TB

epidemic (Iademarco and Castro, 2003). Tuberculosis spreads in three distinct phases.

In transmission phase, M. tuberculosis is transferred from the source via the aerosol

formation of respiratory secretion. Next comes infective phase where the pathogen

establishes itself in the lungs of the host. The last phase is the pathogenic phase in

which the pathogen and host-related mechanisms bring about the disease (Colice,

1995). The effects of globalization on epidemiology could be seen in perspective of

drug resistance, a phenomenon caused by inappropriate therapy on the part of

physicians and non-compliance on the part of patients leading to multi drug resistant

bacilli in patients that cannot be treated with standard therapy. These strains are

distributed across the borders with increase in cross-country travel thus shifting the

TB burden in other countries.

1.6 Latent tuberculosis infection

A person who is exposed to M. tuberculosis may not necessarily develop the

disease. In most of the cases host’s immune response can control the infection but

could not completely remove the bacterium from the body. This leads to the

development of latent tuberculosis infection (LTBI), a condition in which a person is

infected with M. tuberculosis, but does not currently have active tuberculosis disease.

In LTBI, bacilli remain in the inactive or latent state. In about 90-95% of cases,

infection doesn’t lead to disease but in 5-10% cases progression from LTBI to active

infection occurs when the host’s immune system is weakened. The risk of progression

from LTBI to active tuberculosis is high in the first two years after infection, when

about one half of 5 to 10% lifetime risk occurs. This risk is increased in children

younger than four years; persons with diabetes, HIV infection and other chronic

conditions where patients have to use immunosuppressant drugs (Hauck et al., 2009).

1.7 Tuberculosis and HIV

HIV infection is playing an important part in fuelling the TB pandemic. Co-

infection of TB with HIV drastically shifts the distribution of TB. Globally, of the 8.7

million incident cases in 2011, 1.0 million–1.2 million (12–14%) were found among

people living with HIV. The proportion of TB/HIV co-infected cases was highest in

countries in the African Region (overall, 39% of TB cases that accounted for 79% of

Page 31: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

11

TB cases among people living with HIV worldwide) (WHO, 2012). This is because

the tuberculosis requires cellular immunity for its control. HIV infection disables and

kills CD4+ or helper T lymphocyte, the cells central to tuberculosis immunity, thus

slowly impairing the cell mediated immunity leading to high level resurgence of

tuberculosis (Iseman, 1994; Raviglione et al., 1992). At the same time, progression of

active TB in people infected with HIV increases the risk of transmission of TB to

general community (Godfrey-Faussett et al., 2002).

1.8 Types of tuberculosis

Tuberculosis can broadly be classified into (a) pulmonary and (b) extra

pulmonary tuberculosis. Pulmonary tuberculosis is a form of TB in which the affected

organ of the host is lungs. This is the most common form of tuberculosis. In about 15

to 20 % cases of the active TB, infection moves from lungs to other parts of the body

and is collectively referred to as extra pulmonary tuberculosis (Sharma and Mohan,

2004). The most commonly affected organs in case of extra pulmonary tuberculosis

are lymphatic system, central nervous system, kidneys and genitourinary system.

Extra pulmonary tuberculosis can coexist with pulmonary tuberculosis (Golden and

Vikram, 2005).

1.9 Clinical presentation

In most of the cases, early symptoms include fever, chills, night sweats, flu-

like symptoms, gastrointestinal symptoms, weight loss, loss in appetite, weakness and

fatigue while persistent cough, chest pain, coughing up bloody sputum and difficulty

in breathing are specifically associated with pulmonary tuberculosis (Hauck et al.,

2009). Patients co-infected with HIV show different clinical presentation. Anorexia,

weight loss, low BMI, less cavitations and lung involvement are more frequently

observed in patients of tuberculosis co-infected with HIV (Lawson et al., 2008).

1.10 Diagnostic tools

Early and accurate diagnosis of the disease helps control the disease at early

stage and prevents transmission of the disease in the population. Hence, it plays a

crucial role in the effective management of the disease.

Page 32: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

12

1.10.1 Radiological analysis

In tuberculosis patients, alveolar infiltrate in the upper lobe or apical segment

of the lower lobe with cavitation is often observed. Lesions may appear anywhere in

the lungs. In disseminated TB, miliary pattern throughout the lung fields is common

(Leung, 1999). Abnormalities in the radiographs can help to rule out the pulmonary

tuberculosis however, they are not clear indicative of TB. Unilateral hilar and

mediastinal enlargement and infiltrates in the mid or lower lung zones without

cavitation are often observed in HIV patients (Brandli, 1998). In fact, radiography is a

nonspecific investigation for tuberculosis. Hence, it is recommended that all persons

should submit sputum specimen for microbiological examination (Davies and Pai,

2008).

1.10.2 Microscopy

The first technique for diagnosing TB was reported by Robert Koch and Paul

Erlich in 1882 when they developed acid-fast stain as a means to identify M.

tuberculosis under the microscope (Tang and Stratton, 2007). With certain

modifications, this technique is still being used for sputum smear examination as a

first step for the diagnosis of pulmonary tuberculosis especially in resource poor

settings where majority of the disease burden lies. Either light microscope (LM) or

fluorescent microscope (FM) can be used to examine the respiratory samples.

Fluorescence microscope has higher sensitivity as compared to light microscope but it

is more expensive and needs a dark working place. Recent development of light

emitting diodes (LED) has led to the development of LED FM that does not need dark

room (Drobniewski et al., 2012). However, microscopic technique has a limitation of

low sensitivity as it can detect 5000-10000 bacilli per ml of specimen (Bates, 1979)

which is far higher number than is required for the culture. Sensitivity of the

microscopy can be increased by sputum induction methods, sample concentration and

by fluorescent microscopy (Davies and Pai, 2008).

A meta-analysis found the sensitivity of conventional microscope in the range

of 32-94%, and sensitivity of fluorescence microscopy as 52-97% while specificities

were found to be 94-100% for both microscopes (Steingart et al., 2006).

Page 33: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

13

1.10.3 Culture

M. tuberculosis culture is considered “the gold standard” for the diagnosis of

tuberculosis. Clinical specimens of both pulmonary and extra-pulmonary TB patients

could be cultured (Palomino, 2005). The threshold of detecting M. tuberculosis is 10-

100 organisms (Bates, 1979) which is far less to that of the microscopy. Therefore,

the cultivation of M. tuberculosis is more effective as a diagnostic tool as it has not

only high sensitivity of 93% with specificity of 98% but it also allows speciation,

drug sensitivity testing and genotyping for epidemiological purpose (Davies and Pai,

2008; Palomino, 2005).

There are three types of media used for M. tuberculosis culture

1. Solid media, with coagulated egg (Lowenstein-Jensen (LJ) media)

2. Agar based media (Middlebrook 7H10 and 7H11)

3. Liquid based media (Middlebrook 7H12)

The main problem associated with cultivation of M. tuberculosis is slow

growth of bacteria with a doubling time of 24 hours that hampers rapid diagnosis. The

solid media may take up to 4-8 weeks to show visible colonies of M. tuberculosis.

This time period can be reduced up to 2 weeks using liquid media but still it is a long

time in perspective of diagnosis (Davies and Pai, 2008). However, liquid culture is

more prone to contamination as compared to solid media. Recently, use of automated

liquid culture systems like MB/BacT and BACTEC™ MGIT™ 960 for cultivation of

M. tuberculosis has considerably improved the sensitivity and time of detection as

compared to solid media (Palomino et al., 2008). But these systems are expensive and

cannot replace LJ media in resource-poor settings.

1.10.4 Immunological assays

1.10.4.1 Purified protein derivative (PPD) test

Tuberculin PPD is a cocktail of proteins, prepared from the culture filtrates of

M. tuberculosis. PPD is utilized to detect the tuberculosis infection and is known as

Page 34: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

14

Mantoux test or tuberculin skin test (TST). This test involves injecting a small amount

of tuberculin under the skin on lower part of the arm. The reaction to the testing fluid

is measured after two to three days. If there is a small bump and redness where the

tuberculin was injected, it is measured to find out if the test reaction is positive or

negative (Landry and Menzies, 2008). The main disadvantage of the tuberculin skin

test is its lack of sensitivity, particularly in immunocompromised individuals and the

poor specificity because of antigenic cross reactivity with Bacillus Calmette-Guérin

(BCG) vaccination (Chapman et al., 2002).

1.10.4.2 Interferon gamma release assays (IGRA)

Development of interferon γ release assay (IGRA) has addressed some of the

difficulties due to TST. The principle of the assay is based on the fact that T-cells

sensitized with tuberculosis antigen release INF-γ when are re-exposed to

mycobacterial antigens. This INF-γ is measured to detect M. tuberculosis. These

assays are more specific than TST as the antigens used are encoded by region of

difference 1 (RD1) which is not present in BCG and most of other mycobacteria. The

commercially available assays are in two formats: QuantiFERON-TB Gold In-Tube

assay (Cellestis, Carnegie, Australia) which is ELISA based IGRA (INF-γ is

measured in whole blood after sensitization of T cells with M. tuberculosis specific

antigens) and T-SPOT (Oxford Immunotec, Abingdon, UK) which is ELISPOT based

IGRA (INF-γ producing T cells are individually counted) (Drobniewski et al., 2012).

A meta-analysis showed a pooled sensitivity of 78% for QuantiFERON-TB Gold and

70% for QuantiFERON-TB Gold In-Tube while the pooled specificities for

QuantiFERON-TB Gold was observed to be 99% among non-BCG-vaccinated

participants and 96% among BCG-vaccinated participants. The pooled specificity of

T-SPOT.TB was found to be 93% (Pai et al., 2008). More studies are needed to assess

the usefulness of these assays in children, immunocompromised individuals and

patients of extra pulmonary tuberculosis (Palomino, 2005).

1.10.5 Nucleic acid amplification test (NAAT)

The development of nucleic acid amplification techniques is one of the

greatest achievements in the field of molecular biology during past few decades.

These techniques are used for the detection of M. tuberculosis complex with

Page 35: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

15

considerable sensitivity, specificity and rapidity in a variety of specimens. These

assays target various gene segments that are specifically present in M. tuberculosis

like 65 kDa protein-encoding gene, (Brisson-Noel et al., 1991), IS6110 element

(Eisenach et al., 1990; Kolk et al., 1992) and mpt64 gene (Dar et al., 1998; Manjunath

et al., 1991; Seth et al., 1996). It should be noted that although presence of multiple

copies of IS6110 element in the genome make it an ideal target for diagnosis but there

are reports about M. tuberculosis strains that lack IS6110 element (Das et al., 1995).

Hence, the use of IS6110 as diagnostic marker should be considered carefully. Several

assays are commercially available like Amplified MTD artus® M. tuberculosis LC

PCR Kit (QIAGEN, Hilden, Germany), COBAS® zero-band strains TaqMan® MTB

Test (Roche Molecular Diagnostics, USA), COBAS AMPLICOR PCR system (Roche

Molecular Diagnostics, USA) and BD ProbeTec™ ET (Becton Dickinson, USA).

NAAT are known to have higher sensitivity and specificity for smear positive disease

while lower for smear negative disease. In a study conducted in USA, sensitivity and

specificity of the NAAT in smear positive patients was found to be 96% and 95.3%

while in smear negative patients, it was 79.3% and 80.3%, respectively (Laraque et

al., 2009). Another study reports the sensitivity and specificity of NAAT as 80% and

98-99%, respectively with a threshold of as low as 10 bacilli per sample (Davies and

Pai, 2008). Nucleic acid amplification techniques are now extensively being used for

the detection of pathogens in clinical specimens because of low turnaround time, high

sensitivity, reliable specificity and being relatively safe.

1.11 DNA fingerprinting of M. tuberculosis

DNA fingerprinting/genotyping is the determination of genotypes of an

individual by using various biological assays. In case of tuberculosis, fingerprinting

methods have proven to be valuable tools for TB control. They have their role both in

individual patient management as well as in controlling the disease transmission at

community level. At the individual management level, the DNA fingerprinting

enables the detection (Allix et al., 2004) or exclusion (Loiez et al., 2006) of laboratory

errors and the follow-up of relapse cases to identify treatment failures, exogenous

reinfections and reactivations of latent disease. At the community/population level,

DNA fingerprinting helps to detect the potential outbreaks and the identification of

transmission dynamics and secondary cases of infection (Barnes and Cave, 2003).

Page 36: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

16

DNA fingerprinting has unveiled the clonal population structure of M.

tuberculosis complex, which consists of distinct phylogenetic lineages. These lineages

are characterized by differences in their geographical distributions, virulence,

immunogenicity and associations with MDR-TB (Filliol et al., 2006; Gagneux and

Small, 2007; Hirsh et al., 2004; Reed et al., 2004; Supply et al., 2003; van Soolingen

et al., 1995). On the other hand, quantitative analysis of fingerprinting data may also

help for the identification of emerging strains (Tanaka and Francis, 2006). From a

research perspective, the accurate identification of specific clones worldwide may

contribute to the development of new tools in the fields of diagnostics, prophylactic,

and therapeutics for TB control (Allix-Beguec et al., 2008). Brief description of some

of the important fingerprinting methods used for M. tuberculosis is given below:

1.11.1 IS6110 restriction fragment length (IS6110 RFLP) polymorphism

The presence of repetitive elements in the genome of M. tuberculosis and their

potential use for fingerprinting was first discovered independently by Eisenach et al.,

(1988) and Zainuddin and Dale (1989). Thierry et al., (1990a,b) for the first time

reported the sequence of this element, named. Sequencing of element, isolated by

Zainuddin and Dale was carried out independently by McAdam et al., (1990) and it

was named as IS986. Subsequently, a related element was sequenced form M. bovis

and was named IS987 (Hermans et al., 1991). These three sequences were found to

have the difference of only few base pairs and were considered essentially the same

elements given the name of IS6110.

DNA fingerprinting using IS6110 involves bacterial growth, extraction of

DNA, digestion of DNA, agarose gel electrophoresis, Southern hybridization and

detection of IS6110 element with a labelled probe. PvuII is considered as the standard

enzyme for the digestion since it cleaves IS6110 element only once. Use of 0.9-10 kb

ladder is standardized along with the probe that binds to the right side of the PvuII

enzyme site (Figure 1.6) (van Embden et al., 1993). Polymorphisms of IS6110 are

based on the variation of the copy numbers and the molecular weights of the

fragments in which IS6110 element is located. In population-based studies, isolates

that share the same IS6110 RFLP pattern are considered to be clustered and hence

epidemiologically linked (Daley et al., 1992; Small et al., 1994; Small et al., 1993).

Page 37: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

17

Figure 1.6 Physical map of IS6110 element (van Embden et al., 1993)

Use of IS6110 DNA fingerprinting has been documented in many studies

(Case et al., 2013; Green et al., 2013; Hu et al., 2010; Purwar et al., 2011; Shamputa

et al., 2010; Sukkasem et al., 2013). IS6110 DNA fingerprinting, though highly

discriminatory, is associated with several drawbacks. This technique is time

consuming, labour intensive and requires large quantity of DNA. Mature cultures are

required for the supply of sufficient quantity of DNA which limits the use of this

method in real time out break investigation. It lacks the discriminatory power for the

strains that have fewer or no IS6110 insertion elements. Further, the lack of

reproducibility and difficulty in comparing generated patterns in an RFLP DNA

fingerprint database remain important limitations (McNabb et al., 2002).

1.11.2 Polymorphic GC-rich repetitive sequence (PGRS) genotyping

Polymorphic GC-rich repetitive sequence (PGRS) is the most abundant

repetitive element in the MTBC. It has many copies (De Wit et al., 1990; Poulet and

Cole, 1995; Ross et al., 1992) and consists of several tandem repeats of a 96 bp GC-

rich consensus sequence. PGRS elements are present at 26 sites in M. tuberculosis

genome (Poulet and Cole, 1995). This method is similar to the standardized IS6110

fingerprinting in that it also requires purified DNA for blotting and banding pattern

analysis. A recombinant plasmid pTBN12 containing the GC-rich consensus sequence

is used as a probe (Yang et al., 2000). PGRS fingerprinting method has proven to be

useful for differentiating M. tuberculosis strains that possess fewer than six copies of

IS6110 and hence could not readily be differentiated by IS6110 fingerprinting method

(Barnes et al., 1997; Braden et al., 1997; Burman et al., 1997; Chaves et al., 1996; van

Soolingen et al., 1993). Compared with IS6110 RFLP fingerprinting, PGRS RFLP

method produces many more bands with different intensities hence, making PGRS

fingerprint analysis difficult and impracticable (Yang et al., 2000).

Page 38: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

18

1.11.3 Mycobacterium Interspersed Unit Variable Number Tandem Repeat (MIRU-VNTR) analysis

The mycobacterial interspersed repetitive units occur in variable number

tandem repeats (VNTR) that consist of multiple loci scattered throughout the genome.

It is believed that MIRU-VNTR are reminiscent of human microsatellites which are

often hyper-variable and may have an evolutionary function. The 41 MIRUs

identified by comparative sequence analysis of strains H37Rv, CDC1551, M. bovis

strain AF212/97, and 31 M. tuberculosis clinical isolates have been reported (Supply

et al., 2000). Various combinations of MIRU-VNTR loci have been used to find the

most discriminatory and phylogenetically informative set of loci (Comas et al., 2009).

Three sets of MIRU-VNTR were formulated in an effort to attain maximum strain

discrimination which includes 12 loci (Supply et al., 2001), 15 loci and 24 loci

(Supply et al., 2006).

MIRU-VNTR analysis is based on PCR amplification and determination of the

number of repeats at different loci. Comparison of the product sizes is done with a

molecular size marker on agarose gel. Isolates with different number of repeats are

easily discriminated by PCR analysis as the sizes of the MIRU repeats range from 51

to 77 bp (Lee et al., 2002). MIRU-VNTR fingerprinting has several advantages over

the use of gold standard IS6110 fingerprinting method as it is easy to set up and yields

results within a day. Moreover, it is relatively inexpensive and can easily be adopted

by a standard molecular biology laboratory even in resource poor countries. Results

are obtained in the form of numerical data that are portable. Another advantage is that

it is able to discriminate isolates with fewer copies of IS6110 for which IS6110 RFLP

typing is known to have limited discriminatory power (Das et al., 1995). This method

has a discriminatory power close to that of IS6110 RFLP (Cowan et al., 2002;

Hawkey et al., 2003; Kremer et al., 1999; Savine et al., 2002; Supply et al., 2001) and

has the ability to split certain IS6110 clusters. This suggests that the use of IS6110

alone may overestimate the existence of transmission clusters (Barlow et al., 2001;

Cowan et al., 2002; Gascoyne-Binzi et al., 2001; Hawkey et al., 2003; Kwara et al.,

2003; Lok et al., 2002). Hence, MIRU-VNTR fingerprinting method has been

proposed as an efficient first line genotyping method that should be followed by

Page 39: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

19

IS6110 RFLP subtyping of the resulting MIRU-VNTR clusters (Cowan et al., 2002;

Savine et al., 2002).

Figure 1.7 Variable human minisatellite‐‐‐‐like regions in the M. tuberculosis genome (Supply et al., 2000)

1.11.4 Spoligotyping

Clustered regularly interspaced short palindromic repeats (CRISPRs) are

series of repetitive structures in bacteria and Archaea composed of exact repeat

sequences 24 to 48 bases long and are separated by unique spacers of similar length

(Hermans et al., 1991; Kamerbeek et al., 1997). Direct Repeat loci (DR) are members

of the CRISPR (Jansen et al., 2002). The Direct Repeat locus consists of identical

DRs of 36 bp with each DR being separated by non-repetitive unique spacer DNA of

34 to 41 bp in length that can be assessed using the spoligotyping fingerprinting

method. The order of spacers appears to be about the same among different strains but

insertions or deletions of DR and spacers do occur (Groenen et al., 1993; Hermans et

al., 1991; Kamerbeek et al., 1997).

Spoligotyping involves amplification of entire direct repeat locus with the

labelled DR specific primers. Presence of set of spacers is determined by the

hybridization of the amplified DNA to 43 spacer oligonucleotides, covalently linked

to a membrane. Spoligotypes are determined as the presence or absence of any of

these 43 spacers (Kamerbeek et al., 1997). Variability in the direct repeat locus most

Page 40: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

20

likely occurs by one of three mechanisms: homologous recombination between

neighbouring or distant direct variable repeats, DNA replication slippage and IS-

mediated transposition (van Embden et al., 2000). It has been observed that isolates of

MTBC differ in the presence or absence of one or more DR plus the adjacent spacer,

the so-called direct variant repeat (DVR). Hence, homologous recombination between

neighbouring or distant DRs may lead to deletion of one or more discrete DVRs (Fang

et al., 1998; Groenen et al., 1993). Further, the DR region in M. tuberculosis has been

identified as a hotspot of integration of IS6110 element (Fang et al., 1998; Hermans et

al., 1991)

Spoligotyping and MIRU-VNTR typing is routinely being done in several

laboratories as part of TB surveillance programmes leading to the development of

large databases rich in information regarding clinical presentation, risk factors and

strain data (Shabbeer et al., 2012). The most attractive advantage of the method is its

ability to rapidly fingerprint strains without the need to subculture isolates for DNA.

Further, it can also be applied to smear positive sputum samples, hence, reducing the

time required to determine the fingerprint by approximately a month. However, the

drawback of the method is that it has less discriminatory power as compared to

IS6110 fingerprinting (Yang et al., 2000).

1.12 Drug resistance

Discovery of streptomycin (STR) by Selman Waksman in 1944 revolutionized the

treatment of TB (Iseman, 2002). Initially, it was reported to be an efficient drug but

soon it was recognized that use of only streptomycin was not sufficient in most of the

cases.

The use of streptomycin alone results in the elimination of the drug susceptible

bacteria from the population, leaving behind the resistant mutants that flourish

without any competition in their host, a Darwinian selective process of “survival of

the fittest”. Subsequently, these bacteria become the dominant strains (Iseman, 1994).

In the same year when streptomycin was discovered, Jorgen Lehman synthesized the

para-amino salt of salicylic acid (PAS). This agent like streptomycin was found to

have antimicrobial activity and its use was started. One of the first randomized

clinical trials, comparing PAS or STR alone and with the combination of both agents

Page 41: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

21

was performed by British Medical Research Council (BMRC). The results showed

that the combination is more effective in achieving cure and preventing drug

resistance than monotherapy (MRC, 1950). This shaped the future anti-TB therapy

substantially.

Figure 1.8 Chromosome of hypothetical strain X of M. tuberculosis and genotyping of M. bovis, the M. tuberculosis laboratory strain H37Rv, and strain X on the basis of IS6110 insertion sequences and mycobacterial interspersed repetitive units (MIRUs) (Barnes and Cave, 2003).

Development of antibacterial drug resistance is an increasing health and

economic concern. It can not only result in treatment failure but the use of antibiotics

for which bacteria are not susceptible can increase the mortality rate in patients.

Further, resistant bacteria can spread MDR-TB in the community making it difficult

to control. Finally, antibacterial drug resistance poses additional cost burden to

individual as well as health care sector.

Page 42: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

22

Antibiotics can broadly be divided into four major categories on the basis of

their mode of action:

a) interference with cell wall synthesis

b) inhibition of protein synthesis

c) interference with nucleic acid synthesis

d) inhibition of a metabolic pathway (Neu, 1992)

As the usage of antibacterial agents is increasing so is the complexity of resistance

mechanisms exhibited by bacteria. However, these mechanisms can broadly be

divided into three fundamental categories:

a) enzymatic degradation/modification of antibacterial drugs

b) modification of antimicrobial targets

c) changes in membrane permeability to antibiotics (Dever and Dermody, 1991)

Specific mechanisms that are adopted by M. tuberculosis for resistance against

first line anti-TB drugs will be discussed in section 1.16. Drug resistance in M.

tuberculosis occurs spontaneously and at random (David, 1970). David, in 1970,

calculated the mutation rates in M. tuberculosis H37Rv for four first line anti-TB

drugs i.e. rifampicin, isoniazid, streptomycin and ethambutol using the fluctuation test

of Luria and Delbruk. The average mutation rates calculated were 2.25 × 10-10, 2.56 ×

10-8, 1 × 10-7 and 2.95 × 10-8 mutation per bacterium per generation for rifampicin,

isoniazid, ethambutol and streptomycin, respectively. In the presence of selection

pressure of antimicrobial drugs, resistant organism would get establish in the

population. The resistant organisms will fix in the population due to this advantage if

the selection pressure of antimicrobial drugs is present. The development of drug

resistance is often seen in the non-compliant patients (Mahmoudi and Iseman, 1993).

The bacterial load in a patient of active tuberculosis is likely to range from 107

to 1010 organisms which means that resistant clones are certain to be present in the

population in sufficient number to emerge if mono therapy is used (Chaisson, 2003).

Page 43: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

23

On the other hand, the probability of selecting resistant mutants to multiple drugs

decreases exponentially by increase in number of drugs to which M. tuberculosis is

exposed (Schluger, 1996). However, sequential mutations may get accumulated by

administration of monotherapy, inappropriate prescription of treatment regimen and

patient’s non-compliance (Yew, 1999). The subsequent transmission of resistant

strains from index patient to others, most often facilitated by diagnostic delays,

augments the problem (Caminero, 2010)

1.12.1 Types of drug resistance in tuberculosis patients

1.12.1.1 Primary drug resistance

Drug resistance in an individual with tuberculosis who has never been treated

previously with anti-tuberculosis drugs is called primary drug resistance. It may be

due to infection with resistant organisms from another patient.

1.12.1.2 Secondary drug resistance

Secondary drug resistance develops either due to patient’s noncompliance to

treatment or due to administration of inappropriate drug regimen. This is also called

as acquired drug resistance. Malabsorption of anti-TB drugs, inefficient health care

system or malfunctioning of digestive system are the factors that contribute to the

acquisition of secondary drug resistance.

1.12.1.3 Multiple drug resistance (MDR)

Multiple drug resistance is defined as resistance to at least rifampicin and

isoniazid, the two most potent drugs in tuberculosis treatment (Watterson et al., 1998).

Multiple drug resistance arises due to inappropriate management of the disease and

requires long term treatment with less effective, more toxic and more expensive

drugs.

1.12.1.4 Extensively drug resistance (XDR)

XDR is form of TB caused by M. tuberculosis strain resistant to at least

rifampin (RIF) and isoniazid (INH) among the first-line anti-TB drugs as well as

resistant to a fluoroquinolone (FQ), and to at least one of the three injectable second-

Page 44: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

24

line drugs (Sun et al., 2008). XDR often results from mismanagement of the MDR-

TB. It is difficult and expensive to treat.

1.13 Epidemiology of Multiple drug resistance

Multiple drug resistance develops in the course of treatment. The main causes

are inappropriate treatment, noncompliance by the patient or use of poor quality

medicines. In 2013, 3.7% of new cases of MDR-TB were reported while the incident

was much higher in the previously treated cases (20%) (WHO, 2013c). According to

WHO statistics, there were 0.5 million new MDR-TB cases in the world in 2011 and

about 60% of these cases were reported in Brazil, China, India, the Russian

Federation and South Africa.

Pakistan, with a population of 177 million, has an estimated MDR-TB incident

rate of 3.4% in new cases while of 32% in retreated cases (WHO, 2013a). The main

reasons for the high rate of MDR-TB are poor socio-economic condition in the

country leading to the noncompliance in patient and over the counter availability of

the drugs.

1.14 Drug susceptibility testing

Availability of rapid and accurate methods for drug susceptibility testing

(DST) is crucial to manage individual cases as well as to control tuberculosis

efficiently. Delays in drug sensitivity testing result in delayed initiation of effective

therapy which is one of the factors contributing to the increased incidence of MDR

tuberculosis. The high infection and death rate associated with MDR tuberculosis

poses an urgent need for MDR-TB case detection (Edlin et al., 1992).

Drug susceptibility testing methods can broadly be divided into two categories:

a) Phenotypic methods

b) Genotypic methods

Page 45: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

25

1.14.1 Phenotypic methods

Phenotypic methods rely on detection of growth of M. tuberculosis in the

presence of antibiotics being tested. Three main types of phenotypic methods are

being used:

a) Methods that utilize microscopic observation of growth of M.

tuberculosis in drug free and drug containing media

b) Methods that make use of the lysis with bacteriophages

c) Methods that detect or observe metabolic activity of growing bacteria

(Kim, 2005)

1.14.1.1 Proportion method

In proportion method, mycobacterium isolates are grown on drug containing

as well as drug free media. Number of colonies formed on both the media is counted.

The isolate is classified as drug susceptible if the number of colonies on drug

containing media is < 1% of number of colonies that grow on drug free media. On the

other hand, the isolate is classified as resistant if the number of colonies on drug

containing media is > 10%. If the number of colonies is between 1 and 10% then

isolate is classified as partially resistant. Although proportion method is a reference

standard method, an inexpensive and relatively simple technique but it takes

minimum of three weeks of incubation before an isolate can be designated as drug

susceptible (Yajko et al., 1995).

1.14.1.2 Absolute concentration method

In this method, standardized inoculum is grown on drug free and drug

containing medium that contains gradients of drugs to be tested. The lowest

concentration of the drug that inhibits the growth determines the drug resistance in

terms of minimal inhibitory concentration (MIC). This method is greatly affected by

the viability of the organism.

Page 46: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

26

1.14.1.3 Resistance ratio method

In this method, the growth of unknown strain of M. tuberculosis is compared

with that of the reference laboratory strain that is H37Rv. Sets of media are inoculated

with the dilutions of the drugs to be tested and the resistance is determined by

comparing the minimum inhibitory concentration of the test strain to that of the

reference strain. This test is dependent not only to the viability of the strain of the

Mycobacterium but also on the size of the inoculum (Tansuphasiri et al., 2001).

1.14.1.4 E-test

In E-test, drug sensitivity testing is performed using strips that contain

different gradients of the drugs to be tested. The results could be obtained within 6 to

10 days. Although E-test results are easy to interpret and results can be obtained

within 5 days, however, results correlated well with those obtained by the BACTEC

and LJ proportion methods only for INH and RIF. High proportion of false-sensitive

and false-resistant results were observed, mostly for streptomycin (Freixo et al.,

2002). Another study reports the overall agreement between the standard proportion

method and E-test only 48.6% (Verma et al., 2010).

1.14.1.5 Bacteriophage based assay

This assay utilizes the ability of resistant mycobacterium to support infection

by the bacteriophage when they are exposed to drugs while sensitive mycobacterium

will not support the bacteriophage infection. A plaque formation on drug containing

media will indicate the presence of viable resistant isolates while absence of plaque in

the presence of drug containing media will be indicative of susceptible isolates. One

such commercially available assay is FASTPlaqueTB (FPA) assay also called phage

amplification assay (BIOTECH Laboratories). For rifampicin resistance in M.

tuberculosis, a meta-analysis of studies based on the bacteriophage assays showed

sensitivity and specificity of ≥ 95% in 11 of 19 studies while ≥ 95% agreement was

observed with reference in case of 13 out of 19 studies (Pai et al., 2005). But

mycobacteriophage assay had poor susceptibility results for isoniazid with sensitivity

of 80.4% and specificity of 80.8%, hence, the limited usefulness of this assay for

diagnostic purpose (Chauca et al., 2007). Another disadvantage is that phage based

Page 47: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

27

methods can be implemented in laboratories with highly trained personnel (Neonakis

et al., 2008).

1.14.1.6 Colorimetric methods

Colorimetric methods are based on the oxidation reduction phenomenon.

Oxidation reduction indicators are added to the media containing the drugs.

Resistance to drug is indicative by the change in colour of oxidation reduction

indicator which is directly proportional to the number of viable isolates in media.

Large number of oxidation reduction indicators is used in colorimetric methods. One

of the first redox indicators to be used was Alamar blue which is blue in colour in the

oxidised state, but turns pink when reduced as a result of bacterial metabolism.

Several tetrazolium salts most important of which is 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) are used. MTT is a yellow coloured compound

in the oxidised state that turns into purple MTT formazan crystals when reduced by

metabolically activity of cells which can be measured with a spectrophotometer

(Palomino et al., 2007).

Recently, nitrate reduction method is gaining attention in colorimetric

methods. This assay is based on the ability of M. tuberculosis to reduce nitrate to

nitrite by nitrate reductase enzyme. After 10 days of incubation of M. tuberculosis on

drug containing media, the reducing ability of mycobacterium is measured by adding

chemical reagent to media. Resistant isolates will reduce the nitrate to nitrite, shown

by the production of pink red colour while absence of the colour will show the

presence of susceptible strains as their growth will get inhibited by drug. Comparison

of nitrate reductase assay to proportion method indicated the turnaround mean time of

10 days with 98.8% overall agreement between two methods (Lemus et al., 2006).

Another study showed 100% rate of susceptibility detection for isoniazid and

ethambutol and 97% for streptomycin and rifampicin (Shikama Mde et al., 2009). In a

comparative study done at National Reference Laboratory of Colombia, MGIT 960

showed the sensitivity and specificity of 100% for isoniazid and 100% and 99.4%,

respectively for rifampicin while NRA showed sensitivity and specificity of 86% and

94.8%, respectively for isoniazid and 100% and 99% for rifampicin (Zabaleta-

Vanegas et al., 2013).

Page 48: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

28

1.14.1.7 Radiometric methods

Radiometric assays are based on the use of radioisotopes in detection systems.

One of the most important radiometric systems is BACTEC 460-TB system (BD,

Sparks, MD, USA) that utilizes liquid media. Detection of mycobacterial growth is

carried out by quantitative measurement of the 14CO2, liberated by the metabolism of 14C-labelled substrate present in the medium. Drug susceptibility results can be

obtained within 10 to 14 days (Rodrigues et al., 2007). A meta-analysis showed the

sensitivity and specificity of the BACTEC 460-TB system to be 85.8% and 99.9%,

respectively (Cruciani et al., 2004). Despite reduced turnaround time, the use of

radioactive isotopes and expensive equipment restricted its use in resource poor

settings.

1.14.1.8 Fluorescence based assay

Fluorescence based assays are used as an alternative to radiometric method.

The Mycobacterium growth indicator tube (MGIT) is one such system. A fluorescent

compound sensitive to the presence of oxygen dissolved in the broth is embedded in

silicon on the bottom of tubes. Initially, emission of fluorescence is quenched by the

large amount of dissolved oxygen in the tubes but later on the active consumption of

oxygen by bacteria allows the fluorescence to be detected by ultra violet lamp

(Bergmann and Woods, 1997). BACTEC MGIT-960 is a fully automated system that

can be used for the drug sensitivity testing of first and second line anti-TB drugs. A

multicenter study showed concordance of result obtained by BACTEC MGIT-960 to

the indirect drug susceptibility as 95.1% for isoniazid and 96.1% for rifampicin with

the average reporting time of 11 days (Siddiqi et al., 2012). Since 2007, WHO has

recommended the use of non-radiometric automated liquid media systems (ALMS) in

low and middle income countries. The main drawbacks of ALMS are high associated

cost and continuous supply of commercially manufactured consumables (Drobniewski

et al., 2012).

1.14.2 Genotypic methods

Genotypic methods are based on genetic determinants of resistance in M.

tuberculosis. All the molecular detection based assays are although expensive as

Page 49: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

29

compared to that of conventional drug susceptibility tests but they give major

advantages over conventional methods such as (1) reduction in turnaround time (2)

possibilities of automation (3) reduction of biohazard in laboratories. These assays

can provide results within hours to couple of days as compared to that of conventional

methods that provide results in 2 to 8 weeks. This reduction in turnaround time can

help control the spread of drug resistant strains in populations.

1.14.2.1 Single-stranded conformation polymorphism (SSCP)

SSCP utilizes the power and flexibility of PCR. This procedure involves

amplification of specific segment of DNA followed by denaturation and gel

electrophoresis. Presence of mutation in clinical samples is evidenced by different

electrophoretic mobility in a strand under study as compared to that of wild type

strand. This change in electrophoretic mobility is due to change in conformation of

the single stranded DNA caused by change in nucleotide sequence. A strong

correlation was observed between DNA sequencing and SSCP assay with the

sensitivity of 80% and 81.8% for isoniazid and rifampicin, respectively and

specificity of 100% and 92%, for isoniazid and rifampicin, respectively (Cheng et al.,

2007). Another study on finding the mutations associated with pyrazinamide showed

89 to 97% agreement with the four other tests (the Wayne biochemical test, Bactec-

460 automated culture, DNA sequencing, and traditional microbiological broth

culture) for pyrazinamide resistance (Sheen et al., 2009).

1.14.2.2 Hetero duplex analysis

In heteroduplex analysis, DNA from test organism and reference drug

sensitive organism is mixed and denatured. Then it is cooled to produce double

stranded DNA by complimentary base pairing. In the regions of mutations, there

would be mismatching between the two strands: the one from the reference

susceptible strain and the other from the mutant test strain. The resulting heteroduplex

would then have different mobility as compared to that of the homoduplex, formed by

the reference strain that has no mutation, on the denaturing electrophoresis gel. This is

relatively robust method as results could be provided within 24 hours but experience

with this technique is limited to screen rifampicin resistance (Telenti and Persing,

Page 50: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

30

1996). Sequencing is ultimately needed to determine the exact type and position of the

mutation.

1.14.2.3 Hybridization based techniques (Line probe assays)

Line probe assays utilize reverse hybridization techniques that involve

targeted amplification of specific fragment of M. tuberculosis followed by

hybridization of PCR product with oligonucleotide probes immobilized on membrane.

Three such commercially available kits are INNO-LiPA Rif.TB (Innogenetics,

Zwijndrech, Belgium), GenoType MTBDR/MTBDRPlus and GenoType MTBDRsl

(Hain Lifescience, Nehren, Germany). Inno-LiPA Rif.TB can provide susceptibility

test only for rifampicin, GenoType MTBDR/MTBDRPlus for rifampicin and

isoniazid and GenoType MTBDRsl for fluoroquinolones. Another commercially

available fully automated reverse transcriptase based system for the detection of M.

tuberculosis and rifampicin resistance is Xpert MTB/RIF assay (Xpert; Cepheid,

Sunnyvale, CA, USA). A study documented the pooled sensitivity of INNO-LiPA

Rif.TB, GenoType MTBDR/MTBDRPlus and Xpert MTB/RIF assay to detect

rifampicin resistance as 93%, 97% and 98%, respectively while pooled specificities as

99%, 98% and 99%, respectively (Drobniewski et al., 2012). A study conducted in

Columbia reported the sensitivity and specificity of the GenoType MTBDRplus assay

from 92 to 96% and from 97 to 100%, respectively. The sensitivity of the GenoType

MTBDRsl assay ranged from 84 to 100% and the specificity from 88 to 100% (Ferro

et al., 2013). In another study, rifampicin resistant strains were identified with 100%

accuracy while isoniazid resistant strains were found with 89% accuracy for high

level resistance but only 17% accuracy for low level isoniazid resistance by

GenoType MTBDR/MTBDRPlus (Brossier et al., 2006).

1.14.2.4 DNA chips

DNA chips are glass surfaces that represent thousands of oligonucleotide

probes arrayed at discrete sites. Detection of mutations is accomplished by coupling

of PCR product with immobilized oligonucleotides on microchips. The number of

probes that can be spotted on chip is so high that these can be designed to screen

every base in the gene and it is just like sequencing on a chip (Fan et al., 2000).

Analysis of 55 rifampicin resistant isolates using DNA chip technology, showed

Page 51: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

31

87.3% accuracy and 83.6% concordance relative to DNA sequencing (Deng et al.,

2004). One commercially available assay is TB-Biochip ® MDR. A study reported

that the Xpert and Biochip are similar in accuracy for detecting M. tuberculosis and

rifampicin resistance compared to conventional culture methods (Kurbatova et al.,

2013). The major drawback associated with DNA chip is difficulty in designing the

oligonucleotides that can discriminate at the level of single base mutations under

uniform hybridization conditions (Gerhold et al., 1999; Lipshutz et al., 1995). At the

same time cost of the tools and the expertise needed hamper the use of this tool in

resource poor settings.

1.14.2.5 DNA sequencing

DNA sequencing is considered as reference method to characterize mutations

associated with drug resistance (Kim et al., 2001). In this method, the “hotspot” for

mutations is amplified and the amplicons are subjected to sequencing to determine the

presence and absence of specific mutations. However, the most serious drawbacks of

this method are expensive equipment and expertise needed which make it inefficient

method in cases where either long stretches or large numbers of samples have to be

evaluated.

1.15 Treatment of tuberculosis

Tuberculosis is nowadays mostly treated outside the hospitals. Gone are the

days when long bed rest and journey to the mountains was considered part of

tuberculosis treatment. Currently, a standard short course regimen for tuberculosis, as

recommended by WHO and International Union Against Tuberculosis and Lung

Disease, (IUATLD) requires 6 months (WHO, 2010). It comprises a combination of

isoniazid, rifampicin, ethambutol and pyrazinamide in initial two-months intensive

phase followed by consolidation phase of four months with rifampicin and isoniazid.

The aminoglycoside, streptomycin is not generally recommended in the intensive

phase as a fourth drug because it is not only associated with higher resistance rate as

compared to ethambutol (Quy et al., 2006) but also its requirement of parenteral route

for administration. It is recommended in cases where use of ethambutol is

contraindicated.

Page 52: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

32

1.16 Molecular mechanisms of drug resistance

1.16.1 Rifampicin

Rifampicin was discovered in 1963 (Lemus et al., 2004). It is a semi synthetic

compound which is produced by fermentation of the soil mold Streptomyces

mediterranei (Wong et al., 1990). It is backbone of cocktail chemotherapy

recommended by WHO for the treatment of tuberculosis (Vall-Spinosa et al., 1970).

Rifampicin is a potent bactericidal agent that actively kills multiplying

extracellular, intracellular, and semi dormant mycobacteria in tissues. Reduction in

duration of chemotherapy from 12 to 6 months for the treatment of active tuberculosis

and from 9 months to 2-3 months for the treatment of latent tuberculosis was possible

by the addition of rifampicin to anti-TB treatment regimens (Chaisson, 2003). Its

action against dormant bacilli is its unique property (Dickinson and Mitchison, 1981).

At the outset of therapy, majority of organisms replicate actively and therefore are

susceptible to other anti-tuberculosis drugs but in later phase of treatment, the residual

organisms enter the phase of inactive metabolic status thus making them less

susceptible to other drugs (Dickinson and Mitchison, 1981). It is thought that these

dormant organisms undergo brief periods of metabolic reactivation during which

rifampicin can exert its effect on RNA polymerase hampering the cellular function

leading to cell death while other drugs cannot produce any appreciable effect during

such short periods of metabolic reactivation (Mitchison, 2000).

The mechanism of resistance against rifampicin is based on studies on the

DNA dependant RNA polymerase of Escherichia coli (Burgess et al., 1987). DNA

dependent RNA polymerase is a complex oligomer that consists of four different

subunits: α, β, β’, and σ which are encoded by rpoA, rpoB, rpoC, and rpoD genes,

respectively. This enzyme assembles in two forms, holoenzyme (α, β, β’ and σ

subunits) and the core enzyme (α, β and β’ subunits) (Ishihama, 1988). Site specific

transcription is initiated after the recognition of promoter region by σ subunit. The σ

subunit dissociates from holoenzyme after the formation of short oligonucleotide

transcript thus leaving behind the catalytically active core enzyme to finish its job of

producing RNA transcript. Rifampicin targets the β subunit of DNA dependent RNA

polymerase which is essential for chain initiation and elongation. Binding of

Page 53: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

33

rifampicin to polymerase subunit, deep within the DNA/RNA channel, results in

blocking of RNA elongation, leading to abortive initiation of transcript (Johnston and

McClure, 1976).

Mutations in the gene that encodes β subunit of DNA dependent RNA

polymerase can lead to rifampicin resistance. These mutations occur in 81 base pair

hotspot region encoding 27 amino acids from 507 to 533 (Ramaswamy and Musser,

1998; Saribas et al., 2003). Mutations in rpoB locus confer conformational changes

that lead to defective binding of the drug and consequently resistance to rifampicin.

Resistance to rifampicin alone is rare (Githui et al., 1993; Mitchison and

Nunn, 1986). In almost 90% of the cases, rifampicin resistance is associated with

isoniazid resistance (Drobniewski and Wilson, 1998). In treatment trials conducted at

British Medical Research Council, primary resistance to isoniazid alone was seen in

5% patients while resistance to rifampin alone was seen in only 0.02% isolates

(Mitchison and Nunn, 1986). Since rifampicin resistance is often found to be

associated with isoniazid resistance, so rifampicin resistance can be used as potential

surrogate marker for the detection of MDR-TB cases (Rossau et al., 1997).

Figure 1.9 Mutations and alleles in rifampicin resistant M. tuberculosis isolates reported by different groups (Cavusoglu et al., 2002)

Page 54: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

34

1.16.2 Isoniazid (isonicotinyl hydrazine)

Isoniazid is a corner stone in drug susceptible tuberculosis therapy. It was first

found to be effective in the treatment of tuberculosis in 1952 (Bernstein et al., 1952).

Isoniazid is a pro-drug that requires activation by the catalase-peroxidase enzyme

encoded by the katG gene (Shoeb et al., 1985; Zhang et al., 1992). Catalase per

oxidase also protects bacteria form reactive oxygen species produced by macrophages

(Wengenack and Rusnak, 2001). Activation of INH leads to the formation of

isonicotinoyl acyl radical that combines with NAD+/NADH to form isoniazid-NADH

adduct (INH-NADH) (Scior et al., 2002; Slayden and Barry, 2000; Vilcheze and

Jacobs, 2007). This adduct inhibit the inhA, an enoyl acyl-carrier protein reductase

involved in the biosynthesis of mycolic acids that are key structural components of

the cell wall of M. tuberculosis (Ducasse-Cabanot et al., 2004; Quemard et al., 1991;

Quemard et al., 1995; Rozwarski et al., 1998). Mutations in the peroxidase are

responsible for the development of resistance to INH (Zhang et al., 1993). The hotspot

for mutations in katG gene lies between codons 138 to 328, and codon 315 being the

most common target (Slayden and Barry, 2000). The substitution mutation at codon

315(Ser→Thr) is found in 30–60% of INH resistant isolates (Musser et al., 1996;

Ramaswamy and Musser, 1998; Slayden and Barry, 2000). Mutations in katG gene

result in reduced peroxidase activity that leads to the inability to activate INH. This in

turn results in poor formation of INH-NADH adduct, hence, preventing it from

binding to inhA (Chen and Bishai, 1998).

Mutations in promoter region of inhA gene also contribute to development of

INH resistance. These mutations result in over expression of the inhA gene leading to

low level INH resistance (Larsen et al., 2002). The most common mutations found in

the promoter region of inhA gene are at -8(T-G/A), -15(C-T), -16(A-G), -17(G-T) and

-24(G-T) of which -15(C-T) is the most common (Leung et al., 2006; Schroeder et al.,

2005). It has been observed that 70–80% of INH resistance in M. tuberculosis is

attributed by the mutations in the katG and inhA genes (Ramaswamy and Musser,

1998). In addition to this other chromosomal sites for the INH mutations include

kasA, and oxyR-ahpC intergenic region have been associated with INH resistance but

lower percentages of strains exhibit mutation in these genes (Ramaswamy and

Musser, 1998; Rattan et al., 1998).

Page 55: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

35

1.16.3 Ethambutol

Another first line drug which is a key component of the tuberculosis

chemotherapy is ethambutol (S, S)-2,2′-(ethylenediimino)di-1-butanol). Only the

dextro isomer of the drug is biologically active (Blessington and Beiraghi, 1990).

Ethambutol affects the pathway for biosynthesis of M. tuberculosis cell wall. The

putative target is membrane-associated arabinosyl transferases, enzymes which are

involved in biosynthesis of arabinan. Arabinan is component of arabinogalactan

which is an important constituent of cell wall of M. tuberculosis (Khoo et al., 1996;

Takayama and Kilburn, 1989; Wolucka et al., 1994). Three contiguous genes embC,

embA, and embB that come under a single emb operon, encode arabinosyl

transferases. Mutations at codon 306 of the embB have been identified that confer

resistance to M. tuberculosis isolates (Escalante et al., 1998; Mokrousov et al., 2002;

Ramaswamy and Musser, 1998). Mutations at codon 306 are found to be associated

with EMB resistance in 70–90% of isolates (Ramaswamy and Musser, 1998).

1.16.4 Streptomycin (STR)

Streptomycin was the first antibiotic used for the treatment of tuberculosis. It

inhibits protein synthesis. It affects only on extracellular bacilli and is bactericidal in

nature. Streptomycin interacts with 16S rRNA and S12 ribosomal protein (rrs and

rpsL) (Abbadi et al., 2001; Escalante et al., 1998; Finken et al., 1993; Sreevatsan et

al., 1996a). This results in ribosomal changes that lead to the misreading of the

mRNA and inhibition of protein synthesis.

About 65–67% of STR resistant isolates are found to have mutations in rrs

and rpsL gene (Ramaswamy and Musser, 1998). A C-T substitution at positions 491,

512 and 516 and an A-(C→T) transversion at position 513 of rrs gene were observed

in 530 loop (Carter et al., 2000). In rpsL gene, mutations at codon 43

(AAG→AGG/ACG) (Lys→Arg/Thr) and codon 88 (AAG→AGG/CAG)

(Lys→Arg/Gln) are associated with STR resistance. Analysis of STR resistant

isolates for MIC indicates that amino acid substitutions in the rpsL gene are

associated with high level of resistance whereas mutations in the rrs gene are

Page 56: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

36

associated with an intermediate level of resistance (Cooksey et al., 1996; Meier et al.,

1996)

1.16.5 Pyrazinamide (PZA)

Pyrazinamide, a nicotinamide analog, was reported to have anti-TB activity in

1952. PZA has sterilizing activity and actively kills the tubercle bacilli in intensive

phase of treatment (Somoskovi et al., 2001). Its introduction in treatment regimen has

resulted in shortening of tuberculosis treatment duration from 12 to 6 months (CDC,

1993). It is a pro-drug that is converted in its active form, pyrazinoic acid (POA) by

the pyrazinamidase (PZase) enzyme encoded by pncA gene. PZA is active at acidic

pH where POA accumulates in the cytoplasm resulting in the lowering of intracellular

pH to a level that inactivates a fatty acid synthase (Zimhony et al., 2004). Mutations

conferring resistance to PZA are scattered throughout the pncA gene thus indicating

absence of any potential hotspot (Scorpio et al., 1997; Scorpio and Zhang, 1996;

Sreevatsan et al., 1997). There are some PZA resistant isolates that do not have

mutation in pncA gene. Further, all the mutations (e.g. 114(Thr→Met)) in pncA gene

do not confer resistance which suggests that there might be other mechanism for

development of PZA resistance. Pyrazinamide susceptibility testing is not being done

routinely in many countries due to technical difficulties. Hence, the real magnitude of

PZA resistance is not known (Johnson et al., 2006).

It is essential for the anti-TB drugs to enter the bacteria to reach their

molecular targets. These drugs cannot penetrate into the mammalian cells therefore

they cannot kill intracellular bacteria (Damper and Epstein, 1981; Heifets and

Lindholm-Levy, 1989). Moreover, these are bactericidal against actively replicating

bacteria, therefore these are effective against extracellular, replicating bacteria (Di

Perri and Bonora, 2004).

1.17 Tuberculosis control strategy

Tuberculosis is not only highly prevalent but is also a leading cause of

mortality throughout the world. Of great concern is the spread of drug resistant TB

that has become a global threat to tuberculosis control programs. Patients’ non-

compliance to the treatment regimen is a major contributing factor towards

Page 57: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

37

development of MDR-TB. To increase compliance to therapy, WHO introduced

directly observed therapy scheme (DOTS) in which the patients are supervised while

the medicines are administered. DOTS strategy consists of five important elements as

shown in the figure 1.10.

TB-DOTS has been promoted as global strategy since 1990. Although it was

piloted in Pakistan in 1995 but the progress in TB control was achieved after 2001

when tuberculosis was declared a “National Emergency”. Expanding DOTS in

Pakistan has always proved to be a great challenge. The main obstacle to achieve

implementation of DOTS is weak health care infrastructure primarily due to unstable

political environment of the country. In short the public-private mix DOTS is feasible

in Pakistan but the cost, time and effort required to establish the program is higher

than in developing countries (Naqvi et al., 2012).

Table 1.2 Molecular Mechanism of Resistance in M. tuberculosis

Drug Gene(s) involved

Gene Target(s) Mechanism(s) of action

Rifampicin rpoB RNA polymerase Inhibition of

transcription

Isoniazid

katG Catalase-peroxidase Inhibition of mycolic acid biosynthesis and others effects on metabolism of lipids, carbohydrates and NAD

inhA Enoyl ACP reductase Ndh NADH dehydrogenase

ahpC Alkyl hydroperoxidase

Ethambutol embCAB Arabinosyl transferase Inhibition of arabinoglactan synthesis

Streptomycin rpsL S12 ribosomal protein Inhibition of protein synthesis

Pyrazinamide pncA Nicotinamidase/ Pyrazinamidase

Acidification of cytoplasm and de-energizing the cell membrane

(Yew and Leung, 2008)

Page 58: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

38

Figure 1.10 Directly observed treatment, short course (DOTS), 5-part framework (Jassal and Bishai, 2010)

1.18 Objectives of the study

Genotypic methods for DST involve the elucidation of mutations associated

with drug resistance to be used as molecular markers. These mutations are reported to

be geographically distributed. Hence, there existed a need to screen M. tuberculosis

isolates prevalent in population of Pakistan for mutations that can be used as

molecular markers for DST. The present study was designed to fulfil the following

objectives:

1 Identification of the predominant lineages of M. tuberculosis complex in

Pakistan and to trace the transmission dynamics of the disease

2 Elucidation of the most predictive and discriminatory set of MIRU-VNTR

loci for rapid typing of the isolates in this particular geographical setting

DOTS

STRATEGY

Political

commitment

with increased

and sustained

financing

Monitoring and

evaluation

system and

impact

measurement

An effective

drug supply and

management

system

Case detection

through quality

assured

bacteriology

Standardized

treatment with

supervision and

patient support

Page 59: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

39

3 Comparison of the performance of the most commonly used databases for

lineage assignment so that the most informative and precise data can more

easily be retrieved by surveillance-laboratories in future studies

4 Establishment and validation of in-house line probe assay to detect

mutations in rpoB gene of M. tuberculosis

5 Characterization of mutations associated with rifampicin, isoniazid,

streptomycin, ethambutol and pyrazinamide in M. tuberculosis isolates

prevalent in Pakistan

Page 60: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

40

MATERIALS AND METHODS

Recipes of all the reagents/solutions used in the study are given in the appendix I.

This study was approved by Institutional Ethical Committee of National Institute

for Biotechnology and Genetic Engineering.

2.1 Collection of M. tuberculosis culture isolates and clinical specimens

A total of 545 M. tuberculosis specimens, collected from all the four provinces

of Pakistan, were included in the study. These specimens include M. tuberculosis

culture isolates as well as blood and sputum samples of the individuals suspected to

have tuberculosis on the basis of clinical history. Seventy nine M. tuberculosis culture

isolates were collected form Lahore, 111 from Islamabad and 201 were collected from

Rawalpindi, 42 from Peshawar, 6 from Quetta while 84 were from Karachi (Figure

2.1). Nine culture isolates and 13 clinical samples were collected from Faisalabad.

Sputum samples were collected in sterile vials while blood samples were collected in

vacutainer tubes containing EDTA.

Figure 2.1 Regions from where M. tuberculosis isolates were collected

Page 61: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

41

2.2 M. tuberculosis culture on Lowenstein Jenson (LJ) medium from clinical specimens

Reagents

NaOH/N.acetyl-L-cystein solution

2.2.2 Culture of M. tuberculosis from sputum specimens

The first step of culturing M. tuberculosis involves liquefaction and

decontamination of the sputum samples. The recovery of M. tuberculosis from

mucous containing samples like sputum is difficult; hence, NaOH/N-acetyl-L-cystein

is used for gentle digestion and decontamination. The ingredients of

digestion/decontamination solution liquefy the mucous content of the sample and kill

the normal flora.

Method

To liquefy the sputum sample, equal volume of sputum was mixed with

NaOH/N.acetyl-L-cystein solution on a horizontal rocker at medium speed for 20

minutes. To this mixture was added, 1 drop of phenol dye which was neutralized by

10% HCl. This mixture was centrifuged for 1 to 2 minutes at 3000 rpm. The

supernatant was removed and 100 µL of this solution was spread on LJ medium slants

and incubated at 37°C. The media slants were checked for growth every week for a

period of at least 8 weeks.

2.3 Isolation of M. tuberculosis genomic DNA

2.3.1 Extraction of DNA from M. tuberculosis culture (CTAB method)

Reagents

10%SDS

5 M NaCl

24:1 chloroform/isoamyl alcohol

CTAB/NaCl solution

Page 62: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

42

SDS/Proteinase K mix

Lysozyme

Method

A loopful of M. tuberculosis colonies on LJ media was taken in 400 µL of 1X

TE buffer in micro centrifuge tube, vortexed for even suspension, heat deactivated for

20 minutes at 80°C and cooled to room temperature. To that suspension was added 50

µL of 10 mg/mL solution of lysozyme. The solution was vortexed and incubated for

at least 1 hour at 37°C. To that was added 75 µL of 10%SDS/Proteinase K solution,

vortexed shortly and incubated for 10 minutes at 65°C. In the next step, 100 µL of 5M

NaCl was added and mixed by inverting the tube. It was followed by the addition of

125 µL of CTAB/NaCl solution (pre-warmed at 65°C), vortexed gently and incubated

at 65°C for 10 minutes. 750 µL of chloroform/isoamyl alcohol (24:1) was added,

mixed by inverting and centrifuged at 4oC for 5 minutes at 12,000×g. The aqueous

phase was transferred to fresh microfuge tube and 450 µL of cold isopropanol, was

added, inverted to mix and was placed at -20oC for 20 minutes. The DNA in the

isopropanol was pelleted by centrifugation at 14,000×g for 15 minutes. The

supernatant was discarded carefully leaving the pellet undisturbed. The pellet was

washed with 1 mL of cold 70% ethanol and centrifuged at 14,000×g for

approximately 15 minutes. The supernatant was removed carefully and the pellet was

air dried and re-suspended in 20 to 80 µL of 1X TE depending upon the size of the

pellet. The DNA was stored at -20°C till further use.

2.3.2 Isolation of M. tuberculosis DNA from blood

Reagents

Digestion buffer

Equilibrated buffered phenol

3 M sodium acetate (NaOAc)

70% ethanol

0.5 M EDTA

Page 63: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

43

Method 1

One milliliter blood specimen was added in 2-3 mL of digestion buffer and

incubated overnight at 60oC. It was vortexed for 20 seconds and to 1 mL of the

sample, 0.5 mL phenol was added, vortexed for 30 seconds and centrifuged at 13000

rpm for 5 minutes. The aqueous phase was transferred to fresh microfuge tube,

containing 0.5 mL phenol, vortexed for 20 seconds and centrifuged at 13000 rpm for

5 minutes. The aqueous phase was again transferred to fresh microfuge tube

(approximately 350 µL). To this aqueous phase, 1/10th volume of 3 M NaOAc was

added and mixed. The DNA was precipitated with 800 µL of absolute ethanol at -

20oC for 20 minutes. The DNA was then pelleted by centrifugation at 13000 rpm for

30 minutes at room temperature. The supernatant was discarded and the pellet was

washed with 500 µL of 70% ethanol. The pellet was air dried and the DNA was

suspended in 50-100 µL 1X TE depending upon the size of the pellet and stored at -

20οC till further use.

Reagents

10X Digestion buffer

Triton Tris lysis buffer (TT lysis buffer)

TE buffer

Method 2

500 µL of EDTA blood was treated with equal volume of TT lysis buffer to

remove red blood cells. The mixture was centrifuged at 12000×g for 2 to 3 minutes.

The supernatant was discarded and the pellet was treated again with TT lysis buffer.

The supernatant was discarded and the pellet was washed with 100 µL of TE. The

solution was then treated with 10X digestion buffer and incubated at 65οC for one

hour. The digested specimen was put to boiling for 20 minutes after which 5 µL of

this solution was used in PCR reaction (Kolk et al., 1994).

Page 64: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

44

2.3.3 Isolation of M. tuberculosis DNA from sputum

To liquefy the sputum sample, equal volume of sputum was mixed with

NaOH/N-acetyl-L-cysteine solution in 50 mL falcon tube. This tube was placed on

the horizontal rocker at medium speed for 20 minutes. The sample was centrifuged at

12000×g for 10 minutes. The supernatant was removed and the pellet was re-

suspended in 1.5 mL of 1X TE buffer. The tube was vortexed and centrifuged again at

12000×g for 10 minutes. After removing the supernatant, the pellet was re-suspended

in 100 µL of 1X TE buffer. One third volume of the digestion buffer was added in the

sample and was placed in boiling water for 10 minutes. DNA was stored at -20°C till

further use. 5 µL of DNA was used in PCR.

2.4 Analysis of DNA extracted from M. tuberculosis isolates on agarose gel electrophoresis

The quality of extracted DNA was checked by resolving the DNA on agarose gel.

Reagents

Agarose

10XTris borate EDTA buffer (TBE)

6X DNA tracking dye/ DNA loading dye

2.4.1 Gel casting

An adequate volume of electrophoresis buffer (0.5X TBE) was taken in the

electrophoresis tank. 0.8% agarose gel was made for the detection of extracted

genomic DNA, according to the size of gel cast. It was then cooled to 55οC before

pouring in the gel casting tray and the comb was inserted ensuring that no air bubbles

were trapped in the gel. After polymerization of the gel at room temperature, comb

was removed carefully and the gel was placed in electrophoresis chamber containing

0.5X TBE buffer (Sambrook et al., 1989).

2.4.2 Sample application

Two microliter of the genomic DNA was loaded on the gel after mixing with

appropriate amount of 6X DNA loading dye. The migration of DNA in the gel from

the cathode (-ve) to anode (+ve) was monitored by looking at the movement of dye.

Page 65: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

45

When the adequate migration had occurred (approximately 3/4th of the length of gel),

the power supply was turned off.

2.4.3 Staining and visualization of gel

Reagents

Ethidium bromide solution

The gel was immersed in ethidium bromide solution (0.5 µg/mL) for

approximately 15 minutes to stain DNA. The gel was then destained in distilled water

(dH2O) for 15 minutes. The DNA was visualized under UV at a wavelength of 254

nm and photographed using gel documentation system (Uvitec USA).

2.5 DNA fingerprinting of M. tuberculosis isolates

2.5.1.1 MIRU-VNTR analysis

A total of 258 isolates were genotyped with MIRU-VNTR using a panel of 24

loci. All MIRU-VNTR loci were amplified with primers specific for sequences

flanking the MIRU units using duplex format developed by Guislain et al.,

(unpublished data). Primer sequences were those reported by Supply et al., (2006).

The primers used for amplification of MIRU-VNTR, their standardized designation,

corresponding loci and quantities used are described in the table 2.1 while PCR

reaction constituents and their concentration is given in table 2.2.

Table 2.1 MIRU-VNTR Loci Designation and Parameters for PCR Primers

Duplex Locus* Primer Code Sequence (5´ to 3´) Tm

(°C) Direction Final conc. (µM)/15µL

Mix 1

2165 ETR A

ATTTCGATCGGGATGTTGAT 52 Forward 1.00

TCGGTCCCATCACCTTCTTA

56 Reverse 1.00

4348 MIRU 39

CGCATCGACAAACTGGAGCCAAAC

63 Forward 0.67

CGGAAACGTCTACGCCCCACACAT

65 Reverse 0.67

Page 66: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

46

Duplex Locus* Primer Code Sequence (5´ to 3´) Tm

(°C) Direction Final conc. (µM)/15µL

Mix 2

2461 ETR B

GCGAACACCAGGACAGCATCATG 63 Forward 0.67

GGCATGCCGGTGATCGAGTGG 65 Reverse 0.67

4052 Qub 26

GGCCAGGTCCTTCCCGAT 59 Forward 1.00

AACGCTCAGCTGTCGGAT

55 Reverse 1.00

Mix 3

577 ETR C

GACTTCAATGCGTTGTTGGA 54 Forward 0.67

GTCTTGACCTCCACGAGTGC 60 Reverse 0.67

2059 MIRU 20

TCGGAGAGATGCCCTTCGAGTTAG 63 Forward 0.67

GGAGACCGCGACCAGGTACTTGTA

65 Reverse 0.67

Mix 4

580 ETR D or MIRU 04

GCGCGAGAGCCCGAACTGC 64 Forward 0.67

GCGCAGCAGAAACGTCAGC

60 Reverse 0.67

960 MIRU 10

GTTCTTGACCAACTGCAGTCGTCC

53 Forward 0.67

TACTCGGACGCCGGCTCAAAAT

61 Reverse 0.67

Mix 5

154 MIRU 02

TGGACTTGCAGCAATGGACCAACT 62 Forward 0.67

TACTCGGACGCCGGCTCAAAAT 51 Reverse 0.67

3007 MIRU 27

TCGAAAGCCTCTGCGTGCCAGTAA 63 Forward 0.67

GCGATGTGAGCGTGCCACTCAA

63 Reverse 0.67

Mix 6 1644 MIRU 16

TCGGTGATCGGGTCCAGTCCAAGTA 65 Forward 1.00

CCCGTCGTGCAGC 67 Reverse 1.00

Page 67: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

47

Duplex Locus* Primer Code Sequence (5´ to 3´) Tm

(°C) Direction Final conc. (µM)/15µL

CCTGGTAC

2163b Qub 11b

CGTAAGGGGGATGCGGGAAATAGG 65 Forward 0.67

CGAAGTGAATGGTGGTGGCAT

59 Reverse 0.67

Mix 7

2531 MIRU 23

CAGCGAAACGAACTGTGCTATCAC 62 Forward 0.67

CGTGTCCGAGCAGAAAAGGGTAT 61 Reverse 0.67

2401 Mtub 30

AGTCACCTTTCCTACCACTCGTAAC 62 Forward 0.67

ATTAGTAGGGCACTAGCACCTCAAG

62 Reverse 0.67

Mix 8

3192 ETR E or MIRU 31

CTGATTGGCTTCATACGGCTTTA

58 Forward 0.67

GTGCCGACGTGGTCTTGAT

58 Reverse 0.67

2687 MIRU 24 CGACCAAGATGTGCAGGAATACAT

60 Forward 0.67

GGGCGAGTTGAGCTCACAGAA

61 Reverse 0.67

Mix 9

2996 MIRU 26

CCCGCCTTCGAAACGTCGCT 62 Forward 0.67

TGGACATAGGCGACCAGGCGAATA 63 Reverse 0.67

2347 Mtub 29

AACCCATGTCAGCCAGGTTA 56 Forward 1.00

ATGATGGCACACCGAAGAAC

56 Reverse 1.00

Mix 10

802 MIRU 40

GGGTTGCTGGATGACAACGTGT 61 Forward 0.67

GGGTGATCTCGGCGAAATCAGATA

62 Reverse 0.67

3171 Mtub 34 GCAGATAACCCGCAGGAATA

56 Forward 1.00

Page 68: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

48

Duplex Locus* Primer Code Sequence (5´ to 3´) Tm

(°C) Direction Final conc. (µM)/15µL

GGAGAGGATACGTGGATTTGAG

59 Reverse 1.00

Mix 11

424 Mtub 04

GTCCAGGTTGCAAGAGATGG 58 Forward 0.67

GGCATCCTCAACAACGGTAG 58 Reverse 0.67

4156 Qub 4156

CTGGTCGCTACGCATCGTG 60 Forward 1.00

TGGTGGTCGACTTGCCGTCGTTGG

67 Reverse 1.00

Mix 12

1955 Mtub 21

AGATCCCAGTTGTCGTCGTC 58 Forward 0.67

CAACATCGCCTGGTTCTGTA 56 Reverse 0.67

3690 Mtub 39

AATCACGGTAACTTGGGTTGTTT 56 Forward 1.00

GATGCATGTTCGACCCGTAG

58 Reverse 1.00

• (Supply et al., 2006).

Reagents 10X Buffer Q

Table 2.2 Reaction Mixture for MIRU-VNTR PCR

Constituents Final

concentration

Volume used(µL)

/15 µL reaction 10X PCR buffer Q 1 X 1.5

2.5 mM 4 dNTPs (Fermentas Cat #R0181) 0.33 mM 2.0

1st pair of primers (5µ M) 0.67 or 1.0 µ M 2 or 3

2nd pair of primers(5µ M) 0.67 or 1.0 µ M 2 or 3

Betaine 5M (Sigma CAS # 107-43-7) 1 M 3.0

Dimethyl sulfoxide (DMSO) 5% 0.75

Taq polymerase (Fermentas Cat #EP0402) 1 unit 0.1

Water 2 or 1

DNA~5 ng ~ 10 ng 2.0

Page 69: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

49

2.5.1.2 Thermal profile for MIRU-VNTR PCR

Initial denaturation: 95°C for 5 minutes

Amplification: 35 cycles of following:

95°C for 60 s

61ºC for 30 s

70ºC for 1 min

Extension: 72ºC for 7 minutes

H37Rv DNA was used as positive control and water (no DNA) as negative control.

2.5.1.3 Analysis of PCR products of MIRU-VNTR loci on agarose gel

PCR products of MIRU-VNTR loci were resolved on agarose gel using

methodology as described in section 2.4 except that 2.0% gel was used instead of

0.8%. The size of the PCR products was assessed using DNA markers.

2.5.1.4 Determination of copy number of MIRU-VNTR units

All the isolates were typed based on the number of copies of repeat units of

VNTR. Allele designation table (table 2.3) was used to assign copy numbers for

various VNTR alleles corresponding to size of PCR products. PCR reactions for the

isolates for which duplex format did not prove informative were repeated in simplex

format and allele scoring was done by independent analysis by two persons. The data

generated was entered in the Microsoft Excel files and was exporPted to Bionumerics

software (version 6.6; Applied Maths, Sint-Martens-Latem, Belgium) to analyse

molecular typing results.

Page 70: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

50

Table 2.3 Allele Designation Table for MIRU-VNTR Analysis of M. tuberculosis Isolates

0 copy 1 copies 2 copies 3 copies 4 copies 5 copies 6 copies 7 copies 8 copies 9 copies 10 copies

ETR A 2165_75bp 247 322 397 472 547 622 697 772 847 922 ETR B 2461_57bp 178 235 292 349 406 463 520 577 634 691 ETR C 0577_58bp 172 230 288 346 404 462 520 578 636 684

MIRU 02 0154_53bp 455 508 561 614 667 720 773 826 879 932 MIRU 04-ETR D 0580_77bp 176 253 330 407 484 561 638 715 792 869

MIRU 10 0959_53bp 535 590 643 696 749 802 855 908 961 1013 MIRU 16 1644_53bp 618 671 724 777 829 882 935 988 1041 MIRU 20 2050_77bp 514 591 668 745 822 899 976 MIRU 23 2531_53bp 607 661 714 767 820 873 926 979 MIRU 24 2687_53bp 447 500 553 606 659 712 765 818 871 924 MIRU 26 2996_51pb 511 562 613 664 715 766 817 868 919 MIRU 27 3006_53bp 551 604 657 709 762 815 868 921

MIRU 31-ETR E 3192_53bp 545 598 651 704 757 810 863 916 MIRU 39 4348_53bp 593 646 699 752 805 858 911 964 MIRU 40 0802_54bp 407 461 515 569 623 677 731 785 839 893 Mtub 04 0424_51bp 177 218 269 320 371 422 473 524 575 626 Mtub 21 1955_57pb 149 206 263 320 377 434 491 548 605 662 Mtub 29 2347_57bp 179 236 293 350 407 464 521 578 635 692 Mtub 30 2401_58bp 261 319 377 435 493 551 609 667 725 783 Mtub 34 3171_54bp 171 225 279 333 387 441 495 549 603 657 Mtub 39 3690_58bp 225 283 341 399 457 515 573 631 689 747 Qub 11b 2163_69bp 136 205 274 343 412 481 550 619 688 757 Qub 26 4052_111bp 264 375 486 597 708 819 930 1041

Qub 4156 4156_59bp 563 622 681 740 799 858 917

Dark grey coloured boxes show the copy number of H37Rv for corresponding allels

Page 71: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

51

2.5.2 DNA fingerprinting by Spoligoriftyping assay

Spoligoriftyping of 457 samples was performed as described by

Gomgnimbou et al. (2012).

2.5.2.1 Principle of spoligoriftyping

Spoligoriftyping is a combination of two preexisting assays “Spoligotyping”

and “Rifoligotyping” which allows simultaneous detection of polymorphism in

clustered regularly interspersed palindromic region (CRISPR) and in rifampicin

resistance determining region (RRDR) of rpoB gene as shown in the figure 2.2. The

direct repeat locus, a member of CRISPR loci genetic family and RRDR is

simultaneously amplified and is allowed to hybridize with specifically designed

capture probes, corresponding to 1 to 43 spacers and most frequent mutations in

“hotspot region” of rpoB gene targeting codon 531, 526 and codon 516. In addition to

this, use of spanning probes allows the detection of other potential mutations in

RRDR of rpoB gene. The absence of any spacer in DR region would lead to the

negative hybridization signal for any of the corresponding probe while presence of

specific spacer would show positive hybridization signal. Similarly, presence of any

single nucleotide polymorphism (SNP) in RRDR region would give negative

hybridization signal for any one of the wild types panning probe and willgive positive

hybridization signal for corresponding mutant probe. The absence of hybridization

signal for both wild type as well as corresponding mutant probe would indicate the

presence of mutation other than the targeted one. Hence, a rifampicin susceptible

clinical isolate must show a wild type profile i.e. positive signal for all the wild type

probes while a rifampicin resistant isolate must show absence of positive signal for at

least one wild type probe.

Luminex200 is a flexible analyzer system based on the principle of flow

cytometry that allows the user to multiplex up to 100 analytes in a single microplate

well. The whole system is a combination of three core xMAP technologies:

• xMAP microspheres are 5.6 micron polystyrene microspheres that act

both as the identifier and the solid support to build the assay

Page 72: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

52

• Luminex200 analyzer includes key xMAP detection components such

as lasers, optics, fluidics and high-speed digital signal processors

• xPONENT® software, which is designed for protocol-based data

acquisition with robust data regression analysis

(http://www.luminexcorp.com/Products/Instruments/Luminex100200/)

Figure 2.2 Schematic representation of spoligoriftyping principle (Gomgnimbou et al., 2012)

Microspheres are color coded with precise concentration of various

fluorescent dyes and are coupled with the specifically designed oligonucleotides.

These are allowed to hybridize with PCR product, labeled with the fluorescent

reporter molecule. When these microspheres pass through the analyzer system, red

laser or LED excites the internal dyes to distinguish the microsphere set and a green

laser or LED excites the fluorescent dye on reporter molecule. A high speed digital

signal processer identifies each microsphere and quantifies the fluorescent signal of

Page 73: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

53

the reporter

(http://www.luminexcorp.com/prod/groups/public/documents/lmnxcorp/082-xmap-

tech-sell-sheet.pdf).

2.5.2.3 Oligonucleotides used for spoligoriftyping assay

DNA probe sequences used in spoligoriftyping were those described by

Kamerbeek et al., 1997 and Gomgnimbou et al., 2012. All the oligonucleotides had 5´

amino group modification along with 12 carbon spacer linker. This spacer linker increases the

space between microspheres and oligonucleotides for better hybridization. The detail of the

oligonucleotides is given in the table 2.4.

Table 2.4 Parameters of Oligonucleotides used for Spoligoriftyping Assay

Probe Name Genome Spacer

No. Sequence 5´ to 3´ Tm (oC)

- 1 ATAGAGGGTCGCCGGCTCTGGATC 67

- 2 CCTCATGCTTGGGCGACAGCTTTTG 65

- 3 CCGTGCTTCCAGTGATCGCCTTCTA 65

- 4 ACGTCATACGCCGACCAATCATCAG 64

- 5 TTTTCTGACCACTTGTGCGGGATTA 60

- 6 CGTCGTCATTTCCGGCTTCAATTTC 62

- 7 GAGGAGAGCGAGTACTCGGGGCTGC 70

- 8 CGTGAAACCGCCCCCAGCCTCGCCG 74

- 9 ACTCGGAATCCCATGTGCTGACAGC 65

- 10 TCGACACCCGCTCTAGTTGACTTCC 65

- 11 GTGAGCAACGGCGGCGGCAACCTGG 72

- 12 ATATCTGCTGCCCGCCCGGGGAGAT 69

- 13 GACCATCATTGCCATTCCCTCTCCC 65

- 14 GGTGTGATGCGGATGGTCGGCTCGG 70

- 15 CTTGAATAACGCGCAGTGAATTTCG 60

- 16 CGAGTTCCCGTCAGCGTCGTAAATC 65

- 17 GCGCCGGCCCGCGCGGATGACTCCG 77

- 18 CATGGACCCGGGCGAGCTGCAGATG 70

- 19 TAACTGGCTTGGCGCTGATCCTGGT 65

- 20 TTGACCTCGCCAGGAGAGAAGATCA 64

- 21 TCGATGTCGATGTCCCAATCGTCGA 64

Page 74: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

54

Probe Name Genome Spacer

No. Sequence 5´ to 3´ Tm (oC)

- 22 ACCGCAGACGGCACGATTGAGACAA 65

- 23 AGCATCGCTGATGCGGTCCAGCTCG 69

- 24 CCGCCTGCTGGGTGAGACGTGCTCG 72

- 25 GATCAGCGACCACCGCACCCTGTCA 69

- 26 CTTCAGCACCACCATCATCCGGCGC 69

- 27 GGATTCGTGATCTCTTCCCGCGGAT 65

- 28 TGCCCCGGCGTTTAGCGATCACAAC 67

- 29 AAATACAGGCTCCACGACACGACCA 64

- 30 GGTTGCCCCGCGCCCTTTTCCAGCC 72

- 31 TCAGACAGGTTCGCGTCGATCAAGT 64

- 32 GACCAAATAGGTATCGGCGTGTTCA 62

- 33 GACATGACGGCGGTGCCGCACTTGA 69

- 34 AAGTCACCTCGCCCACACCGTCGAA 67

- 35 TCCGTACGCTCGAAACGCTTCCAAC 65

- 36 CGAAATCCAGCACCACATCCGCAGC 67

- 37 CGCGAACTCGTCCACAGTCCCCCTT 69

- 38 CGTGGATGGCGGATGCGTTGTGCGC 70

- 39 GACGATGGCCAGTAAATCGGCGTGG 67

- 40 CGCCATCTGTGCCTCATACAGGTCC 67

- 41 GGAGCTTTCCGGCTTCTATCAGGTA 64

- 42 ATGGTGGGACATGGACGAGCGCGAC 69

- 43 CGCAGAATCGCACCGGGTGCGGGAG 72

Spa_wt1 - AGCCAGCTGAGCCAATTC 55

rpoB_516 wt - AATTCATGGACCAGAACA 48

rpoB_516 mutGTC - AATTCATGGTCCAGAACA 48

Spa_wt2 - AGAACAACCCGCTGTCGG 57

rpoB_526 wt - GGGTTGACCCACAAGCGCC 62

rpoB_526 mutGAC - GGGTTGACCGACAAGCGCC 62

rpoB_526 mutTAC - GGGTTGACCTACAAGCGCC 60

rpoB_531 wt - CCGACTGTCGGCGCTGGG 64

rpoB_531 mutTTG - CCGACTGTTGGCGCTGGG 62

rpoB_531 mutTGG - CCGACTGTGGGCGCTGGG 64

Page 75: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

55

2.5.2.4 Coupling of oligonucleotides to microspheres

Reagents

0.1M 2-(N-morpholino) ethane sulfonic acid, pH 4.5 (MES)

Method

All the microspheres were handled in dark. The stock solution of microsphere

(400 µL) was transferred to appropriately labelled protein low bind microcentrifuge

tube (Fermentas Cat # 022431081) after vortexing and sonication for 20 seconds.

Microspheres were pelleted by centrifugation at 15,300 rpm for 2 minutes. The

supernatant was discarded and the pellet was suspended in 50 µL of 0.1 M MES by

vortexing and sonication for 20 seconds followed by addition of 3.0 µL of 0.1 mM

oligos. For each coupling reaction, 2.5 µL of freshly prepared solution of EDC was

added, mixed by vortexing and was incubated for 30 minutes at room temperature in

the dark. This step was repeated again with freshly prepared solution of EDC. After

30 minutes of incubation, 1.0 mL of 0.02% Tween 20 was added in coupled

microspheres and vortexed briefly. The microspheres were pelleted by centrifugation

at 15,300 rpm for 2 minutes. The supernatant was removed and the coupled

microspheres were resuspended in 1.0 mL of 0.1% SDS by vortexing. The

microspheres were pelleted again by centrifugation at 15,300 rpm for 2 minutes. The

supernatant was removed and coupled microspheres were resuspended in 100 µL 1X

TE by vortexing and sonication for approximately 20 seconds. The coupled

microspheres were stored in dark at 4oC, till further use.

2.5.2.5 Amplification of DR locus and RRDR region of rpoB gene for spoligoriftyping assay

The classical primers were used to amplify DR locus of M. tuberculosis

(Kamerbeek et al., 1997) and hotspot region of β subunit of RNA polymerase gene of

M. tuberculosis was amplified using previously reported primers (Gomgnimbou et al.,

2012). The amplification of DR locus gave a mixture of different sized fragments

since any of the DRs could serve as a target. Amplification of rpoB gene provided 181

bp fragment, encompassing the hotspot region. The primer sequences used for the

Page 76: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

56

spoligoriftyping assay along with specific modification and their codes are listed in

table 2.5. The PCR reaction mixture contents and their final concentration are

described in table 2.6.

2.5.2.6 Thermal profile for spoligoriftyping PCR

Initial denaturation: 95°C for 3 minutes

Amplification: 25 cycles of following:

95°C for 30 s

58ºC for 30 s

72ºC for 30 s

Extension: 72ºC for 10 minutes

H37Rv and M. bovis DNA were used as positive control and water (no template) as

negative control.

Table 2.5 PCR Primers for Spoligoriftyping Assay Primer

code Sequence (5´ to 3´) Tm (°C) Modification Direction

DRa GGTTTTGGGTCTGACGAC

55 5´ Biotinylation Forward

DRb CCGAGAGGGGACGGAAAC

59 - Reverse

rpoB_Dfw* CGGTGGTCGCCGCGATCAAGGAIIIIITCGGCA

73 - Forward

rpoB_Drv* CCGTAGTGCGACGGGTGCACGTIIIIIACCTCC

73 5´ Biotinylation Reverse

* rpoB_Dfw and rpoB_Drv primers were designed according to dual priming oligonucleotide principle (DPO) (Chun et al., 2007).

Page 77: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

57

Table 2.6 PCR Reaction Mixture for Spoligoriftyping

Constituents Final Concentration

Volume used(µL)/25 µL reaction

10X PCR buffer Q 1 X 2.5

2.5 mM 4 dNTPs (Fermentas Cat #R0181) 0.25 mM 2.5

Primer Dra (10 µ M) 1.0 µ M 2.5

Primer Drb (10 µ M) 1.0 µ M 2.5

rpoB_Dfw (10 µ M) 1.0 µ M 2.5

rpoB_Drv (10 µ M) 1.0 µ M 2.5

5X Betain 1.0 X 5.0

Taq polymerase (Fermentas Cat #EP0402) 1 unit 0.1

Water 2.9

DNA (20 to 40 ng) 2.0

2.5.2.7 Hybridization of oligonucleotides with PCR product

Table 2.7 Reaction Mixture for Hybridization

Constituents Volume(µL)/ Sample

1.5X TMAC 33

1X TMAC 25

1X TE buffer (pH 8.0) 15

1mg/mL Streptavidin-R-Phycoerythrin (Qiagen #922721) 0.025

The stock solution of microspheres was resuspended by vortexing and

sonication. To prepare working microsphere mixture, 1.0 µL of each coupled

microsphere was diluted with 1.0 mL of 1.5X TMAC hybridization solution, vortexed

briefly and sonicated for 20 seconds. To each sample in 96 well plate, 33 µL of

working mixture and 15 µL of 1X TE buffer was added. After this 2.0 µL of PCR

product was added to appropriate wells and reaction mixture was mixed gently by

pipetting. The reaction plate was sealed to prevent evaporation and incubated at 95oC

for 10 minutes and then at 52oC (hybridization temperature) for 20 minutes.

Centrifugation was performed at 3000 rpm for 5 minutes to pellet the microspheres.

Page 78: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

58

After that 35 µL of supernatant was removed and the pellet was resuspended in 35 µL

of TE buffer.

The reporter mixture was prepared fresh by diluting streptavidin-R-

phycoerythrin to 1.0 µ g/mL in 1X TMAC hybridization buffer and was added as 25

µL/ reaction. The reaction mixture was mixed by gentle pipetting and the reaction

plate was incubated at hybridization temperature for 5 minutes. 75 µL reaction

mixture was analyzed at hybridization temperature on Luminex200 analyzer

according to the instructions given in the manual.

2.5.2.7 Interpretation of Mean Fluorescence Intensity (MFI) values of Luminex

The results from Luminex were obtained in the form of quantitative mean

fluorescence intensity (MFI) values. These quantitative values were converted into

qualitative positive (indicating presence of target), negative (indicating absence of

target) or undetermined (grey zone: where an expert examination was necessary to

interpret the results) values on the basis of two pre-determined cutoffs (cutoff for

positive values and cutoff for negative values) specific for each marker. These cutoffs

were defined after exploring several positive and negative values and keeping the one

that gave narrowest grey zone as well as 100% sensitivity and specificity as reported

earlier (Gomgnimbou et al., 2012). Final results were displayed in Excel spreadsheet

as string of 53 characters giving the spoligotype pattern (n=43) and rpoB hotspot

mutation pattern (n=10).

2.5.3 DNA fingerprinting with 25 additional spacers of DR locus

To improve the discrimination for the M. tuberculosis complex (MTBC),

isolates were screened with 25 additional spacers. The oligonucleotides used were as

described by Zhang et al., (2010). All these oligonucleotides were provided with 5´

amino group modification using 12 carbon spacer linker. The detail of these

oligonucleotides is given in table 2.8.

Page 79: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

59

Table 2.8 Parameters of 25 Additional Spacer Oligonucleotides

Sr. No. Genome Spacer

No. Sequence 5´ to 3´ Tm (°C)

1 44 ATGGCACGGCAGGCGTGGCTAGGGG 72

2 45 GTGCGCCGTCGCCGTAAGTGCCCCA 72

3 46 TTTCGACGACAATTCGTTGACCACG 62

4 47 GTTACCGCTGGCGCGCATCATTCAT 65

5 48 CGTGCACATGCCGTGGCTCAGGGGT 70

6 49 CATGCAGCATGCCGTCCCCGTTTTT 65

7 50 TGCTCTTGAGCAACGCCATCATCCG 65

8 51 GGCAAGTTGGCGCTGGGGTCTGAGT 69

9 52 GCGAGGAACCGTCCCACCTGGGCCT 72

10 53 GGAAACGCAGCACCAGCCTGACAAT 65

11 54 GCACTGCAACCCGGAATTCTTGCAC 65

12 55 CCATATCGGGGACGGCGACGCTGCG 72

13 56 ACGCGTCGTGCCATCAGTCAGCGTC 69

14 57 AACACTTTTTTTGAGCGTGGCGCGG 64

15 58 GGGCATCGATCATGAGAGTTGCGTT 64

16 59 CTGGCGACGATTTTCGCTGTTGTGG 65

17 60 AGCACCTCCCTTGACAATCCGGCAG 67

18 61 GGCCTAAGGGTGCTGACTTCGCCTG 69

19 62 ACGACGAGCAGCGGCATACAGAGCC 69

20 63 TTGCATCCACTCGTCGCCGACACGG 69

21 64 TGGTAATTGCGTCACGGCGCGCCTG 69

22 65 ACCATCCGACGCAGGCACCGAAGTC 69

23 66 CACACCACAGCCACGCTACTGCTCC 69

24 67 ACACCGCCGATGACAGCTATGTCCG 67

25 68 CTTCGCGCGGTGTTTCGGCCGTGCC 72

2.5.3.1 Coupling of oligonucleotides to microsphere

Coupling of all these oligonucleotides to microspheres was done as described

previously in 2.5.2.4.

Page 80: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

60

2.5.3.2 PCR amplification of DR locus and hybridization of PCR products with the oligonucleotides

Dra and Drb primers were used for the amplification of direct repeat locus of

M. tuberculosis as described previously in section 2.5.2.5. Hybridization and

interpretation of MFI values was done as described previously in section 2.5.2.7 and

2.5.2.7, respectively except that the final results were obtained in the form of string of

25 characters in the Excel spreadsheet giving the pattern of 25 spoligo spacers.

2.5.3.3 Data analysis

The data obtained from 24 loci MIRU-VNTR typing and spoligoriftyping

was entered in the Microsoft Excel spreadsheet and was uploaded in Bionumerics

software (version 6.6; Applied Maths, Sint-Martens-Latem, Belgium). For clustering

analysis, dendrograms were generated using Unweighted Pair Group Method with

Arithmetic Averages (UPGMA) while to have an insight in strain diversity, Minimum

Spanning Tree (MST) using Neighbour Joining (NJ) method was built. The

spoligotypes were identified using International SpolDB4/SITVIT database available

at (http://www.pasteur-guadeloupe.fr:8081/SITVITDemo/). Families and lineages

were assigned by comparing the observed profile with those contained in database.

The data obtained from 25 additional spacers was also entered in the Microsoft Excel

spreadsheet. The data was then assessed for its use in strain discrimination.

2.6 Determination of recent transmission index (RTI)

The percentage of cases due to active transmission can be calculated by the

number of clustered strains in a population using (n-1) formula (Small et al., 1994).

Where Nci stands for total number of strains in clusters, Nc for total number of clusters

and N for total number of strains. The data obtained by 43 spacer spoligotyping and

24 MIRU-VNTR typing was utilized to calculate the index of recent transmission

using 100% locus identity and single locus variant (SLV). Isolates from Faisalabad

and Lahore were handled collectively to find out the RTI as both are not only

neighbouring cities but are also related to each other socio-economically. RTI was

calculated for Lahore + Faisalabad and Rawalpindi while a cumulative RTI, to have

Page 81: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

61

an overall picture of the disease transmission dynamics of the province of Punjab, was

also calculated (using isolates from Rawalpindi, Lahore and Faisalabad).

2.7 Hunter and Gaston discriminatory index (HGDI)

Hunter and Gaston index (Hunter and Gaston, 1988) was used to assess the

discriminatory power of each typing method, to calculate the allelic diversity of

MIRU-VNTR loci and to select “fast lane” screening MIRU-VNTR markers using

following equation:

( ) ( )

1

11 , 1

1

s

j

D nj njN N =

= − − −

Where D is the numerical index of discrimination, N is the total number of

strains in the typing scheme, s is the total number of different strain types, and nj is

the number of strains belonging to the jth type. MIRU-VNTR loci were designated as

highly (HGDI>0.6), moderately (HGDI 0.3–0.6) and poorly discriminatory

(HGDI<0.3).

2.8 Lineage assignation and evaluation of performance of different online tools

Reference assignation was generated by the expert visual inspection using the

43 spacer spoligotype pattern only and applying the rules as defined by Filliol et al.

(2002). This procedure was performed like experts of SITVITWEB but including

some knowledge acquired by the scientific community. For instance, patterns

previously coined as Haarlem4 (H4) should be renamed Ural because they share no

phylogenetic relationships with true Haarlem isolates such as H1, H2 and H3 (Abadia

et al., 2010). The lineages retained for finest description of TB diversity were Beijing

(also known as East-Asian); CAS (also known as East African and Indian); EAI (also

known as Indo-Oceanic); Euro-American, H (for Haarlem); Euro-American, LAM;

Euro-American, T; Euro-American, Ural; Euro-American, X; Manu.

Performance of three freely accessible databases, SPOLDB4/SITVIT

http://www.pasteur-guadeloupe.fr:8081/SITVITDemo/ (but could have been also

achieved with the more recent interface SITVITWEB), MIRU-VNTRplus

(http://www.miru-vntrplus.org/) and TB-Lineage

Page 82: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

62

(http://tbinsight.cs.rpi.edu/run_tb_lineage.html) to assign lineage to 225 isolates

having complete genotype data (both MIRU-VNTR and spoligotyping) were assessed.

Assignations generated by these databases were compared to the reference (Filliol et

al., 2002).

24 loci MIRU-VNTR data was used to assign lineages by MIRU-VNTRplus

using the most similar isolate when applying a maximum categorical distance in the

range 0.17 to 0.3. In contrast, 43 spacer spoligo format was used for lineage

assignation using SPOLDB4/SITVIT and TB-Lineage databases. All these

assignations were entered in Microsoft Excel file. Comparison with the reference

assignation was done by visual inspection and 5 classes were distinguished: 1) not

informative (inability of the database to perform the assignation), 2) incompatible

(different large lineage inferred), 3) imprecise (providing an assignation much more

imprecise than that of the expert), 4) incorrect at a fine scale (providing a fine

assignation incompatible with that of the expert but belonging to the same large

lineage) and 5) true and precise.

2.9 Development of reverse line blot hybridization assay to characterize mutations associated with rifampicin resistance

2.9.1 Principle of reverse line blot hybridization assay

For the detection of rifampicin resistance, oligonucleotides that correspond to

wild type and mutant rpoB gene sequences are immobilized on the membrane. The

hotspot region of the rpoB gene is amplified by PCR. The PCR products get labeled

by biotin labeled primer. The subsequent steps involved the hybridization of the PCR

amplified products to the immobilized oligonucleotides. The PCR product of the

rifampicin sensitive strain will only hybridize to wild type oligonucleotides while

resistant strains will fail to hybridize with any one of the wild type oligonucleotide

and will show hybridization signals with corresponding mutant oligonucleotide.

To link several oligonucleotides to the membrane and subsequently screening

large number of samples, Miniblotter-45 system was used. This miniblotter system

consists of two blocks. One block consists of 45 channels. The membrane is fixed in

between these two blocks and the oligonucleotides are applied in these channels in the

form of parallel lines. To hybridize the PCR product with the oligonucleotides, the

Page 83: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

63

membrane is rotated at right angle so that the oligonucleotide lines come

perpendicular to channels. The PCR product is then applied to the membrane through

the channels and is hybridized to the oligonucleotide. Hybridization of the PCR

product with the oligonucleotides is detected by a suitable detection system that gives

positive signals on detecting biotin only with the PCR product that is bound with

oligonucleotides.

Figure 2.3 Principle of reverse hybridization line probe assay to detect mutations in rpoB gene. The oligonucleotides derived from wild type and mutatnt strains are represented by horizontal numbers from 1 to 11. (W=Wild, M=Mutant). The PCR amplified product is represented by horizontal lane. Lane 1-3 represents the pattern of hybridization by rifampicin sensitive strains of M. tuberculosis while lane 4-9 represents the pattern of hybridization by various rifampicin resistant strains of M. tuberculosis. This picture is adopted from Morcillo et al., 2002.

2.9.2 PCR amplification of hotspot region of β subunit of RNA polymerase gene

The hotspot region of the RNA polymerase gene from codon 455 to 582,

encoding amino acid Thr to Asn was amplified using primers listed in table 2.9 and

the reaction constituents as given in table 2.10.

Page 84: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

64

Table 2.9 Regular PCR Primer Parameters

Primer code Sequence (5´ to 3´) Tm (°C) Direction

LiPA (OP1)* GAGAATTCGGTCGGCGAGCTGATCC 69.5 Forward

LiPA (OP2)* CGAAGCTTGACCCGCGCGTACACC 71.4 Reverse

(Viveiros et al., 2005)

Table 2.10 Reaction Mixture for Regular PCR

Constituents Final concentration

Volume used(µL) /25 µL

reaction 10X PCR buffer 1X 2.5

25 mM MgCl2 1.5 mM 1.5

2.5 mM 4 dNTPs (Fermentas Cat #R0181) 0.2 mM 2.0

Primer OP1 (100 µ M) 0.32 µ M 0.4

Primer OP2 (100 µ M) 0.32 µ M 0.4

Taq polymerase (Fermentas Cat #EP0402) 1 unit 0.2

Milli Q water 15.0

DNA 3.0

2.9.3 Thermal profile for regular PCR

Initial denaturation: 95°C for 5 minutes

Amplification: 25 cycles of the following:

95°C for 60 s

58ºC for 30 s

72ºC for 30 s

Extension: 72ºC for 10 minutes

H37Rv DNA was used as positive control and water as (no template) negative control.

2.9.4 Nested PCR

The hotspot region of the RNA polymerase gene of M. tuberculosis from

codon 465 to 551, encoding amino acid sequences Arg to His was amplified using

primers listed in table 2.11 and the reaction constituents as given in table 2.12.

Page 85: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

65

Table 2.11 Nested PCR Primer Parameters

Primer code Sequence (5´ to 3´) Tm (°C) Modification Direction

LiPA(IP1)* GGTCGGCATGTCGCGGATGG 68.6 Forward

LiPA(IP2)* GCACGTCGCGGACCTCCAGC 70.6 Biotin

(at 3´ end)

Reverse

(Viveiros et al., 2005)

Table 2.12 Reaction Mixture for Nested PCR

Constituents Concentration Volume used(µL) /25 µL reaction

10X PCR buffer 1X 2.5

25 mM MgCl2 1.5 mM 1.5

2.5 mM 4 dNTPs (Fermentas Cat #R0181)

0.2 mM 2.0

Primer IP1 (20 µ M) 0.8 µ M 1.0

Primer IP2 (20 µ M) 0.8 µ M 1.0

Taq polymerase (Fermentas Cat #EP0402) 2 unit

0.2

Water 15.8

DNA 1.0 of regular PCR product

2.9.5 Thermal profile for nested PCR

Initial denaturation: 95°C for 5 minutes

Amplification: 25 cycles of following:

95°C for 60 s

58ºC for 30 s

72ºC for 30 s

Extension: 72ºC for 10 minutes

H37Rv DNA was used as positive control and water (no DNA) as negative control.

Page 86: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

66

2.9.6 Analysis of PCR products by agarose gel electrophoresis

PCR products were resolved on agarose gel to find the quality and quantity of

the products using methodology described in section 2.4 except that 1.5% gel was

used instead of 0.8%. The size of the PCR products was assessed using DNA marker.

2.9.7 Reverse hybridization line probe assay

Reagents

20X SSC

20X SSPE

To begin with, Miniblotter-45 was thoroughly cleaned with detergent and soft

brush and was air dried. An appropriately sized Hybond N+ nylon membrane

(Amersham RPN 303N) was cut carefully. Plastic gloves or gloves without powder

were preferred as powder can inhibit the hybridization or cause background. One

corner of the membrane was cut to mark the orientation. Membrane was made wet by

2X SSC and placed in miniblotter system with cushions and screws were hand

tightened. The excess liquid was aspirated. All, except the first and the last slots were

filled with 120 µL of diluted oligonucleotide solutions. The first and the last slots

were filled with diluted drawing ink to mark the position on the membrane. While

filling the slots with oligonucleotide solutions, introduction of bubbles was avoided.

Oligonucleotide solutions were aspirated in the same order as were applied to the

slots. Membrane was removed from the miniblotter using forceps and

oligonucleotides were cross linked using DNA cross linker (Stratagene) keeping DNA

side up.

Biotin labeled nested PCR products were diluted in 2XSSC/0.1%SDS or

5XSSPE/0.5%SDS solution and heat denatured at 95οC for five minutes and snap

cooled on ice. Membrane, along with the supporting cushions, was placed in the

miniblotter in such a way that the slots were perpendicular to the pattern of applied

Page 87: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

67

oligonucleotides. The residual fluid was removed from the miniblotter slots by

aspiration. Slots were filled with 120 µL of the diluted PCR products, avoiding the

introduction of bubbles and were allowed to hybridize. After incubation for

hybridization, the samples were aspirated from the slots and the membrane was

removed from the miniblotter. To remove unbound PCR product, membrane was first

washed twice with 2XSSC/0.1%SDS or with 2XSSPE/0.1%SDS for 10 minutes. The

membrane was then washed twice with 0.1X SSC/0.1%SDS or 2XSSPE/0.1%SDS at

55oC for 20 minutes followed by detection of hybridization signals as described in

section 2.9.8.

2.9.8 Detection of the hybridization signals

Reagents

Blocking / washing buffer

Blocking solution

Detection buffer

Substrate solution

2.8.2 Signal Detection

During all steps of the detection, solutions were added in such a quantity that

the membrane was evenly covered with solutions. After hybridization/washing steps,

the membrane was placed briefly on the filter paper to remove excess liquid. The

membrane was placed in rolling hybridization bottle and washed with

blocking/washing buffer for 5 minutes at room temperature with moderate shaking.

The blocking/washing buffer was removed and the membrane was incubated at room

temperature with blocking solution with moderate shaking for 30 minutes. The

blocking solution was discarded and the membrane was incubated with streptavidin-

AP conjugate dilution at room temperature for 30 minutes with moderate shaking.

The membrane was then washed twice with blocking/washing buffer at room

temperature for 15 minutes. The membrane was then incubated in detection buffer at

room temperature for 10 minutes with moderate shaking. This step was followed by

the enzymatic reaction which was performed in dark. The membrane was removed

Page 88: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

68

from the rolling bottle and was placed in a dedicated container to perform enzymatic

reaction during which the substrate solution was added from one side of the container

to the membrane. The membrane was evenly covered with the substrate solution and

was placed in the dark at room temperature. The blue-purple precipitate became

visible after 15-30 minutes of incubation but for low intensity signals, longer

incubation period was required. To stop the reaction, the substrate solution was

discarded and the membrane was rinsed with double distilled water. The developed

membrane was air dried to document the results.

2.9.9 Optimization of conditions for reverse hybridization line probe assay

In first experiment, 15 mers oligonucleotides were applied on the membrane

as previously described in section 2.9.7 and allowed to hybridize with 50 µL of PCR

products that were heat denatured after diluting in 100 µL of 2XSSC/0.1%SDS. The

incubation for hybridization was carried out overnight at 42ºC after which the

washing of unbound PCR products and biotin detection was performed.

2.9.9.1 Elimination of non-specific signals

Reagents

Pre-hybridization solution

The previous experiment (section 2.9.7) was repeated with the introduction of

pre-hybridization step to eliminate non-specific binding of the PCR products with the

membrane. After cross linking oligonucleotides to the membrane, the membrane was

incubated in pre-hybridization solution at 42oC for two hours. The membrane was

again fixed in the blotter, the PCR products were hybridized and the chromogenic

signal was detected as described in section 2.9.8.

2.9.9.2 Immobilization of oligonucleotides

Deoxyribo-thymidine (dT) homopolymer tail was added to the

oligonucleotides (up to 50 nucleotides) at 3´end. The longer poly dT tail gives more

efficient binding of oligonucleotides with the nylon membrane after UV crosslinking.

Hence, the 5´ end of the oligos is more accessible to PCR product for hybridization.

The detail of the tailed oligonucleotides is given in Table 2.13.

Page 89: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

69

Table 2.13 Parameters of Oligonucleotides used in RHLiPA Amino

acid No. Codon Type Sequence (5´ to 3') Tm (oC)

511 CTG Wild AGCCAGCTGAGCCAA 49

512 AGC Wild CAGCTGAGCCAATTC 46

513 CAA Wild GCTGAGCCAATTCAT 44

515 ATG Wild GCCAATTCATGGACCA 48

516 GAC Wild TTCATGGACCAGAAC 44

522 TCG Wild CCCGCTGTCGGGGTT 55

524 TTG Wild GGGTTGACCCACAAG 49

526 CAC Wild TTGACCCACAAGCGC 49

529 CGA Wild AAGCGCCGACTGTCG 52

531 TCG Wild CGACTGTCGGCGCTG 55

533 CTG Wild TCGGCGCTGGGGCCC 60

511 CTG→CCG Mutant AGCCAGCCGAGCCAA 52

511 CTG→CGG Mutant AGCCAGCGGAGCCAA 52

512 AGC→ACC Mutant CAGCTGACCCAATTC 46

513 CAA→GAA Mutant GCTGAGCGAATTCAT 44

513 CAA→CCA Mutant CTGAGCCCATTCATG 46

513 CAA→CTA Mutant CTGAGCCTATTCATG 44

513 TTC insertion Mutant AGCCAATTCTTCATG 41

512 TTCATG insertion Mutant GCCAATTCATGTTCA 41

513 AATTCA deletion Mutant CTGAGCCTGGACCAG 52

513 AATTCATGG

deletion Mutant CTGAGCCACCAGAAC 49

516 GAC CAG

deletion Mutant ATTCATGAACAACCC 41

518 AAC deletion Mutant GGACCAGAACCCGCT 52

515 ATG→GTG Mutant CCAATTCGTGGACCA 46

516 GAC→TAC Mutant ATTCATGTACCAGAA 38

516 GAC→GTC Mutant TTCATGGTCCAGAAC 44

516 GAC→GCC Mutant TTCATGGCCCAGAAC 46

Page 90: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

70

Amino acid No. Codon Type Sequence (5´ to 3') Tm (oC)

516 GAC→ AAC Mutant ATTCATGAACCAGAA 38

522 TCG →CAG Mutant CCCGCTGCAGGGGTT 55

526 CAC→ACC Mutant GTTGACCACCAAGCG 49

526 CAC→CCC Mutant TTGACCCCCAAGCGC 52

526 CAC→CGC Mutant TTGACCCGCAAGCGC 52

526 CAC→CTC Mutant TTGACCCTCAAGCGC 49

526 CAC→TGC Mutant TTGACCTGCAAGCGC 49

526 CAC→TAC Mutant TTGACCTACAAGCG 42

526 CAC→TAC Mutant GTTGACCTACAAGC 42

525-526 ACCCAC→ ACTTAC

Mutant GTTGACTTACAAGCG 44

526 CAC→GAC Mutant TTGACCGACAAG CG 45

529 CGA→CAA Mutant AAGCGCCAACTGTCG 49

531 TCG→TTG Mutant GACTGTTGGCGCT 42

531 TCG→TGT Mutant CGACTGTGTGCGCTG 52

531 CTG→CCG Mutant TCGGCGCCGGGGCCC 63

516 GAC→GAA Mutant TTCATGGAACAGAAC 41

Poly (dT) tailed oligonucleotides (8 pM) were applied to the nylon membrane

using miniblotter 45 and were UV cross linked. To increase the efficiency of binding

of oligonucleotides, different combinations of hybridization buffers and washing

solutions were used. For this, the membrane with immobilized oligonucleotide was

cut into 5 cm wide strips from the same membrane so that the concentration of oligos

or any difference in their binding efficiency does not affect the results while

comparing different combinations of hybridization conditions. The detail of

combinations for different variables is given in the table 2.14.

Page 91: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

71

T C G G C G C T G G G G C C C

T T C A T G G A C C A G A A C C G A C T G T C G G C G C T G

G C C A A T T C A T G G A C C A A A G C G C C G A C T G T C G

G C T G A G C C A A T T C A T T T G A C C C A C A A G C G C

C A G C T G A G C C A A T T C G G G T T G A C C C A C A A G

A G C C A G C T G A G C C A A C C C G C T G T C G G G G T TA G C C A G C T G A G C C A A T T C A T G G A C C A G A A C A A C C C G C T G T C G G G G T T G A C C C A C A A G C G C C G A C T G T C G G C G C T G G G G C C C5 0 9 5 1 0 5 1 1 5 1 2 5 1 3 5 # 5 1 5 5 1 6 5 1 7 5 1 8 5 1 9 5 2 0 5 2 1 5 2 2 5 2 3 5 2 4 5 2 5 52 6 5 2 7 5 2 8 5 2 9 5 3 0 5 3 1 5 3 2 5 3 3 5 3 4 5 3 5

Figure 2.4 Distribution of oligonucleotide on hotspot region of rpoB gene

2.9.9.3 Optimization of DNA cross linking time

To check whether the intensity of hybridization signal is dependent on the

time of UV exposure, the nylon membrane with oligonucleotides was divided in three

different sections. The first section was cross linked once, the second section was

cross linked twice and the third section was cross linked thrice with UV cross linker at

auto-crosslink mode (1200 micro joules). Heat denatured PCR products from two

samples were allowed to hybridize in each section followed by signal detection as

described in section 2.9.7 and section 2.9.8. The experiment on membrane strips was

repeated with full sized membrane with the best combination of conditions of

hybridization. For that, the hybridization was carried out at 45oC for half an hour.

Non-specifically bound PCR products were removed by washing twice with

2XSSPE/0.1%SDS at room temperature for 10 minutes and then at 52oC for 10

minutes twice followed by chromogenic detection of hybridization signals.

2.9.9.4 Optimization of the amount of PCR product

PCR products (from 5 to 50 µL) were allowed to hybridize with immobilized

poly (dT) tailed oligonucleotides. All the other conditions were the same as described

in section 2.9.7.

2.9.10 Characterization of mutations in rpoB gene of M. tuberculosis

After optimization of reverse hybridization line blot conditions, 168 samples

were screened under optimized conditions for mutations in rpoB gene associated with

rifampicin resistance in M. tuberculosis isolates from various regions of Pakistan.

These mutations were in codon rpoB 511, rpoB 512, rpoB 513, rpoB 515, rpoB 516,

rpoB 522, rpoB 524, rpoB 526, rpoB 529, rpoB 531 and rpoB 533.

Page 92: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

72

Table 2.14 Optimization of Hybridization Conditions

Strip No.

Pre-Hyb (temp. and

time)

PCR product denaturation procedure

Hybridization solution

Hybridization temperature and

time

Washing conditions (twice)

Washing conditions (twice)

1 Yes (42oC for 2 hrs.)

50 µL diluted in 2X SSC/0.1%SDS and heat

denatured

PCR products directly added in pre-hyb. Solution

42oC

overnight

2XSSC/

0.1%SDS

RT/10 min

0.1XSSC/

0.1%SDS

50oC/10 min

2 Same as above

Same as above Same as above 55oC

Overnight Same as above

0.1XSSC/

0.1%SDS

63oC/10min

3 Same as above

Same as above Same as above 45oC

Overnight Same as above

0.1XSSC/

0.1%SDS

53oC/10 min

4 Same as above

Same as above Same as above 50oC

Overnight Same as above

0.1XSSC/

0.1%SDS

58 oC/10min

5 None 50 µL denatured in

NaOH/EDTA 5XSSPE/0.5%

SDS

42oC

Overnight

2XSSPE/

0.1%SDS

RT/10 min

2XSSPE/

0.1%SDS

50oC/10 min

Page 93: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

73

2.10 Cloning of PCR amplified hotspot region of rpoB gene from M. tuberculosis

2.10.1 Preparation of competent cells

Reagents

Luria Bertani (LB) medium

Isopropyl Thio-beta-D-Galactoside (IPTG)

5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (Xgal)

Method

To make competent cells, 50 mL of LB medium was inoculated with a single colony

of the E. coli strain DH5α and was cultured overnight at 37°C. On subsequent

morning, pre culture was made by adding 4 mL of overnight culture in 400 mL of the

LB media (1 mL/ 100 mL). The pre culture was incubated in shaker incubator (180

rpm) at 37°C until its optical density (OD) ranged 0.6-0.8 (it took approximately 4

hours to reach the optical density 0.6-0.8). The culture was placed for half an hour on

ice after which it was shifted to pre cooled 50 mL falcon tubes (~ 50 mL in each

tube). The cells were harvested by centrifugation at 4000 rpm for 5 minutes at 4°C.

The supernatant was discarded and the pellet was resuspended in 5-7 mL of 0.1 M

MgCl2 by gentle shaking and centrifuged at 4000 rpm for 5 minutes at 4°C. The pellet

was resuspended in 7 mL of 0.1 M CaCl2 solution and placed on ice for 15-30

minutes. The cells were harvested by centrifugation at 4000 rpm for 5 minutes at 4°C

and resuspended in 3 mL of 0.1 M CaCl2. To that, 1 mL of glycerol was added and

mixed gently. The cells were briefly placed on ice and aliquoted in ice cooled

microfuge tubes using cut tips (50 µL or 100 µL in each tube) and immediately stored

at -80°C.

2.10.2 Ligation

PCR amplified products were cloned in DH5α strain of E. coli using TA

cloning vector pTZ57R (MBI Fermentas). This vector has ampicillin resistance and

blue/white selection marker. PCR products were ligated to the vector as described in

table 2.15.

Page 94: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

74

Table 2.15 Ligation Mix

Reagents Final

Concentration

Volume used(µL)/10 µL

reaction

Vector pTZ57R (55ng/ µL) 27.9 ng 0.5

PCR Product - 6.0

10X Ligase buffer 1X 1.0

T4 DNA ligase (5U/µL) 2.5 U 0.5

Double distilled H2O - 2.0

Total 10

Ligation reaction mix was placed at 16°C overnight in circulating water bath.

2.10.3 Transformation

Heat shock method was used for transformation of competent cells of DH5α

E. coli strain. For that, 5 µL of ligation mixture was added in the 50 µL of competent

cells and incubated on ice for 30 minutes. The cells were heated at 42°C for 2 minutes

in dry bath. Cells were incubated on ice for 2 minutes after which 1 mL of LB broth

was added to each sample. Transformation mixture was incubated at 37°C for 1 hour

and then placed at 4°C till further use.

2.10.4 Preparation of LB agar plates

Reagents

LB agar

Ampicillin

Method

300 mL of LB agar media was melted thoroughly and cooled to 60°C. 300 µL

of ampicillin stock solution was added in 300 mL of LB agar media. The medium was

poured in plates and allowed to solidify under sterile conditions.

Page 95: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

75

2.10.5 Spreading of transformed cells on LB agar plates

Reagents

IPTG

X-gal

Method

20 µL IPTG solution and 30 µL X-gal solution was poured on the ampicillin

agar plates and spread on the plates by sterile spreader (for immediate use of the

plates, 300 µL IPTG and 300 µL of X-gal were added in melted 300 mL LB agar

media along with the ampicillin and poured in plates to set). Transformation mixture

was centrifuged at maximum speed for 2 minutes. Supernatant was discarded leaving

small volume in which the pellet was resuspended. The cells were then spread on the

LB ampicillin plates with the help of sterile spreader and the plates were incubated

overnight at 37°C.

2.10.6 Liquid culture of E. coli cells

After 14-16 hours of incubation, white colonies were selected and single

colony was inoculated in ampicillin containing LB broth and incubated at 37°C for 14

hours in a shaker incubator.

2.10.7 Isolation of plasmid DNA from E. coli (Miniprep)

Reagents

Resuspension solution

Lysis solution

Neutralization solution

Method

1mL of overnight culture of E. coli was centrifuged at 14000×g for 2 minutes

and the pellet was suspended in 100 µL of resuspension solution by vortexing. 150 µL

of the lysis solution was then added to each tube and samples were mixed by

Page 96: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

76

inverting. To the lysed cells, 200 µL of neutralization solution was added to

precipitate the chromosomal DNA. After centrifugation at 14000×g for 10-15

minutes, the DNA in the supernatant was precipitated with 1 mL of chilled absolute

ethanol keeping at -20°C for half an hour. The precipitated DNA was pelleted and

washed with 70% ethanol. The pellet was air dried and dissolved in 50-100 µL water.

2.6.8 Restriction Enzyme Digestion of E. coli plasmid DNA

For confirmation of inserts, isolated plasmid DNA was digested with

restriction enzymes as as given in table 2.15. Restriction mix was incubated at 37°C

for 1 hour and then resolved on 1% agarose gel. The DNA marker was used to see the

size of insert.

Table 2.16 Restriction Mix for Restriction Analysis

Reaction component Final concentration Volume used (µL) /10 µL reaction

DNA - 2.00

EcoR1 (5U/µL) (Fermentas) 1.25 U 0.25

Pst1 (5U/µL) (Fermentas) 1.25 U 0.25

10X Orange buffer (Fermentas) 1X 1.00

RNAase (10 mg/mL) 2.00 µg 2.00

water - 5.50

2.10.8 Isolation of bacterial plasmid DNA

To prepare the samples for sequencing, bacterial plasmid DNA was isolated

using GeneJet plasmid miniprep kit (Fermentas Cat # K0503). The process was

performed after sub culture of the samples according to the instructions given in the

manual. The clones in the pTZ57R vectors were sent for sequencing to Eurofins and

Macrogen.

2.11 DNA Sequencing of hotspot region of rpoB gene of M. tuberculosis

DNA sequencing is considered as the gold standard to find out the mutations

in DNA. PCR amplifications of hotspot region of rpoB gene for 50 samples were sent

to Beckman Coulter Genomics (Takeley, United Kingdom) for sequencing while PCR

products of 46 samples were cloned in TA cloning vector and sent for sequencing.

Page 97: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

77

The results were compared with that of spoligoriftyping and reverse hybridization line

probe assays.

2.12 Characterization of mutations associated with isoniazid resistance

High throughput Bio-Plex (Bio-Rad, Hercules, CA) and Luminex 200

(Luminex Corp, Austin, TX) were used for this assay. Oligonucleotides used in the

assay are given in the table 2.17.

Table 2.17 Oligonucleotides used for Characterization of Mutations in katG and inhA genes

Sr. No. Name Sequence 5´ to 3´

1 katG_315 wt GATCACCAGCGGCATCGA

2 katG_315 mut_ACC GATCACCACCGGCATCGA

3 katG_315 mut_AAC GATCACCAACGGCATCGA

4 inhA_-15_Wt GCGAGACGATAGGTTGTC

5 inhA_-15 mut_T GGCGAGATGATAGGTTGT

6 inhA_-8 mut_A GATAGGATGTCGGGGTGA

2.12.1 Coupling of oligonucleotides to microsphere

The oligonucleotides were coupled to microspheres as described previously in

section 2.5.2.4.

2.12.2 PCR amplification of katG and promoter region of inhA gene of M. tuberculosis and hybridization

All the primers used to characterize mutations associated with isoniazid

resistance were designed using DPO principle (Gomgnimbou et al., 2013b). The

primers used to amplify the hotspot region of the katG gene and promoter region of

inhA gene of M. tuberculosis are listed in table 2.18.

Table 2.18 PCR Primers for Amplification of katG and inhA Genes

Primer code Sequence (5´ to 3´)

Tm (°C) Modification Direction

katG_Dfw

AGGCTGCTCCGCTGGAGCAGATGIIIIIGGGCTG

74 Forward

katG_Drev CAAGCGCCAGCAGGGCTCTTCGTIIIIICCCACT

73 5´ Biotinylation Reverse

Page 98: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

78

Primer code Sequence (5´ to 3´)

Tm (°C) Modification Direction

inhA_Dfw TCACGAGCGTAACCCCAGTGCGAIIIIICCCGCC

74 Forward

inhA_Drev CCCCCGGTTTCCTCCGGTAACCAIIIIIGAACGG

73 5´ Biotinylation Reverse

All these primers were designed according to dual priming oligonucleotide principle (DPO) (Chun et al., 2007).

The PCR products were hybridized as described previously in section 2.5.2.7.

Quantitative MFI values from Luminex were interpreted in the same way as are

described for spoligoriftyping in section 2.5.2.7.

2.13 Characterization of mutations associated with pyrazinamide resistance using single strand conformational polymorphism (SSCP)

To screen the mutations in pncA gene of M. tuberculosis associated with

pyrazinamide resistance, two sets of primers (table 2.19) were used. The composition

of PCR reaction mix is given in table 2.20 while thermal profiles of these PCR

reactions were used as mentioned in section 2.5.2.6 except to that of difference of

annealing temperature that was set as given in table 2.19. H37Rv DNA was used as

positive control and water “no DNA” as negative control.

Table 2.19 PCR Primers to Amplify pncA gene Primer code

Sequence (5´ to 3´) Tm (°C)

Direction Tm (oC)

pncA1 ATCAGCGACTACCTGGCCGA 60 Forward 56 GATTGCCGACGTGTCCAGAC 60 Reverse

pncA2 CCACCGATCATTGTGTGC 55 Forward 55 GCTTTGCGGCGAGCGCTCCA 54 Reverse

Page 99: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

79

Table 2.20 Reaction Mixture of PCR Amplification of pncA Gene

Constituents Final

concentration

Volume used /15µL

reaction (µL)

10X PCR buffer 1.0X 1.5

25 mM MgCl2 1.5 mM 0.9

2.5 mM 4 dNTPs (Fermentas Cat #R0181) 0.2 mM 1.2

Primer F (100 µM) 0.8 µM 0.6

Primer R (100 µM) 0.8 µM 0.6

Taq polymerase(Fermentas Cat #EP0402) 0.6 unit 0.06

Water - 9.44

DNA - 0.7

2.13.1 Denaturation of samples for SSCP

Reagents

Denaturing dye

PCR product (6µL) was added to 20µL of denaturing dye, heat denatured at

95oC and snap cooled on ice. Samples were either used fresh or stored at -20 till

further use. The PncA1 PCR products were run on PAGE with conditions given in

table 2.21.

Table 2.21 Polyacrylamide Gel Composition for SSCP of PncA2 PCR Products

Constituents Volume (µL) used/ 30mL

Acrylamide:bis-acrylamide (30:0.4) stock 6.00

10X TBE 5.80

10% Amonium per sulphate (APS) 0.28

Tetramethylethylenediamine (TEMED) (Sigma CAS # 110-18-9)

0.054

Deionized water 17.38

Page 100: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

80

Polyacrylamide gel electrophoresis apparatus was thoroughly cleaned with

detergent and water. Plates were washed with 100% methanol and air dried. After

fixing the apparatus properly, all the constituents including acrylamide/bis-acrylamide

solution, 10X TBE, freshly prepared APS and water were added in the flask and were

thoroughly mixed. After that, TEMED was added and the mixture was immediately

poured between the glass plates ensuring no air bubbles were trapped. A comb was

inserted to make wells. After polymerization of gel, comb was removed carefully and

the apparatus was filled with 1X TBE. The DNA samples and DNA marker were

loaded with loading syringe in the respective wells. Standard DNA ladder was also

run to assess the size of the amplified product. The gel was run at constant voltage

(80V). Migration of the DNA in the gel from the cathode (-ve) to anode (+ve) was

monitored by looking at the movement of dye. Power supply was turned off when the

dye had reached to a distance sufficient for separation of denatured single strands of

DNA (approximately 4 hours).The gel was stained and visualized as described

previously in section 2.4.3 except that gel was stained in ethidium bromide solution

for 15 minutes.

SSCP analysis of PncA2 segment was done using the above mentioned

protocol except that the concentration of polyacrylamide gel used was 7%.

2.14 Characterization of mutations associated with Isoniazid, Ethambutol, Streptomycin and Pyrazinamide with sequencing

DNA sequencing, a gold standard, was used to screen the mutations leading to

resistance for the isoniazid, streptomycin and ethambutol drugs in M. tuberculosis

isolates. Seventy nine isolates (43 isolates showing no mutation while 36 showing

different mutations in hotspot regions as detected by microbead assay) were selected

to screen the hotspot region of katG and inhA genes. Ninety nine streptomycin

resistant (STRR), 37 ethambutol resistant (ETHR) as designated by phenotypic drug

sensitivity and 12 Pyrazinamide (4 PZAS and 8 PZAR as designated by SSCP

analysis) isolates were selected to screen hotspot regions of rrs, rpsL, embB and pncA

for potential mutations. Five isolates showing mobility shift in SSCP analysis could

not be sequenced due to unavailability of DNA.The primers used for amplification of

hotspot regions of these genes are listed in table 2.22. Thermal profiles of these PCR

reactions were used as mentioned in section 2.5.2.6 except to that of difference of

Page 101: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

81

annealing temperature that was set as given in table 2.22. Water was used as “no

DNA” negative control. The PCR products were resolved on 1.5% agarose gel and

visualized under UV as described previously in section 2.4.

Table2.22 PCR Primers Used for Amplification of Hotspot Regions of katG, inhA, rrs, rpsL, embB and pncA Genes for DNA Sequencing

Drug Gene Sequence (5´ to 3´) Direction Tm (oC)

Rifampicin rpoB TACGGTCGGCGAGCTGATCC Forward 56 TACGGCGTTTCGATGAACC Reverse

Isoniazid katG GATCGTCGGCGGTCACACTT Forward 58

GAGGTCGGCGAAGGACACTT Reverse inhA ATGGTCGAAGTGTGCTGAGTCA Forward

55 TTGGAGGCTGCGTAGTTGGC Reverse

Streptomycin rrs

TCGGGATAAGCCTGGGAAACTG Forward 55

CGCATTCCACCGCTACACCA Reverse

rpsL GGTATTGTGGTTGCTCGTGCCT Forward

55 GGTGACCAACTGCGATCCGTAG Reverse

Ethambutol embB ACCATCGACACCCGGTTCTCCA Forward

56 ACAGCAGCAGCCAGCACACT Reverse

Pyrazinamide PncA GCGGCGTCATGGACCCTATATC Forward

59 GCCCGATGAAGGTGTCGTAGAA Reverse

Primers for amplification of rpoB gene were derived from the work of Telenti et al., (1993) while rest of the primers were designed in the present study.

Table 2.23 Reaction Mixture of PCR for DNA Sequencing

Constituents Final Concentration Volume

used(µL)/50 µL reaction

10X PCR buffer 1X 5.0

25 mM MgCl2 1.5 mM 3.0

2.5 mM 4 dNTPs (Fermentas Cat

#R0181) 0.2 mM 4.0

Primer F (20 µM) 0.8 µ M 2.0

Primer R (20 µM) 0.8 µ M 2.0

Page 102: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

82

Constituents Final Concentration Volume

used(µL)/50 µL reaction

Taq polymerase (Fermentas Cat

#EP0402) 2 units 0.4

Water 31.6

DNA 2.0

2.14.1 Sequencing analysis

PCR amplified products were sent to Beckman Coulter Genomics (Takeley,

United Kingdom) or Macrogen (Korea) for Sanger sequencing. The results of DNA

sequencing were analyzed by SeqScape (Version 2.6; Applied Biosystems) software

for the presence or absence of mutations.

2.15 Statistical analysis

Statistical analysis was done using Chi2 test to assess the correlation between

the mutations at codon 526 of rpoB gene and CAS1-Dehli lineage as well as between

the mutation at codon 315 of katG gene and CAS lineage.

Page 103: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

83

RESULTS

3.1 M. tuberculosis culture on LJ slants from clinical samples

Clinical specimens (sputum) of patients suspected for tuberculosis were

cultured during the course of study. Cultures were monitored weekly and the growth

was monitored until eight weeks. Slants showing buff-colored fluffy colonies were

selected and used to extract DNA of M. tuberculosis. Out of 10 sputum samples

cultured, 6 were found to be culture positive. Colonies from these slants were used to

extract DNA for subsequent experiments.

3.2 Description of study subjects

The data about gender was available for 141 patients with male to female ratio

of 1:1. Of the 116 patients for which age data was available, 32 patients were ≤ 20

years old, 61 ≤ 40 years old, 22 ≤ 60 years old and 1 was 80 years old.

3.2.1 Phenotypic drug susceptibility data

A total of 545 isolates were included in the study. The information about the

phenotypic drug sensitivity was obtained from the respective hospitals along with the

culture isolates. Detail of the drug sensitivity about each drug is provided in the

respective sections.

3.3 Analysis of DNA extracted from M. tuberculosis isolates by agarose gel electrophoresis

DNA extracted from M. tuberculosis isolates was resolved on agarose gel to

check the quality of DNA. The DNA obtained was of good quality. This DNA was

used in subsequent PCR reactions.

Page 104: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

84

Figure 3.1 Ethidium bromide stained 0.8% gel of extracted DNA of M.

tuberculosis Lane L: 1kb DNA ladder (Fermentas Cat # SM0313) Lane 1-12: M. tuberculosis chromosomal DNA

3.4 Analysis of PCR products of MIRU-VNTR loci

PCR products of MIRU-VNTR loci were analysed by gel electrophoresis to

generate variable number of tandem-repeat allele profiles. Out of 258 isolates, with a

sufficient DNA quality and quantity, 237 gave interpretable results. All (24 MIRU-

VNTR loci could be amplified in 229 isolates. Isolates that did not give results for ≥ 4

markers or those that gave multiple copy number for any of the locus (likely due to

mixed infection or contamination during culture) were excluded from the study

(n=21). The rate of failure of amplification was observed to be the highest for Qub 26

(n=12) followed by Qub 11b, ETR A (n=8) and ETR D (n=5). For MIRU 16 and

MIRU 20, no amplification was observed for 3 isolates despite several efforts.

Figure 3.2 Resolution of ETR A and MIRU 39 PCR amplified products Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14:PCR amplification products, upper bands MIRU 39, lower bands ETR A Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Page 105: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

85

Figure 3.3 Resolution of ETR B and Qub 26 PCR amplified products

Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands Qub 26, lower bands ETR B Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Figure 3.4 Resolution of ETR C and MIRU 20 PCR amplified products

Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentass Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands MIRU 20, lower bands ETR Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Figure 3.5 Resolution of MIRU 2 and MIRU 27 PCR amplified products

Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands MIRU 27and lower bands MIRU 2 Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Page 106: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

86

Figure 3.6 Resolution of MIRU 16 and Qub 11b PCR amplified products Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands MIRU 16, lower bands Qub 11b Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Figure 3.7 Resolution of ETR D and MIRU 10 PCR amplified products Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bpDNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands MIRU 10,lower bands ETR D Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Figure 3.8 Resolution of MIRU 23 and Mtub 30 PCR amplified products

Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands MIRU 23, lower bands Mtub 30 Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Page 107: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

87

Figure 3.9 Resolution of ETR E and MIRU 24 PCR amplified products

Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands ETR E, lower bands MIRU 24 Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Figure 3.10 Resolution of MIRU 26 and Mtub 29 PCR amplified products

Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands MIRU 26, lower bands Mtub 29 Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Figure 3.11 Resolution of MIRU 40 and Mtub 34 PCR amplified products

Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands MIRU 40, lower bands Mtub 34 Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Page 108: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

88

Figure 3.12 Resolution of Mtub 39 and Mtub 21 PCR amplified products

Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands Mtub 39, lower bands Mtub 21 Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

Figure 3.13 Resolution of Mtub 04 and Qub 4156 PCR amplifications Lane L: 100bp+500bp DNA ladder (Fermentas Cat # SM 0653) Lane L´: 100bp DNA ladder (Fermentas Cat # SM 0241) Lane 1-14: PCR amplification products, upper bands Qub 4156, lower bands Mtub 04 Lane 15: “No DNA” negative control; Lane 16: H37Rv as positive control

3.4.1 Allelic diversity of MIRU-VNTR loci

The allelic diversity of the samples was calculated for each of the MIRU-

VNTR locus using Hunter and Gaston discriminatory index (HGDI). Qub 26, MIRU

10, Mtub 04, MIRU 26 and MIRU 31 (ETR E) were found to be highly

discriminatory loci while MIRU 16, Qub 4156, Mtub 21, ETR A, MIRU 39, Mtub 39,

Mtub 30, MIRU 24, Qub 11b, MIRU 40 and ETR C as moderately discriminative

(Table 3.1).. Other loci, including ETR B, MIRU 23, MIRU 04 (ETR D), Mtub 29,

Mtub 34, MIRU 27, MIRU 02 and MIRU 20 showed poor discriminatory power.

Page 109: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

89

Table 3.1 Discriminatory Power of MIRU-VNTR Loci

Marker No. of

patterns No. of

clusters

No. of clustered isolates

No. of unique isolates

Size of clusters

Ranking based on

allelic diversity

HGDI

Qub 26 11 9 235 2 2-90 1 0.7801

MIRU 10 8 8 236 1 2-85 2 0.753

Mtub 04 7 5 235 2 4-111 3 0.6943

MIRU 26 11 8 233 4 4-119 4 0.6016

MIRU 31 (ETR E)

7 5 235 2 6-140 5 0.5929

MIRU 16 6 6 234 3 4-141 6 0.5826

Qub 4156 6 4 235 2 11-145 7 0.5654

Mtub 21 8 6 234 3 2-159 8 0.5247

ETR A 8 7 236 1 2-161 9 0.5083

Mtub 39 6 6 237 0 5-162 10 0.4917

MIRU 39 4 4 236 1 2-149 11 0.4896

Mtub 30 4 4 237 0 2-161 12 0.4764

MIRU 24 8 7 236 1 2-171 13 0.4541

Qub 11b 8 7 236 1 2-175 14 0.4412

MIRU 40 6 5 236 1 3-181 15 0.3755

ETR C 5 3 235 2 8-182 16 0.3746

ETR B 4 4 237 0 5-199 17 0.2828

MIRU 23 8 7 235 2 3-204 18 0.2529

MIRU 04 (ETR D)

7 7 232 5 2-210 19 0.2133

Mtub 29 4 4 237 0 3-213 20 0.1879

Mtub 34 4 4 237 0 2-213 21 0.1869

MIRU 27 5 4 236 1 2-224 22 0.106

MIRU 02 2 2 236 1 10-226 23 0.0892

MIRU 20 3 2 233 5 5-228 24 0.0743

Page 110: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

90

3.4.2 Determination of most discriminatory set of MIRU-VNTR loci to use as ‘fast lane’ screening markers

To select the subset of the loci giving discrimination power close to the 24

loci MIRU-VNTR, different combinations of the loci were assessed using HGDI. The

detail of the different combinations along with their comparison is given in the table

3.2 and table 3.3. Combination 3, including Qub 26, MIRU 10, Mtub 04, MIRU 26,

MIRU 31 (ETR E), MIRU 16, Qub 4156 and Mtub 21 was selected as least number of

loci that could provide the discriminatory power close to the 24 MIRU-VNTR typing.

Table 3.2 Determination of Most Discriminatory Subset of MIRU-VNTR loci as “Fast Lane” Screening Markers

Markers Supply* combinations Combinations tested in present study

24 15 12 1 2 3 4 5 6 7

Qub 26 �

� � � � � � � �

MIRU 10 � � � � � � � � � �

Mtub 04 �

� � � � � � � �

MIRU 26 � � � � � � � � � �

MIRU 31 (ETR E) � � � � � � � � � �

MIRU 16 � � � � � � � �

Qub 4156 �

� � � � �

Mtub 21 �

� � � �

� �

ETR A �

� � �

Mtub 39 �

� �

MIRU 39 � �

Mtub 30 �

� �

MIRU 24 � �

Qub 11b �

� �

MIRU 40 � � � �

ETR C �

ETR B �

MIRU 23 � �

Page 111: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

91

Markers Supply* combinations Combinations tested in present study

24 15 12 1 2 3 4 5 6 7

MIRU 04 (ETR D) � � �

Mtub 29 �

Mtub 34 �

MIRU 27 � �

MIRU 02 � �

MIRU 20 � �

*(Supply et al., 2006; Supply et al., 2000) � indicates seleceted loci

Table 3.3 HGDI of Different Tested Subset of Loci

Combination No. of clusters No. of isolates in cluster

No. of isolates with unique pattern HGDI

Supply 24 21 58 179 0.9941

1 27 72 165 0.9938

Supply 15 28 81 156 0.9933

2 30 98 139 0.9905

3 32 94 143 0.9904

7 35 105 132 0.9896

4 33 113 124 0.989

8 31 112 125 0.988

5 33 126 111 0.9849

Supply 12 34 121 116 0.9842

6 36 143 97 0.9829

Determination of most discriminatory subset of MIRU-VNTR loci as “fast lane” screening markers was done using 237 isolates

3.5 Spoligoriftyping of M. tuberculosis isolates

3.5.1 Data interpretation

Data from the Luminex was obtained in the form of numerical values as

shown in the table 3.4. These values were mean of the fluorescence intensity (MFI)

for each probe that was interpreted on the basis of established cut off values (table

3.5). The distribution of mean fluorescence intensity values was presented in the form

of a graph as shown in the figure 3.14. The final display of the results was in the form

Page 112: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

92

of blocks where each solid block represented the positive hybridization signal while

the open/un-filled block represented the absence of hybridization as shown in the

figure 3.15.

Table 3.4 Mean Fluorescence Intensity (MFI) Values Obtained from Luminex sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14

Type Well MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI

X1 A1 496 488 1300 846 975 1281 719 895 752 822 812 849 1602 684

X2 B1 605 23 17 976 1084 1409 836 1003 945 958 988 1043 1822 855

X3 C1 661 689 1531 104 29 1455 965 1118 1157 1065 1123 1050 1840 947

X4 D1 810 509 1830 135 34 35 45 1353 1228 1113 1462 1151 2160 904

X7 E1 623 563 1523 128 37 24 32 1111 1004 953 1185 891 1729 858

X8 F1 631 599 1592 113 29 23 50 1087 963 929 1222 937 1839 831

X9 G1 577 595 1544 108 17 20 48 1006 969 878 1273 970 1698 773

X10 H1 525 521 1410 949 1095 1283 36 897 963 843 867 1001 1702 760

X12 A2 642 644 1613 116 38 28 33 1076 979 904 1232 1019 1777 822

X13 B2 594 617 1673 124 23 29 37 1084 971 924 1331 931 1805 704

X14 C2 521 519 1426 100 20 44 32 942 835 831 1150 864 1689 721

X15 D2 548 554 1478 86 23 17 35 925 844 827 1214 899 1686 701

X16 E2 640 636 1591 101 24 20 42 994 1045 986 1371 1014 1861 788

Figure 3.14 Distribution of MFI across samples x axis: probes (1 to 43 are DR spacer capture probes and 44 to 53 are rpoB probes) y axis: MFI results obtained by each probe (data points represent individual sample)

Page 113: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

93

Table 3.5 Interpretation of the MFI Values According to Defined Cutoff Values

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14

Well MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI MFI

A1 496 488 1300 846 975 1281 719 895 752 822 812 849 1602 684

B1 605 23 17 976 1084 1409 836 1003 945 958 988 1043 1822 855

C1 661 689 1531 104 29 1455 965 1118 1157 1065 1123 1050 1840 947

D1 810 509 1830 135 34 35 45 1353 1228 1113 1462 1151 2160 904

E1 623 563 1523 128 37 24 32 1111 1004 953 1185 891 1729 858

F1 631 599 1592 113 29 23 50 1087 963 49 1222 937 1839 831

G1 577 595 1544 108 17 20 48 1006 969 878 1273 970 1698 773

H1 525 521 1410 949 1095 1283 36 897 963 843 867 1001 1702 760

A2 642 644 1613 116 38 28 33 1076 979 904 1232 1019 1777 822

B2 594 617 1673 124 23 29 37 1084 971 924 1331 931 1805 704

C2 521 20 1426 100 20 44 32 942 835 78 1150 864 1689 50

D2 548 554 1478 86 23 17 35 925 844 827 1214 899 1686 701

E2 640 636 1591 101 24 20 42 994 1045 986 1371 1014 1861 788 Grey cells represent hybridization while white cells represent absence of hybridization for corresponding probe

Figure 3.15 Final display of the interpreted spoligoriftyping results Column 1: well number Column 2: samples identification Column3: spoligotype patterns (solid blocks represent positive hybridization

signals while white blocks represent negative hybridization signals) Column 4-8: wild-type probes Column 9-13: mutant probes Column 14: prediction of multidrug resistance

Well Sample 43 spacer spoligotype spa

_W

t1

rif_

51

6 w

t (w

t3)

spa

_W

t2

rif_

52

6 w

t (w

t4)

rif_

53

1w

t (w

t5)

rif_

51

6_

mut

GT

C (

mut

1)

rif_

52

6 m

ut G

AC

(m

ut2

)

rif_

52

6_

mut

TA

C (

mut

3)

rif_

53

1_

mut

TT

G (

mut

4)

rif_

53

1_

mut

TG

G (

mut

5)

MD

R p

redi

ctio

n

A1 1 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

B1 2 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

C1 3 ■■■❏❏❏❏■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

D1 4 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ■ S

E1 5 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

F1 6 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

G1 7 ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

H1 8 ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■ ■ ■ ❏ ■ ❏ ■ ❏ ❏ ❏ R

A2 9 ■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

B2 10 ■■■❏❏❏❏■■■■■■❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

C2 11 ■■■❏❏❏❏■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

D2 12 ■■■❏❏❏❏❏❏❏❏❏■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■❏❏❏❏ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

E2 13 ■■❏■■■■■❏■■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ RF2 14 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

G2 15 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ S

WT Probes Mut Probes

Page 114: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

94

3.5.2 Diversity of M. tuberculosis complex as assessed by 43 spacer format Spoligotyping

Out of 457 isolates screened by spoligoriftyping method, 386 interpretable

results (84%) were obtained for 43 spacer format spoligotyping. Majority of the

isolates from Rawalpindi District could not be successfully typed due to poor DNA

quality but still we had 149 isolates from this district that gave interpretable data for

assessment of strain diversity (Table 3.8). Out of 386 isolates with 43 spacers

spoligotype patterns, 115 different spoligotypes were identified, only 71 (62%) of

which were already described in SITVITWEB. Classification performed by the

expert visual inspection allowed assigning a lineage to 373 (97%) isolates leaving

behind only 13 (3%) uncharacterized isolates.

The population structure of MTBC consisted of 3 main clusters including

Central Asian strains (CAS, 69%), East African Indian (EAI, 6%) and Modern/Euro

American strains (18%) as shown in the figure 3.16. The predominant families among

the Euro-American isolates were T (8.5 % of the total sample), Ural (6.5%), X

(1.3%), H (0.8%) and LAM (0.8%). Beijing family had a frequency of 3% while

MANU was represented by only 0.8% isolates. These percentages were similar in the

different settings, (Figure 3.17) however, a significant higher prevalence of EAI in

Faisalabad and Lahore as compared to Karachi and Rawalpindi [Chi2df=2=8.4;

p=0.015; n(Lahore+Faisalabad)=80; n(Karachi)=36; n(Rawalpindi)=14] was observed.

3.6 Assessment of global and local transmission dynamics by the combination of 24 MIRU-VNTR and spoligotyping patterns

Both 24 MIRU-VNTR + spoligotype identity (coined as 100% genotype

identity) and single locus variant (SLV) among the 24 MIRU-VNTR are considered

as a good marker for identifying epidemiologically-linked isolates. The recent

transmission index (RTI) was calculated using 100% locus identity at 24 MIRU-

VNTR and spoligotype patterns and also by allowing single locus variation (SLV)

among MIRU-VNTR patterns (Figures 3.18 and 3.19, table 3.6). The clustering rate

was found to be the higher for Rawalpindi (0.18 with 100% identity and 0.28 with

SLV) as compared to Lahore + Faisalabad (0.1 with 100% identity and 0.2 with

SLV). The cumulative RTI for the Province of Punjab was found to be low (0.155)

with 100% identity but reached 0.23 when SLV was allowed.

Page 115: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

95

Table 3.6 Local and Cumulative Recent Transmission Indices

City

100% genotype identity SLV

Clustered strains

No. of clusters

Total No. of isolates

RTI Clustered

strains No. of

clusters

Total No. of isolates

RTI

Lahore+ Faisalabad

6 3 30 0.1 11 5 30 0.2

Rawalpindi 19 8 60 0.183 25 8 60 0.283

Cumulative 25 11 90 0.155 36 15 90 0.233

Page 116: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

96

Figure 3.16 Minimum Spanning Tree (MST) based on 43 spacer format spoligotyping data This tree was built using all isolates with 43 spacer spoligotype patterns (n=386). They form a representative subset of the whole sample. The relative size of the circles corresponds to the number of isolates sharing the corresponding spoligotype pattern. Color codes specific to each lineage are: Light blue=CAS1-Dehli; Blue-green=other CAS; Dark blue=Beijing; Greenish=EAI; Lilac=T; Red=Ural; Dark-Green=H; Light-green=X; Dark-purple=LAM; Grey represents unlabeled isolates

CAS

Beijing

Euro-American

EAI

Page 117: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

97

Figure 3.17 Distribution of lineages in various regions, as described by SpolDB4 database and expert visual inspection Isolates with available spoligotype patterns (85%) were used to build this graph. Beijing is represented in blue, CAS in yellow, EAI in green, Euro-American lineage in reddish colors (Dark-red=T, Dark-pink=Ural, Light-red=H, Light-pink=X, Orange=LAM), Manu in black, U in grey

Page 118: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

98

Figure 3.18 Dendrogram showing clustering of M. tuberculosis strains from Rawalpindi district by 43 Spacer Spoligotyping and 24 MIRU-VNTR

Page 119: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

99

Figure 3.19 Dendrogram showing clustering of M. tuberculosis strains from Lahore + Faisalabad District by 43 Spacer Spoligotyping and 24 MIRU-VNTR

Page 120: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

100

3.7 M. tuberculosis strain differentiation by 25 additional spacers (68 spacer format spoligotyping)

Out of 386 isolates screened, 209 isolates produced 68 spacers spoligotypes

that were interpretable. These isolates belonged to CAS (n=126), EAI (n=6), Beijing

(n=7), T (n=16), Haarlem (n=3), Ural (n=12) and X (n=4) families in addition to

unclassified (n=35). Addition of 25 more spacers didn’t increase the strain

differentiation significantly in isolates clustered by 43 spacer spoligotyping format.

Only the two most represented families (CAS and T) showed differentiation. The

largest CAS cluster including 87 isolates was split in 12 clusters (table 3.7). Analysis

of clustered isolates (constituting 18 clusters by combined 43 spacer format and 24

MIRU-VNTR) with 25 additional spacers could not appreciably decrease the

clustering. Of 13 out of 18 clusters, for which results of all the isolates in cluster were

available, addition of 25 spacers could split only 3 clusters. Results of 68 spacer

spoligotyping are given in table 3.8.

Table 3.7 Strain Discrimination of M. tuberculosis Isolates by 68 Spacer Format Spoligotyping

SIT Clusters by 43 spacer format

Clusters by 68 spacer format Clade

No. of clustered isolates

26 Clade 1 Subclade 1 CAS 69

Subclade 2

4

Subclade 3

2

Subclade 4

2

Subclade 5

2

Subclade 6

2

Subclade 7

1

Subclade 8

1

Subclade 9

1

Subclade 10

1

Subclade 11

1

Subclade 12

1

429 Clade 2 Subclade 1 CAS 1

Page 121: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

101

SIT Clusters by 43 spacer format

Clusters by 68 spacer format

Clade No. of

clustered isolates

25 Clade 3

Subclade 2 1

Subclade 1 CAS 5

Subclade 2

1

357 Clade 4 Subclade 1 CAS 1

Subclade 2 1

1256 Clade 5 No Subdivision CAS 4

1949 Clade 6 No Subdivision CAS 2

485 Clade 7 No Subdivision CAS 3

598 Clade 8 No Subdivision CAS 2

1122 Clade 9 No Subdivision CAS 2

11 Clade 10 No Subdivision EAI 5

127 Clade 11 No Subdivision H4=Ural 11

53 Clade 12 No Subdivision T1 4

264 Clade 13 No Subdivision T1 2

1877 Clade 14 Subclade 1

T1 2

Subclade 2 1

804 Clade 15 No Subdivision T1 2

Unknown Clade 16 No Subdivision Unknown 2

Unknown Clade 17 No Subdivision Unknown 2

Unknown Clade 18 No Subdivision Unknown 2

TOTAL

143

Page 122: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

102

Table 3.8 Spoligotyping using 43 Spacer and 68 Spacer Format

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2009000062 Lahore ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ 11 EAI3-IND

PAK1998000063 Peshawar ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2009000064 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000065 Peshawar ■❏■■■■■■■■■■■❏❏■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■❏❏■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK1998000067 Peshawar ■■■❏❏❏❏■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏❏ Not done 864 CAS

PAK1998000069 Peshawar ■■■❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■❏■■■■■ Not done Unknown Unknown

PAK1998000070 Peshawar ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000071 Peshawar ■❏■■■■■■■■■■■■■■■■❏■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■❏■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 656 H4

PAK1998000072 Peshawar ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000073 Peshawar ■■■❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■❏❏■■■■❏■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK1998000074 Peshawar ■■■❏❏❏❏■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1951 CAS

PAK2005000076 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2009000077 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2009000078 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 26 CAS1-Delhi

PAK2009000079 Lahore ■❏❏❏❏❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ Unknown Unknown

PAK2009000082 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2009000083 Lahore ■■■❏❏❏■■■❏■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■■■❏■■■ Not done Unknown Unknown

PAK2009000085 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2009000086 Quetta ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000088 Lahore ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ 11 EAI3-IND

PAK2009000089 Lahore ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK2009000090 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ 1264 CAS

Page 123: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

103

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2009000092 Lahore ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK2009000093 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1093 CAS

PAK2009000094 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ 2147 CAS1-Delhi

PAK2009000095 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2009000097 Quetta ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2005000103 Faisalabad ■❏■■■■■■■■■■■❏❏■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■❏❏■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2009000106 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK1998000107 Peshawar ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000109 Peshawar ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 288 CAS2

PAK1998000110 Peshawar ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000111 Peshawar ■■■■■■■■■■■■■■■■■■■■❏■■❏❏■■■❏■■❏❏❏❏❏■■■■■■■ Not done Unknown Unknown

PAK2009000112 Lahore ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ 11 EAI3-IND

PAK2009000113 Lahore ■■■❏❏❏❏■■❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏■❏■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2009000115 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2009000116 Lahore ■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■■■❏❏❏❏ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■■■■■■■■■■■■■❏❏❏❏■■■ 138 EAI 5

PAK2009000119 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK1998000121 Peshawar ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2009000122 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■❏■■❏❏■■■ Not done Unknown Unknown

PAK1998000123 Peshawar ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ Not done 127 H4

PAK2005000126 Faisalabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2009000127 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■❏■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■❏■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1091 CAS1-Delhi

PAK2010000128 Faisalabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2009000129 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

Page 124: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

104

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2009000130 Lahore ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ 11 EAI3-IND

PAK1998000131 Peshawar ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏■■■■■■■■■ ■■■■■■❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏■■■■■■■■■■■■■■■■■■■■■■■■ 100 MANU 1

PAK2009000132 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1093 CAS

PAK2009000133 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 357 CAS

PAK2009000136 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏■■■■■■■■■❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏■■■■■■■■■❏■❏❏■■■❏■■❏❏❏❏❏❏❏❏■■■■■■■ 1887 ?

PAK2009000139 Lahore ■■■❏❏❏❏■❏■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■❏■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1092 CAS1-Delhi

PAK1998000141 Peshawar ■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏■■■■■■■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Unknown Unknown

PAK1998000144 Peshawar ■■■■■■■■■■■■■■■■■■■■❏■■❏❏■■■❏■■❏❏❏❏❏❏■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■❏■■❏❏■■■❏■■❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏■■■■❏■■ Unknown Unknown

PAK1998000147 Peshawar ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 288 CAS2

PAK2009000148 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK2009000149 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK2009000154 Lahore ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK1998000155 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000156 Karachi ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2009000157 Lahore ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK2009000158 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■ 1878 CAS1-Delhi

PAK2009000159 Lahore ■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■❏■■■■■■■❏■■■■■■■■■■■■ 1970 EAI6-BGD1

PAK2009000160 Lahore ■❏❏■■■■■❏■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■❏■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏■■■■■❏■■■■■■■■■ Unknown Unknown

PAK2009000161 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000164 Peshawar ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000167 Peshawar ■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■❏■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■❏❏❏❏■■■■❏■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 64 LAM 6

PAK2009000168 Lahore ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK2009000169 Lahore ■■■❏❏❏❏■❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 2237 CAS1-Delhi

PAK2009000170 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1093 CAS

Page 125: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

105

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2009000171 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏■■❏❏❏❏■■■■■■■■■ Not done Unknown Unknown

PAK2009000172 Lahore ■■■■■■■■■■■■❏❏❏❏■■■■■❏❏❏❏■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■❏❏❏❏■■■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2009000173 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2009000174 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000191 Peshawar ■■■■❏■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏■■■■■■■■■ Not done Unknown Unknown

PAK2010000196 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2010000197 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2010000198 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2010000199 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2010000200 Rawalpindi ■■■❏❏❏❏■■■■■❏❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■❏❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2010000202 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2010000203 Rawalpindi ■■■■■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 1166 T1

PAK2010000204 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■❏■❏❏❏❏❏❏❏❏■■■■■■■ 289 CAS1-Delhi

PAK2010000205 Rawalpindi ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2010000206 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK2010000207 Rawalpindi ■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■❏■■■■■■■❏■■■■■■■■■■■■ 1970 EAI6-BGD1

PAK2010000208 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK2010000210 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2010000211 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2010000213 Rawalpindi ■■■❏■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏❏■■■❏❏■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 1877 T1

PAK2010000214 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000215 Lahore ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK2010000218 Rawalpindi ■■■■■■■■■■■■■■■■■■■❏❏■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■❏❏■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 451 H37Rv

PAK2010000219 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■❏■■❏❏❏❏❏❏❏❏■■■■■■■ 27 ?

Page 126: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

106

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2010000221 Rawalpindi ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■❏❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏■❏❏❏❏■■■■■■■■■■■■■■■ 625 EAI 5

PAK2011000222 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000223 Islamabad ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1 Beijing

PAK2011000224 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000225 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■ 1264 CAS

PAK2011000226 Islamabad ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏■■■■■■■■■■■■■■■ 11 EAI3-IND

PAK2011000227 Islamabad ■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏❏❏■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 358 T1

PAK2011000228 Islamabad ■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■❏■■■■■■■❏■■■■■■■■■■■■ 1970 EAI6-BGD1

PAK2011000229 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000230 Islamabad ■■■■■■❏■■■■■■■■■❏■■■■■■■■■■■❏❏❏❏■❏■■■■■❏❏❏❏ ■■■■■■■■■■■■■■❏■■■■■■■■■■■❏■■■■■■■■■■■❏❏❏❏■❏■■■❏■■■■■■■■■■■■■❏❏❏❏■■■ Unknown Unknown

PAK2011000231 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏■■■■■■■ 598 CAS

PAK2011000232 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 142 CAS

PAK2011000233 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000234 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏■■■■■■■ 486 CAS

PAK2011000235 Islamabad ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK2011000236 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 485 CAS

PAK2011000237 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000238 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000239 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 2145 CAS1-Delhi

PAK2011000240 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2011000241 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■ 1972 CAS

PAK2011000242 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000243 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Unknown Unknown

PAK2011000244 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

Page 127: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

107

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2011000245 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000246 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000247 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000248 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000249 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■❏■■❏❏❏❏❏❏❏❏■■■■■■■ 27 ?

PAK2011000250 Islamabad ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1 Beijing

PAK2011000251 Islamabad ■■■■■❏■■■■■■■■■■■■■■■■■■■■■■■■❏■❏❏❏❏■■■❏■■■ ■■■■❏❏❏❏❏❏❏■■❏■❏❏■■■■■■■■■■■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏❏■■■■■■ Unknown Unknown

PAK2011000252 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2011000253 Islamabad ■■■■■■■■■❏■■■■■■■■■■■■❏❏■■■■■■■■❏❏❏❏■■■❏❏■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■❏■■■■■■■■■■■■❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏❏❏■■■■■ Unknown Unknown

PAK2011000254 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏❏■■■■■■ 429 CAS1-Delhi

PAK2011000255 Islamabad ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000256 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000257 Islamabad ■■■❏❏❏❏■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏■■■■■■■ 2419 CAS

PAK2011000258 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000259 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000260 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000261 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK2011000262 Islamabad ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000263 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000264 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000265 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000266 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000267 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 357 CAS

PAK2011000268 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

Page 128: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

108

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2011000269 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2011000270 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2011000271 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 429 CAS1-Delhi

PAK2011000272 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■ Unknown Unknown

PAK2011000273 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000274 Islamabad ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■■■■■■❏❏❏❏■■■■■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000275 Islamabad ■■■■■❏■■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■❏■❏❏■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 490 X1

PAK2011000276 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000277 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏■■■■■■■ 598 CAS

PAK2011000279 Islamabad ■■■■■■■■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 119 X1

PAK2011000280 Islamabad ■■■❏❏❏❏■■■■■■❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Unknown Unknown

PAK2011000281 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000282 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000283 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000284 Faisalabad ■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 777 H3

PAK2011000285 Faisalabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■❏❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000286 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000288 Faisalabad ■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏❏■■■■■■ 1120 CAS

PAK2011000289 Faisalabad ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■■■■■■■ Not done 126 EAI 5

PAK2011000290 Faisalabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏■■■■ Not done 381 CAS1-Delhi

PAK2011000291 Faisalabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000293 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000294 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000295 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

Page 129: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

109

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2011000296 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000297 Lahore ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■

11 EAI3-IND

PAK2011000298 Lahore ■■■❏❏❏❏❏❏❏❏❏■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■❏❏❏❏ ■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■ 200 X 3

PAK2011000299 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000401 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2011000402 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000403 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2011000404 Islamabad ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1 Beijing

PAK2011000405 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ Not done 127 H4

PAK2011000406 Islamabad ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■❏❏❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■❏ 804 T1

PAK2011000407 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2011000408 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ 1878 CAS1-Delhi

PAK2011000409 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000410 Islamabad ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏■■■❏■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏❏■■■■■■ 125 LAM 3

PAK2011000411 Islamabad ❏❏■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏❏❏■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000412 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000413 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■❏❏❏❏■ 1883 CAS1-Delhi

PAK2011000414 Islamabad ■■■❏❏❏❏■■■■■❏❏❏❏■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■❏❏❏❏■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000415 Islamabad ■■■■■■■■■■■■■■■■■■■❏❏❏❏❏■■■■❏❏❏■❏❏❏❏■■■■■■■ Not done Unknown Unknown

PAK2011000416 Islamabad ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ 11 EAI3-IND

PAK2011000417 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000418 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000419 Islamabad ■■■❏■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏❏■■■❏❏■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■❏ 1877 T1

Page 130: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

110

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2011000420 Islamabad ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏❏❏ ■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏■❏❏❏❏■■ Unknown Unknown

PAK2011000421 Islamabad ■■■■■■■■❏❏❏■■■■■■■■■❏❏❏❏■■❏❏❏❏❏■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■❏❏❏■■■■■■■■■❏❏❏❏■■❏❏❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000422 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■❏■■❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■❏■■❏❏❏❏■■■❏■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000423 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000424 Islamabad ■■■❏❏❏❏■■■■■■❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 794 CAS1-Delhi

PAK2011000425 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■❏■■ 26 CAS1-Delhi

PAK2011000426 Islamabad ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1 Beijing

PAK2011000427 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000428 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000429 Islamabad ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1 Beijing

PAK2011000430 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■❏■ 26 CAS1-Delhi

PAK2011000431 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000432 Islamabad ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■❏❏■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏❏❏■■■■■ 78 T1

PAK2011000433 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000434 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK2011000435 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000436 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000437 Rawalpindi ■❏❏■■■■■■■■■■■■■❏■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■❏■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ 624 EAI3-IND

PAK2011000439 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000440 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000441 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000442 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000443 Rawalpindi ■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Unknown Unknown

PAK2011000444 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 485 CAS

Page 131: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

111

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2011000445 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000447 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK2011000448 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1949 CAS

PAK2011000449 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2011000450 Rawalpindi ■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏❏■■■■■■ 1120 CAS

PAK2011000451 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000453 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ Not done 1949 CAS

PAK2011000454 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000455 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 1949 CAS

PAK2011000456 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000457 Rawalpindi ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■❏❏❏❏❏❏❏❏■■■■■■■ 126 EAI 5

PAK2011000458 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK2011000459 Rawalpindi ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK2011000460 Rawalpindi ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1 Beijing

PAK2011000461 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000463 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000464 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK2011000465 Rawalpindi ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ 11 EAI3-IND

PAK2011000466 Rawalpindi ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 53 T1

PAK2011000467 Rawalpindi ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■❏❏❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■❏ 804 T1

PAK2011000468 Rawalpindi ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏■■■■■❏■■■■■■■■■ 11 EAI3-IND

PAK2011000469 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏■■■❏❏❏❏❏❏❏❏❏■■■■■■ 429 CAS1-Delhi

PAK2011000470 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ 1264 CAS

PAK2011000471 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ 1264 CAS

Page 132: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

112

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2011000472 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■❏■■ 26 CAS1-Delhi

PAK2011000473 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ 1264 CAS

PAK2011000474 Rawalpindi ■■■■■■■■■■■■❏■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■❏■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■❏■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏❏■■■■■■ 1134 H3

PAK2011000476 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000477 Rawalpindi ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000478 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000479 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■❏❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1344 CAS1-Delhi

PAK2011000481 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000482 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■❏■❏❏❏❏❏❏❏❏■■■■■■■ 289 CAS1-Delhi

PAK2011000483 Rawalpindi ■■■❏❏❏❏❏❏❏■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■❏❏❏❏❏❏❏❏■■■■■■■ 2100 CAS

PAK2011000484 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 485 CAS

PAK2011000485 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000486 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■❏■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000487 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000488 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000489 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■❏❏❏❏❏❏❏❏■■■■■■■ 428 CAS1-Delhi

PAK2011000490 Rawalpindi ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done Unknown Unknown

PAK2011000491 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■❏❏❏❏❏ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏❏❏■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■ Unknown Unknown

PAK2011000492 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000493 Rawalpindi ■■■❏❏❏❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ ■■■■■■■■■❏❏❏❏❏❏❏❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Unknown Unknown

PAK2011000494 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■❏❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1344 CAS1-Delhi

PAK2011000495 Rawalpindi ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏■❏❏❏❏■■■■■■■ ■■■■■■❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 50 H3

PAK2011000497 Rawalpindi ■■■❏■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏❏■■■❏❏■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 1877 T1

PAK2011000498 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

Page 133: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

113

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2011000499 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000501 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK2011000503 Rawalpindi ■■■❏❏❏❏❏❏❏■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ ■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK2011000504 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■❏■■❏❏❏❏❏❏❏❏■■■■■■■ 27 ?

PAK2011000505 Rawalpindi ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■ ■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏❏❏❏❏■■■■■■ Unknown Unknown

PAK2011000506 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000902 Karachi ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏■■❏❏❏❏❏❏❏❏■■■■■■■ 1591 CAS2

PAK1998000903 Karachi ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK1998000904 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK1998000905 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000906 Karachi ■■■❏❏❏❏■❏❏❏■■■■■■■■■❏❏❏❏■■■■■■■■■❏❏❏❏■■■■■■ Not done Unknown Unknown

PAK1998000907 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK1998000908 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000909 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000910 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏❏❏❏■■■■■■■ 357 CAS

PAK1998000911 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■■■❏■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ 25 CAS1-Delhi

PAK1998000912 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000914 Karachi ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■❏■■ 53 T1

PAK1998000916 Karachi ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 1 Beijing

PAK1998000917 Karachi ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ ■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏❏❏❏❏■■■■■■■■■■■■■■ 11 EAI3-IND

PAK1998000918 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000919 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000920 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000921 Karachi ■■■❏■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏❏■■■❏❏■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 1877 T1

Page 134: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

114

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK1998000922 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■❏■■❏❏❏❏❏❏❏❏■■■■■■■ 27 ?

PAK1998000923 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000924 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■■ Unknown Unknown

PAK1998000925 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000927 Karachi ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK1998000928 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■❏❏❏■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000929 Karachi ■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 264 T1

PAK1998000931 Karachi ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 127 H4

PAK1998000932 Karachi ■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 264 T1

PAK1998000933 Karachi ■❏❏■■❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏■❏■■■■■■■■■ ■■❏❏■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏■❏■■■❏■❏■■■■■■■■■■■■■■■■■■ Unknown Unknown

PAK1998000934 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000935 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000937 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000938 Karachi ■■■■■■■■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■■ 119 X1

PAK1998000939 Karachi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 26 CAS1-Delhi

PAK1998000942 Karachi ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■❏■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏❏■■■■■■ 1302 T2

PAK2012000507 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000508 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Not done 25 CAS1-Delhi

PAK2012000509 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000510 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000511 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Not done 25 CAS1-Delhi

PAK2012000512 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000513 Lahore ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 485 CAS

Page 135: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

115

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2012000514 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000515 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000516 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000517 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■ Not done Unknown Unknown

PAK2012000518 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000520 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000521 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000522 Lahore ■■■■■■■■■■■■❏■■■■■❏■■■■■■■■■■■■■❏❏❏❏■■■■■■■ Not done 442 Ambigous T4T3

PAK2012000523 Lahore ■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■■■■■■■ Not done 1970 EAI6-BGD1

PAK2012000525 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000526 Lahore ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2012000527 Islamabad ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■❏❏■ Not done Unknown Unknown

PAK2012000528 Islamabad ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ Not done 53 T1

PAK2012000529 Islamabad ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1 Beijing

PAK2012000532 Islamabad ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ Not done 127 H4

PAK2012000534 Islamabad ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏■■❏❏❏■■■■ Not done 1948 ?

PAK2012000535 Islamabad ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏■■■■■■■ Not done 124 ?

PAK2012000537 Islamabad ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■ Not done 1151 CAS

PAK2012000538 Islamabad ■■■❏❏❏❏■■■■■■■❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 141 CAS1-Delhi

PAK2008000539 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000540 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Not done 1264 CAS

Page 136: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

116

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2008000559 Rawalpindi ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1 Beijing

PAK2008000560 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■❏■■■■■■■ Not done 1091 CAS1-Delhi

PAK2008000562 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Not done 25 CAS1-Delhi

PAK2008000564 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000565 Rawalpindi ■■■❏❏❏❏■■■■■■■❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 141 CAS1-Delhi

PAK2008000567 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000568 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000569 Rawalpindi ■■■■■■■■■❏■■■■■■■■■■■■❏■■■■■■■■■❏❏❏❏■■■❏❏■■ Not done Unknown Unknown

PAK2008000571 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000572 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000573 Rawalpindi ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ Not done 127 H4

PAK2008000574 Rawalpindi ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1 Beijing

PAK2008000576 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 485 CAS

PAK2008000577 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000578 Rawalpindi ■■■❏❏❏❏■■■■■■■❏❏■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 2692 CAS1-Delhi

PAK2008000579 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000582 Rawalpindi ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Not done Unknown -

PAK2008000584 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000585 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000586 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 2145 CAS1-Delhi

PAK2008000587 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■ Not done 203 CAS

Page 137: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

117

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2008000589 Rawalpindi ■■■❏❏❏❏■■■■■■■❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 141 CAS1-Delhi

PAK2008000590 Rawalpindi ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ Not done 53 T1

PAK2008000593 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000594 Rawalpindi ■■■❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1551 CAS

PAK2008000595 Rawalpindi ■■■❏❏❏❏■❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■■■■❏❏❏❏❏❏■❏■❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■■ 2237 CAS1-Delhi

PAK2008000596 Rawalpindi ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■❏ 53 T1

PAK2008000597 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000598 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000599 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Not done 25 CAS1-Delhi

PAK2008000600 Rawalpindi ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏■❏❏❏❏■■■■■■■ Not done 50 H3

PAK2008000601 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■■ ■■■■■■❏■■■❏❏❏❏❏■❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■❏❏❏❏❏❏❏❏■■■■■■❏ 428 CAS1-Delhi

PAK2008000602 Rawalpindi ■■■■■■■■■■■■■■■■■❏■■■■■■■■■■❏■■■❏❏❏❏■■■■■■■ ■■■■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■❏■■■■■■■■■■❏■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■❏ 1329 X1

PAK2008000603 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏■❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 26 CAS1-Delhi

PAK2008000604 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 26 CAS1-Delhi

PAK2008000605 Rawalpindi ■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■ ■■■■■■❏■■■❏❏❏❏❏■❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏❏❏❏❏■■■■■❏ 1120 CAS

PAK2008000606 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏■❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 26 CAS1-Delhi

PAK2008000607 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ ■■■■■❏❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏■❏❏❏❏❏❏❏❏■■■■■■❏ 25 CAS1-Delhi

PAK2008000608 Rawalpindi ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ ■■❏■❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■❏ 127 H4

PAK2008000611 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■■■■ ■■■■■■❏■■■❏❏❏❏❏■❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏❏■■❏■■❏❏❏❏❏❏❏❏■■■■■■❏ 27 ?

PAK2008000614 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏■❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 26 CAS1-Delhi

PAK2008000617 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000618 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

Page 138: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

118

Key Origin 43 spacer format spoligotyping 68 spacer format spoligotyping SIT Clades

PAK2008000619 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000620 Rawalpindi ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ ■■❏❏❏❏❏❏❏❏❏■■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏■■■❏❏❏❏❏❏❏❏■■■■■■❏ 804 T1

PAK2008000622 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■■ ❏■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏■■❏❏❏❏❏❏❏❏■■■■❏❏❏ 428 CAS1-Delhi

PAK2008000623 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏■■■❏❏❏❏❏❏❏❏■■■■❏❏❏ 26 CAS1-Delhi

PAK2008000625 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 26 CAS1-Delhi

PAK2008000626 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000627 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000628 Rawalpindi ■■■❏❏❏❏■■■■❏❏■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1327 CAS1-Delhi

PAK2008000630 Rawalpindi ■■■❏❏❏❏■■■■■❏■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 1343 CAS1-Delhi

PAK2008000631 Rawalpindi ■■■❏❏❏❏■■■■■❏■■■■■■■❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done Unknown Unknown

PAK2008000633 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Not done 26 CAS1-Delhi

PAK2008000635 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■■❏❏❏❏❏■❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 26 CAS1-Delhi

PAK2008000636 Rawalpindi ■■■❏❏❏❏■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ❏■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏■■■❏❏❏❏❏❏❏❏■■■■❏❏❏ 2145 CAS1-Delhi

PAK2008000644 Rawalpindi ■■■❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ ■■■■■■❏■■❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■❏❏❏❏❏❏❏❏■■■■■■❏ 1551 CAS

PAK2008000646 Rawalpindi ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ Not done 53 T1

Page 139: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

119

3.8 Discriminatory power of genotyping techniques

Two hundred and twenty five isolates, with available results of both 24

MIRU-VNTR typing as well as spoligotyping were selected to evaluate the

discriminatory power of spoligotyping, spoligotyping plus 24 MIRU-VNTR and

MIRU-VNTR typing with 24, 15 and 12 format typing using Hunter and Gaston

Discriminatory Index (HGDI). Discriminatory power of 24 MIRU-VNTR was higher

(HGDI=0.997) as compared to spoligotyping alone (HGDI=0.823). Use of 12 and 15

MIRU-VNTR format gave less discriminatory power as compared to 24 MIRU-

VNTR format. Although combination of both typing methods resulted in six more

patterns yet the discriminatory power remained very close to that of 24 MIRU-VNTR

typing method (table 3.9).

Table 3.9 Discriminatory Powers of Genotyping Techniques

Typing method

No. of patterns

No. of clusters

No. of isolates in clusters

No. of isolates with unique

profile

Clustering rate

HGDI

43 spacers-Spoligo only

174 24 75 150 0.228 0.8241

43 spacers-Spoligo plus

MIRU-VNTR

195 18 48 177 0.133 0.99782

24 MIRU-VNTR only

189 21 57 168 0.16 0.9971

15 MIRU-VNTR

175 27 77 148 0.222 0.9929

12 MIRU-VNTR

141 32 116 109 0.373 0.9828

These calculations were performed using the 225 isolates with complete genotyping data (24 MIRU-VNTR and spoligotyping)

Page 140: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

120

3.9 Assessment of freely available databases for lineage assignation

Lineages were assigned to M. tuberculosis isolates using three freely available

online interfaces: TB-lineage, SITVITWEB that can handle spoligotype-only data,

and MIRU-VNTRPlus that is designed to use 24 MIRU-VNTR data. Although they

have been validated and are widely used but they all were unable either to classify

(mainly TB-lineage and SpolDB4/SITVITWEB) or to provide correct classification

(TB-Lineage and MIRU-VNTRplus). Another limitation of these databases was found

in assigning sublineage. This is due to the fact that these databases are not being

upgraded regularly as it is difficult to decide whether the lineage should be assigned

according to the latest information available or it should be kept the same to make

previous studies more easily compared to the new ones? All databases chose to keep

original naming, for instance, the name of H4 sub lineage baptized into Ural since

2010, (Filliol et al., 2002; Gomgnimbou et al., 2013b) is still used in SITVITWEB.

However, this could have led to the overestimation of prevalence of Haarlem

sublineage in our isolates as Ural sublineage is much more prevalent (6.5%) as

compared to true Haarlem sublineage (0.8%). The TB-lineage was found to be error-

prone and imprecise. SITVITWEB and MIRU-VNTRplus performed well, but

couldn’t give exact assignation for 20% of the isolates (Figure 3.20 and table 3.10).

Page 141: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

121

Figure 3.20 Graphical representation of performance of the different online tools Labels highlight the most represented categories when comparing the assignations with the reference assignation provided by the expert visual inspection. (1) no assignation provided by the web tool, (2) incorrect assignation involving a different major lineage as defined by Gagneux et al., (2006b) (3) imprecise assignation, (4) incorrect assignation at a fine level (but same major lineage as the reference), (5) correct and precise assignation.

Page 142: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

122

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000222 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Incorrect

PAK2011000223 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Beijing Correct East Asian (Beijing) Correct Beijing Correct

PAK2011000224 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000225 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000226 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ EAI Correct Indo-Oceanic Correct EAI3-IND Correct

PAK2011000227 ■■■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2011000228 ■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■■■■■■■ EAI Correct Indo-Oceanic Correct EAI6-BGD1 Correct

PAK2011000229 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000230 ■■■■■■❏■■■■■■■■■❏■■■■■■■■■■■❏❏❏❏■❏■■■■■❏❏❏❏ EAI Correct Indo-Oceanic Correct Unknown

PAK2011000231 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000232 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS Correct

PAK2011000233 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000234 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000235 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2011000236 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS Correct

PAK2011000237 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000238 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

Table 3.10 Assesment of Freely Available Databases for Lineage Assignatio

Page 143: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

123

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000239 ■■■❏❏❏❏■■■■■■■■■■■■■❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000240 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level Euro-American Imprecise H4

Incorrect at

fine level

PAK2011000241 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏❏❏ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000242 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000243 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏❏❏❏ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000244 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000245 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000246 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000247 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000248 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000249 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong ? -

PAK2011000250 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Wrong East Asian (Beijing) Correct Beijing Correct

PAK2011000251 ■■■■■❏■■■■■■■■■■■■■■■■■■■■■■■■❏■❏❏❏❏■■■❏■■■ Haarlem Correct Euro-American Imprecise Unknown Unknown

PAK2011000252 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level Euro-American Imprecise H4 Incorrect at

fine level

PAK2011000253 ■■■■■■■■■❏■■■■■■■■■■■■❏❏■■■■■■■■❏❏❏❏■■■❏❏■■ S Incorrect at

fine level Euro-American Imprecise Unknown Unknown

PAK2011000254 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

Page 144: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

124

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000255 ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000256 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000257 ■■■❏❏❏❏■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000258 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000259 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000260 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2011000261 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000262 ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000263 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000264 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000265 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000266 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000267 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000268 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level

Euro-American Imprecise H4 Incorrect at fine level

PAK2011000269 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level

Euro-American Imprecise H4 Incorrect at fine level

PAK2011000270 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level

Euro-American Imprecise H4 Incorrect at fine level

PAK2011000271 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

Page 145: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

125

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000272 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■❏❏❏❏❏ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000273 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000274 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■■■■■■❏❏❏❏■■■■■■■ unknown Unknown Euro-American Imprecise Unknown Unknown

PAK2011000275 ■■■■■❏■■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ unknown Unknown Euro-American Imprecise X1 Correct

PAK2011000276 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000277 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000279 ■■■■■■■■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ Haarlem Incorrect at fine level Euro-American Imprecise X1 Correct

PAK2011000280 ■■■❏❏❏❏■■■■■■❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2011000281 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000282 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000283 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000284 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ unknown Unknown Euro-American Imprecise H4 Incorrect at fine level

PAK2011000285 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000286 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000288 ■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000289 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■■■■■■■ EAI Correct Indo-Oceanic Correct EAI 5 Correct

PAK2011000290 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏❏■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000291 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

Page 146: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

126

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000293 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000294 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000295 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000296 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000297 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ EAI Correct Indo-Oceanic Correct EAI3-IND Correct

PAK2011000298 ■■■❏❏❏❏❏❏❏❏❏■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■❏❏❏❏ Haarlem Incorrect at fine level Euro-American Imprecise X 3 Correct

PAK2011000299 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000401 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000402 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000403 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level Euro-American Imprecise H4

Incorrect at fine level

PAK2011000404 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Beijing Correct East Asian (Beijing)

Correct Beijing Correct

PAK2011000405 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level Euro-American Imprecise H4

Incorrect at fine level

PAK2011000406 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ Cameroon Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2011000407 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000408 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■❏❏❏❏❏ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000409 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

Page 147: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

127

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000410 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■❏❏❏❏■■■❏■■■ LAM Correct Euro-American Imprecise LAM 3 Correct

PAK2011000411 ❏❏■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000412 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000413 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000414 ■■■❏❏❏❏■■■■■❏❏❏❏■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000415 ■■■■■■■■■■■■■■■■■■■❏❏❏❏❏■■■■❏❏❏■❏❏❏❏■■■■■■■ Unknown Unknown Euro-American Imprecise Unknown Unknown

PAK2011000416 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ EAI Correct Indo-Oceanic Correct EAI3-IND Correct

PAK2011000417 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000418 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000419 ■■■❏■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2011000420 ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏❏❏ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000421 ■■■■■■■■❏❏❏■■■■■■■■■❏❏❏❏■■❏❏❏❏❏■❏❏❏❏■■■■■■■ LAM Incorrect at fine level Euro-American Imprecise Unknown Unknown

PAK2011000422 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■❏■■❏❏❏❏■■■■■■ Delhi/CAS - Indo-Oceanic - Unknown Unknown

PAK2011000423 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000424 ■■■❏❏❏❏■■■■■■❏■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000425 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000426 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Wrong East Asian (Beijing) Correct Beijing Correct

Page 148: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

128

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000427 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000428 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000429 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Beijing Correct East Asian (Beijing) Correct Beijing Correct

PAK2011000430 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000431 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000432 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■❏❏■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2011000433 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000434 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level

Euro-American Imprecise H4 Incorrect at fine level

PAK2011000435 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000436 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000437 ■❏❏■■■■■■■■■■■■■❏■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ EAI Correct Indo-Oceanic Correct EAI3-IND Correct

PAK2011000439 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000440 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000441 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000442 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000443 ■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2011000444 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS Correct

Page 149: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

129

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000445 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000447 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000448 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000450 ■■■❏❏❏❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000451 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000453 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000454 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000455 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000456 ■■■❏❏❏❏■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2011000457 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■■■■■■■■ EAI Correct Indo-Oceanic Correct EAI 5 Correct

PAK2011000458 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000459 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2011000460 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Beijing Correct East Asian (Beijing) Correct Beijing Correct

PAK2011000461 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000463 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000464 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000465 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ EAI Correct Indo-Oceanic Correct EAI3-IND Correct

PAK2011000466 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

Page 150: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

130

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000467 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ Cameroon Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2011000468 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ EAI Correct Indo-Oceanic Correct EAI3-IND Correct

PAK2011000469 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■❏■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000470 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000471 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000472 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000473 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK2011000474 ■■■■■■■■■■■■❏■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■❏■■■ Unknown Unknown Euro-American Imprecise H4 Incorrect at fine level

PAK2011000476 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000477 ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2011000478 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000479 ■■■❏❏❏❏■■■■■■■■■■■■❏❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000481 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000482 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000483 ■■■❏❏❏❏❏❏❏■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS Correct

PAK2011000484 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS Correct

PAK2011000485 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000486 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

Page 151: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

131

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2011000487 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000488 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000489 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000490 ■■■❏❏❏❏■■■■■■■■■❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000491 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■❏❏❏❏❏ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2011000492 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000493 ■■■❏❏❏❏■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2011000494 ■■■❏❏❏❏■■■■■■■■■■■■❏❏■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000495 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏■❏❏❏❏■■■■■■■ Haarlem Correct Euro-American Imprecise H3 Correct

PAK2011000497 ■■■❏■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2011000498 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000499 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000501 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2011000503 ■■■❏❏❏❏❏❏❏■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2011000504 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong ? -

PAK2011000505 ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■❏■■■ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2011000506 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000507 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000508 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

Page 152: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

132

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2012000509 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000510 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000511 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000512 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000513 ■■■❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS Correct

PAK2012000514 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000515 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000516 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000517 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK2012000518 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000520 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000521 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000522 ■■■■■■■■■■■■❏■■■■■❏■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise Ambigous T4T3 Correct

PAK2012000523 ■■■■■■■■■■■■■■■■■❏■■■■❏■■■■■❏❏❏❏■❏■■■■■■■■■ EAI Correct Indo-Oceanic Correct EAI6-BGD1 Correct

PAK2012000526 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK2012000527 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■❏❏■ Delhi/CAS Correct Unknown Unknown Unknown Unknown

PAK2012000528 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ TUR Incorrect at fine level Euro-American Imprecise T1 Correct

PAK2012000529 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Beijing Correct East Asian (Beijing) Correct Beijing Correct

Page 153: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

133

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK2012000532 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level Euro-American Imprecise H4

Incorrect at fine level

PAK2012000534 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏■■❏❏❏■■■■ EAI Correct Indo-Oceanic Correct ? -

PAK2012000535 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏❏❏■■■■■■■ Haarlem - Euro-American

? -

PAK2012000537 ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS Correct

PAK2012000538 ■■■❏❏❏❏■■■■■■■❏■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000902 ■■■❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏■■■■■■ Delhi/CAS Correct Unknown Unknown CAS2 Correct

PAK1998000903 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level Euro-American Imprecise H4

Incorrect at fine level

PAK1998000904 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000905 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000907 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000908 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000909 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000910 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong CAS Correct

PAK1998000911 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■❏❏■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000912 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000914 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

PAK1998000916 ❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Beijing Correct East Asian (Beijing) Correct Beijing Correct

Page 154: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

134

Key 43 spoligotyping results

Lineage assignation by MIRU-VNTRPlus

Comparison with expert

visual inspection

Lineage assignation

byTB-Lineage

Comparison with expert

visual inspection

Lineage assignation by

SITVIT

Comparison with expert

visual inspection

PAK1998000917 ■❏❏■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■❏■■❏❏❏■■■■ EAI Correct Indo-Oceanic Correct EAI3-IND Correct

PAK1998000918 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000919 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000920 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000921 ■■■❏■■■■■❏■■■■■■■■■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ S Incorrect at fine level Euro-American Imprecise T1 Correct

PAK1998000922 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏■■■■■■■■■❏❏❏❏■■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong ? - PAK1998000923 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000924 ■■■❏❏❏❏■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏■■■■■ Delhi/CAS Correct Indo-Oceanic Wrong Unknown Unknown

PAK1998000925 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000927 ■❏■■■■■■■■■■■■■■■■■■■■■■■■■■❏❏❏■❏❏❏❏■■■■■■■ NEW-1 Incorrect at fine level Euro-American Imprecise H4

Incorrect at fine level

PAK1998000928 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000929 ■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏■■■■■■■ LAM Incorrect at fine level Euro-American Imprecise T1 Correct

PAK1998000932 ■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■❏❏❏❏■■■■■■■ LAM Incorrect at fine level Euro-American Imprecise T1 Correct

PAK1998000933 ■❏❏■■❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■■■■❏❏❏❏■❏■■■■■■■■■ EAI Correct Indo-Oceanic Correct Unknown Unknown

PAK1998000937 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

PAK1998000938 ■■■■■■■■■■■■■■■■■❏■■■■■■■■■■■■■■❏❏❏❏■■■■■■■ Haarlem Incorrect at fine level Euro-American Imprecise X1 Correct

PAK1998000939 ■■■❏❏❏❏■■■■■■■■■■■■■■■❏❏❏❏❏❏❏❏❏❏❏❏■■■■■■■■■ Delhi/CAS Correct Unknown Unknown CAS1-Delhi Correct

Page 155: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

135

3.10 Characterization of mutations in rpoB gene associated with rifampicin resistance by Spoligoriftyping

Out of 457 isolates screened for the detection of mutations in hotspot region of

rpoB gene by spoligoriftyping, 426 gave interpretable results (table 3.11). Three

hundred and fifty one (82%) isolates showed no mutation while 75 (18%) isolates

showed different mutations in hot spot region of rpoB gene. The most common

mutation was found to be substitution mutation at codon 531 where 54 isolates

showed this mutation [44 showed (TCG→TTG), 8 showed (TCG→TGG) while two

showed unknown mutations]. Eight strains harbored SNP at codon 526 [3 had SNP

(CAC→GAC), 2 had (CAC→TAC), 3 had unknown mutation]. Eleven isolates

exhibited SNP at codon 516 [10 had (GAC→GTC) while one had unknown

mutation]. The presence of unknown mutations at codon 531, 526 and 516 was

detected by absence of positive hybridization signals both for corresponding wild type

as well as mutant probes. Double mutations were also detected in 3 isolates that

harbored mutations both at codon 531 and 526. Seven mutations were detected

indirectly by the absence of positive hybridization signals by spanning probes [2

isolates showed absence of hybridization signal at regions covered by spanning probe

spaWt_1 and spaWt_2 and one isolate showed no hybridization signal at region

covered by spaWt_1 and 2 isolates at region covered by spaWt_2].

3.10.1 Comparison of spoligoriftyping data with DNA sequencing

DNA sequence analysis revealed that the unknown mutations detected by

absence of hybridization signals at the region covered by spanning probes were

511(CTG→CCG), 517(CAG→CAA) and AAC deletion at codon 518. Unknown

mutations detected by spoligoriftyping at codon 526 were found to be (CAC→AAC)

and (CAC→CTG). Double mutations were also identified correctly (table 3.11).

The DNA sequencing of 84 samples (53 mutants and 31 wild type, based on

spoligoriftyping) served as reference to assess the accuracy of mutation profile

obtained by spoligoriftyping assay. DNA sequencing results correlated very well with

that of spoligoriftyping including those in the region of sequence covered by the

spanning probes Spa_wt1 and Spa_wt2. Double mutations were also confirmed by

sequencing. Contradictory results were found only for 3 isolates. Spoligoriftyping

Page 156: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

136

identified a mutation in the region covered by spanning probes spaWt_2 in one isolate

and two mutations at spaWt_1 and spaWt_2 in the second isolate whereas sequencing

analysis showed no mutation in these regions. For a third isolate, a mutation at codon

520(CCG→CCA) could not be detected by spoligoriftyping. Hence, overall

sensitivity and specificity of the assay for predicting resistance in comparison to

sequencing was found to be 98% and 93%, respectively.

3.10.2 Comparison of the phenotypic drug sensitivity for rifampicin results with genotypic drug sensitivity results as obtained by spoligoriftyping

Comparison of the genotypic RifR patterns and the phenotypic drug sensitivity

data as provided by the local hospitals showed that out of 100 isolates annotated as

RifR by the local hospitals, 48 were classified as resistant and 50 as sensitive by

spoligoriftyping, while 216 (88%) out of 244 RifS isolates were confirmed sensitive

(two phenotypically RifR isolates and 19 RifS isolates did not succeed in

spoligoriftyping) (Table 3.11). Nine (4%) isolates designated as RifS by phenotypic

DST were found to possess substitution mutations according to spoligoriftyping at

codon 531(TCG→TTG) (n=5), 531(TCG→TGG) (n=1) and 516(GAC→GTC) (n=3)

of RRDR. These results were confirmed by sequencing for 6 randomly selected

isolates. As 531(TCG→TTG) mutants have always been described as strongly

resistant to rifampicin, the discrepancies between genotypic and phenotypic DSTs

seem to be due to errors in the phenotypic tests.

Page 157: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

137

Table 3.11 Characterization of Mutations in rpoB Gene Associated with Rifampicin Resistance in M. tuberculosis Isolates

Key S

pa_w

t1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2009000062 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK1998000063 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2009000064 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK1998000065 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000067 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) 516(GAC→GTC) Resistant

PAK1998000069 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000070 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000071 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000072 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000073 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000074 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2005000076 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2009000077 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

Page 158: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

138

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2009000078 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2009000079 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000082 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2009000083 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000085 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2009000086 ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ❏ ■ 526(CAC→???) and 531(TCG→TGG)

526(CAC→AAC) and 531(TCG→TGG) Not available

PAK2011000088 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2009000089 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2009000090 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Not available

PAK2009000092 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2009000093 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2009000094 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

Page 159: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

139

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2009000095 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

PAK2009000097 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Not available

PAK2005000103 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2009000106 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

PAK1998000107 ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ❏ ■ 526(CAC→???) and 531(TCG→TGG)

526(CAC→AAC) and 531(TCG→TGG)

Resistant

PAK1998000109 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Not available

PAK1998000110 ■ ■ ■ ❏ ❏ ❏ ■ ❏ ❏ ■ 526(CAC→GAC) and

531(TCG→TGG) Not done Resistant

PAK1998000111 ■ ■ ■ ❏ ■ ❏ ■ ❏ ❏ ❏ 526(CAC→GAC) 526(CAC→GAC) Resistant

PAK2009000112 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

PAK2009000113 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Sensitive

PAK2009000115 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Sensitive

PAK2009000116 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

Page 160: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

140

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2009000119 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK1998000121 ■ ■ ■ ❏ ■ ❏ ❏ ❏ ❏ ❏ 526(CAC→???) 526(CAC→CTG) Resistant

PAK2009000122 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ■ 531(TCG→TGG) 531(TCG→TGG) Resistant

PAK1998000123 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Resistant

PAK2005000126 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2009000127 ■ ■ ❏ ■ ■ ❏ ❏ ❏ ❏ ❏ spaWt_2 AAC Deletion Resistant

PAK2010000128 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2009000129 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2009000130 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK1998000131 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000132 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000133 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2009000136 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2009000139 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

Page 161: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

141

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK1998000141 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000144 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Not available

PAK1998000147 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2009000148 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2009000149 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2009000154 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK1998000155 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000156 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2009000157 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation 520(CCG→CCA) Resistant

PAK2009000158 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000159 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2009000160 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000161 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK1998000164 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

Page 162: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

142

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK1998000167 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ■ 531(TCG→TGG) Not done Resistant

PAK2009000168 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2009000169 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2009000170 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000171 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000172 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000173 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2009000174 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Not available

PAK1998000191 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2010000196 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2010000197 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2010000198 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2010000199 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Resistant

PAK2010000200 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 163: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

143

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2010000202 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2010000203 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2010000204 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2010000205 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2010000206 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2010000207 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2010000208 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2010000210 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2010000211 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2010000213 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2010000214 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2011000215 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2010000218 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2010000219 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

Page 164: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

144

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2010000221 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2011000222 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000223 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000224 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000225 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000226 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000227 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000228 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000229 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000230 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000231 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000232 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000233 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000234 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 165: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

145

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000235 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000236 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000237 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000238 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000239 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000240 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000241 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000242 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000243 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000244 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000245 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000246 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000247 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000248 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 166: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

146

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000249 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000250 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000251 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000252 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000253 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000254 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000255 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000256 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000257 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000258 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000259 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000260 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000261 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000262 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 167: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

147

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000263 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000264 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000265 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000266 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000267 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000268 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000269 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000270 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000271 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000272 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000273 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000274 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000275 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000276 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 168: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

148

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000277 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000279 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000280 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000281 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000282 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000283 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000284 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000285 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000286 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2011000288 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000289 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000290 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000291 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000293 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

Page 169: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

149

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000294 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000295 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000296 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000297 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000298 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2011000299 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) 516(GAC→GTC) Resistant

PAK2011000401 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000402 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ■ 531(TCG→TGG) 531(TCG→TGG) Resistant

PAK2011000403 ■ ■ ■ ❏ ■ ❏ ❏ ■ ❏ ❏ 526(CAC→TAC) 526(CAC→TAC) Resistant

PAK2011000404 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000405 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000406 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000407 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000408 ■ ■ ■ ❏ ■ ❏ ■ ❏ ❏ ❏ 526(CAC→GAC) 526(CAC→GAC) Resistant

Page 170: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

150

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000409 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) 516(GAC→GTC) Resistant

PAK2011000410 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

PAK2011000411 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000412 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000413 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000414 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000415 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000416 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000417 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000418 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000419 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000420 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000421 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000422 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 171: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

151

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000423 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000424 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000425 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000426 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000427 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000428 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000429 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000430 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000431 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

PAK2011000432 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000433 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000434 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000435 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000436 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 172: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

152

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000437 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000439 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000440 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2011000441 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000442 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000443 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000444 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000445 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000447 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000448 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000449 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000450 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000451 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000453 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 173: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

153

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000454 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000455 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000456 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000457 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000458 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000459 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2011000460 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000461 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000463 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000464 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000465 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000466 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000467 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000468 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 174: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

154

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000469 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000470 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) 516(GAC→GTC) Sensitive

PAK2011000471 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000472 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2011000473 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) 516(GAC→GTC) Sensitive

PAK2011000474 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000476 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000477 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000478 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000479 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000481 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000482 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000483 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) Not done Resistant

PAK2011000484 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

Page 175: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

155

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000485 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000486 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000487 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000488 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000489 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000490 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000491 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) 516(GAC→GTC) Sensitive

PAK2011000492 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000493 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) 531(TCG→TTG) Sensitive

PAK2011000494 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000495 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000498 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000499 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000503 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 176: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

156

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2011000504 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000505 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2011000506 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK1998000903 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Not available

PAK1998000904 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Not available

PAK1998000905 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000906 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000907 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000908 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000909 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000910 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000911 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Not available

PAK1998000912 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000913 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

Page 177: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

157

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK1998000914 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000915 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000916 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000917 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000918 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000919 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000920 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000921 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000922 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000923 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000924 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000925 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000927 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

Page 178: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

158

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK1998000928 ❏ ■ ❏ ■ ■ ❏ ❏ ❏ ❏ ❏ spaWt_1 and spaWt_2 511(CTG→CCG) and

517(CAG→CAA) Not available

PAK1998000929 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000930 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000931 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000932 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000933 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ❏ 531(TCG→???) Not done Not available

PAK1998000934 ■ ■ ■ ❏ ■ ❏ ❏ ■ ❏ ❏ 526(CAC→TAC) Not done Not available

PAK1998000935 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000936 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000937 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ■ 531(TCG→TGG) Not done Not available

PAK1998000938 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000939 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK1998000942 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

Page 179: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

159

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2012000507 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000508 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000509 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000510 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000511 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000512 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000513 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000514 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Not available

PAK2012000515 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000516 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000517 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000518 ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutationpaWt_1 Not done Not available

PAK2012000520 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000521 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

Page 180: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

160

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2012000522 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000523 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000525 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000526 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000527 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000528 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000529 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000530 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000532 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000533 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000534 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000535 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Not available

PAK2012000537 ■ ❏ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ 516(GAC→???) 516(GAC→TAC) Not available

PAK2012000538 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Not available

Page 181: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

161

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2008000539 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000540 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000543 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000545 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000546 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000547 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000548 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000550 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) Not done Resistant

PAK2008000551 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000554 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000555 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2008000556 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000557 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000559 ■ ■ ❏ ■ ■ ❏ ❏ ❏ ❏ ❏ spaWt_2 No mutation Sensitive

Page 182: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

162

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2008000560 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000561 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000562 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000563 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000564 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Resistant

PAK2008000565 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) Not done Resistant

PAK2008000566 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000567 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000568 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000569 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000571 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000572 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000573 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000574 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 183: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

163

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2008000575 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000576 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000577 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000578 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Resistant

PAK2008000579 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000581 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Sensitive

PAK2008000582 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000583 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000584 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000585 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000586 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000587 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000588 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000589 ■ ❏ ■ ■ ■ ■ ❏ ❏ ❏ ❏ 516(GAC→GTC) Not done Resistant

Page 184: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

164

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2008000590 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2008000591 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000592 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000593 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000594 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000595 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000596 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000597 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000600 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000601 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000602 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000603 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000604 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000605 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 185: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

165

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2008000606 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000607 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000608 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000611 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000614 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000616 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

PAK2008000617 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation No mutation Sensitive

PAK2008000618 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000619 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000620 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Resistant

PAK2008000621 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000622 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2008000623 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000624 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ■ ❏ 531(TCG→TTG) Not done Sensitive

Page 186: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

166

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2008000625 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000626 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000627 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000628 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000629 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2008000630 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000631 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000632 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000633 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000634 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000635 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000636 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000637 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000638 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 187: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

167

Key

Spa

_wt1

516_

wt

spa_

wt2

526_

wt

531_

wt

516_

mut

_GT

C

526_

mut

_GA

C

526_

mut

_TA

C

531_

mut

_TT

G

531_

mut

_TG

G

Spoligoriftyping results rpoB hotspot sequencing

results Phenotypic DST

PAK2008000639 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2008000640 ❏ ■ ❏ ■ ■ ❏ ❏ ❏ ❏ ❏ spaWt_1 and spaWt_2 No mutation Sensitive

PAK2008000641 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000643 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000644 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000645 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ❏ 531(TCG→???) Not done Resistant

PAK2008000646 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000647 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000649 ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ ■ 531(TCG→TGG) Not done Sensitive

PAK2008000650 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Resistant

PAK2008000651 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

PAK2008000653 ■ ■ ■ ■ ■ ❏ ❏ ❏ ❏ ❏ No mutation Not done Sensitive

Page 188: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

168

3.11 Reverse hybridization line probe assay

3.11.1 Analysis of PCR products of “hot spot” region of rpoB gene

PCR products using outer pair of primers were resolved on 1.5% agarose gel

to check the quality of amplified products. A 382bp DNA band was observed for

specific amplification.

Figure 3.21 PCR amplification of rpoB gene of M. tuberculosis isolates

by regular primers Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 7: “No DNA” negative control; Lane 1-6: PCR amplification products

3.11.2 Analysis of nested PCR products by agarose gel electrophoresis

Nested PCR products were resolved on 1.5% agarose gel to check the

amplified products and 257 bp amplification product was observed.

Figure 3.22 PCR amplification of rpoB gene of M. tuberculosis isolates by

nested primers Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 1: “No DNA” negative control; Lane 2-13: PCR amplification products

3.11.3 Optimization of conditions for reverse hybridization line probe assay (RH-LiPA)

Un-tailed oligonucleotides could not be bound to the membrane. This was

evident by the nonspecific binding of the PCR product directly to membrane as shown

Page 189: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

169

in the figure 3.23. Since PCR product was too long (265bp), it got bound to the

membrane without cross linking and could not be removed even after stringent

washing.

Figure 3.23 Optimization of conditions for reverse line blot. Continuous blue purple lines show nonspecific binding of PCR products

3.11.4 Elimination of nonspecific signals

Though nonspecific binding of the PCR products to the nylon membrane was

eliminated by the introduction of pre-hybridization solution to the procedure but no

specific signals were observed. This pointed out that the problem might be with the

binding of the oligonucleotides to the membrane which had resulted in the failure of

hybridization signals (Figure 3.24).

Figure 3.24 Elimination of nonspecific binding of PCR product Use of pre-hybridization solution resulted in the elimination of nonspecific binding of PCR products

3.11.5 Probe Hybridization and Signal Detection at Different Conditions

The best signal intensity was found with hybridization temperature of 45oC in

combination with 53oC washing temperature. 5XSSPE/0.5% SDS was found to be

optimum salt concentration for hybridization solution (table 3.12 and figure 3.25).

Moreover, it was found that addition of conjugate at hybridization step can not only

Page 190: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

170

result in effective binding of the conjugate to the biotin along with the hybridization

but also reduced the assay time.

3.12 Probe Hybridization and Signal Detection at Different Conditions

Strip No: Nonspecific background Hybridization signals

1 No Weak

2 No Weak

3 No Strong

4 No Weak

5 Yes No signals due to dark background

6 Yes No signals due to dark background

7 No Strong

8 Yes Weak signals due to high background

9 No Strong

Figure 3.25 Optimization of different hybridization and washing conditions

Nylon membrane strips at different conditions of hybridization and washing showing different intensities of hybridization signals

3.11.6 Optimization of DNA cross linking time

The optimum time for cross linking DNA to the nylon membrane was when

the membrane was exposed to UV twice

Page 191: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

171

Figure 3.26 Optimization of DNA cross linking time

3.11.7 Application of strip optimized conditions in Mini blotter45

Signals of the same intensity as to that in the strips were observed which

showed that the conditions optimized for the strips were equally good for

hybridization in Miniblotter except that the background was observed in the direction

of applied oligonucleotides (figure 3.27).

Figure 3.27 Application of strip optimized conditions in Mini blotter45 Background was observed in the direction of applied oligonucleotides

Oligonucleotides

Page 192: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

172

3.11.8 Optimization of PCR product concentration

The intensity of hybridization signals was found to be directly proportional to

the quantity of the PCR products. The optimum quantity of PCR product was 10 µL

(figure 3.28).

Figure 3.28 Optimization of amplicon concentration

3.11.9 Characterization of mutations in rpoB gene of M. tuberculosis by In-house RH-LiPA

After optimization, 168 culture isolates, originating from different parts of

Pakistan, were screened for the mutations rpoB 511, rpoB 512, rpoB 513, rpoB 515,

rpoB 516, rpoB 522, rpoB 524, rpoB 526, rpoB 529, rpoB 531 and rpoB 533. The

results were visually analyzed (figure 3.29, 3.30 and 3.31) and are given in table 3.13.

Out of 168 culture isolates analyzed, 116 (69%) isolates showed no mutation

while 52 (31%) isolates showed either substitution or deletion mutation in hotspot

region of rpoB gene. The most common mutation was in codon 531 where 36 isolates

were found to harbor mutation at this codon [33 isolates showed (TCG→TTG), 3

isolates showed (TCG→TGG) mutation]. Seven isolates exhibited mutation in codon

526 [2 isolates showed (CAC→GAC), 3 had (CAC→TGC), (CAC→TAC) or

(CAC→CGC) mutation while 2 isolates showed unknown mutations]. The AAC

deletion at codon 518 was observed in one isolate while another isolate showed an

unknown mutation at codon 515(ATG→???). Two isolates showed mutation at codon

516 [one had GACCAG del mutation while other had (GAC→GTC) mutation] and 4

isolates harbored (CTG→CCG) mutation at codon 511. The presence of unknown

mutations at codon 526 and 515 were detected indirectly by the absence of signal for

wild type as well as mutant probes corresponding to codon 526 and 515.

5µl 10µl 20µl 30µl 40µl 50 µl

Page 193: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

173

Figure 3.29 Reverse hybridization line blot

Horizontal lanes show oligonucleotides while vertical lanes correspond to PCR products from different isolates. Dark blue boxes indicate positive hybridization signals.

Page 194: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

174

Figure 3.30 Reverse hybridization line blot

Horizontal lanes show oligonucleotides while vertical lanes correspond to PCR products from different isolates. Dark blue boxes indicate positive hybridization signals.

Page 195: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

175

Figure 3.31 Reverse hybridization line blot

Horizontal lanes show oligonucleotides while vertical lanes correspond to PCR products from different isolates. Dark blue boxes indicate positive hybridization signals.

Page 196: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

176

3.11.10 Cloning and DNA sequencing of PCR amplified hotspot region of rpoB gene from M. tuberculosis

A 382bp amplified fragment of rpoB gene was cloned in pTZ57R (MBI

Fermentas) vector for 30 isolates while 257bp amplified segment of rpoB gene was

cloned for 16 isolates. Extracted plasmid DNA was restricted by EcoR1 and Pst1

enzymes and was resolved on agarose gel to see the size and quality of insert (Figure

3.29).

Figure 3.32 Restriction analysis of pTZ57R/T vector DNA containing cloned

rpoB gene fragment Lane L: 1kb DNA ladder (Fermentas Cat # SM0313) Lane 1-9: Restricted E. coli plasmid DNA containing cloned fragment

3.11.11 Correlation of in-house line probe assay with DNA sequencing

DNA sequencing of 59 randomly selected samples (27 mutant and 32

susceptible as designated by in-house line probe assay) served as reference to assess

the accuracy of mutation profile of rpoB as detected by in-house assay. Of 32

susceptible designated isolates, DNA sequencing analysis showed no mutation in

hotspot region of rpoB gene in 31 isolates while one isolate was found to have a silent

mutation at codon 520(CCG→CCA). In-house line probe assay could not detect this

silent mutation. Of 27 isolates designated as mutant by in-house assay, 26 isolates

were found to have the corresponding mutations as in the sequencing analysis. The

one that showed the discrepant result was the isolate found to harbor double mutation

at codon 531(TCG→TGG) along with 526(CAC→AAC) while in-house assay could

only detect the mutation at codon 531. Hence, with two discrepant results sensitivity

and specificity of in-house line probe assay was found to be 96% and 97%,

respectively.

Page 197: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

177

The unknown mutations detected at codon 526 in one isolate was found to be

(CAC→CTG) while sequencing of two isolates showing unknown mutations at codon

515 and 526 could not be done due to nonavailability of DNA. Other mutations

detected outside the hotspot region of rpoB gene by sequencing were

569(ATC→AAC), 548(CGC→TGC) and 506(GAC→ATC) where mutation at codon

548(CGC→TGC) was found to be coexisting with mutation at codon

531(TCG→TTG) (table 3.13).

Table 3.13 Detected Mutations in rpoB Gene of M. tuberculosis Culture Isolates by In-house Line Probe Assay

Code LiPA results Sequencing DST

PAK1998000059 515(ATG→???) Not available Resistant

PAK1998000060 526(CAC→TGC) Not done Resistant

PAK1998000061 526(CAC→TAC) 526(CAC→TAC) Resistant

PAK1998000063 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000065 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000067 516(GAC→GTC) 516(GAC→GTC) Resistant

PAK1998000069 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000070 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000071 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000072 531(TCG→TTG) 531(TCG→TTG Resistant

PAK1998000073 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000074 No mutation Not done Resistant

PAK1998000107 531(TCG→TGG) 526(CAC→AAC) and

531(TCG→TGG) Resistant

PAK1998000109 No mutation No mutation Not available

PAK1998000111 526(CAC→GAC) 526(CAC→GAC) Resistant

PAK1998000121 526(CAC→???)* 526(CAC→CTG) Resistant

PAK1998000123 531(TCG→TTG) Not done Resistant

PAK1998000141 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK1998000144 531(TCG→TTG) Not done Not available

PAK1998000155 No mutation Not done Not available

PAK1998000156 No mutation Not done Not available

PAK1998000167 531(TCG→TGG) Not done Resistant

PAK1998000191 531(TCG→TTG) 531(TCG→TTG) Resistant

Page 198: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

178

Code LiPA results Sequencing DST

PAK2005000076 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2005000103 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2008000654 No mutation Not done Not available

PAK2008000655 531(TCG→TTG) Not done Not available

PAK2008000656 No mutation Not done Not available

PAK2008000657 531(TCG→TTG) Not done Not available

PAK2008000658 531(TCG→TTG) Not done Not available

PAK2008000659 No mutation Not done Not available

PAK2008000660 531(TCG→TTG) Not done Not available

PAK2008000661 No mutation Not done Not available

PAK2008000662 526(CAC→CGC) Not done Not available

PAK2008000663 531(TCG→TTG) Not done Not available

PAK2008000664 518 AAC del Not done Not available

PAK2008000567 511(CTG→CCG) Not done Not available

PAK2008000666 No mutation Not done Not available

PAK2008000667 No mutation Not done Not available

PAK2008000668 No mutation Not done Not available

PAK2008000669 No mutation 506(TTC→ATC) Not available

PAK2008000670 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2008000671 No mutation 569(ATC→AAC

outside the hotspot Not available

PAK2008000672 No mutation Not done Not available

PAK2008000673 No mutation No mutation Not available

PAK2008000674 No mutation No mutation Not available

PAK2008000675 No mutation No mutation Not available

PAK2008000676 No mutation No mutation Not available

PAK2008000677 No mutation No mutation Not available

PAK2008000678 No mutation Not done Not available

PAK2008000679 No mutation Not done Not available

PAK2008000680 No mutation Not done Not available

PAK2008000681 No mutation Not done Not available

PAK2008000682 No mutation Not done Not available

PAK2008000683 No mutation Not done Not available

PAK2008000684 No mutation Not done Not available

Page 199: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

179

Code LiPA results Sequencing DST

PAK2008000685 No mutation Not done Not available

PAK2008000686 No mutation Not done Not available

PAK2008000687 No mutation Not done Not available

PAK2008000688 No mutation Not done Not available

PAK2008000689 No mutation Not done Not available

PAK2008000690 No mutation Not done Not available

PAK2008000691 No mutation Not done Not available

PAK2008000692 No mutation Not done Not available

PAK2008000693 No mutation Not done Not available

PAK2008000694 No mutation Not done Not available

PAK2008000695 No mutation Not done Not available

PAK2008000696 No mutation Not done Not available

PAK2008000697 516(GAC CAG)

deletions Not done Not available

PAK2008000698 No mutation Not done Not available

PAK2008000699 511(CTG→CCG) Not done Not available

PAK2008000700 No mutation Not done Not available

PAK2008000701 No mutation Not done Not available

PAK2008000702 No mutation Not done Not available

PAK2008000703 No mutation Not done Not available

PAK2008000704 No mutation Not done Not available

PAK2008000705 No mutation Not done Not available

PAK2008000706 No mutation Not done Not available

PAK2008000707 531(TCG→TTG) Not done Not available

PAK2008000708 511(CTG→CCG) Not done Not available

PAK2008000709 No mutation Not done Not available

PAK2008000710 No mutation Not done Not available

PAK2008000711 No mutation Not done Not available

PAK2008000712 No mutation No mutation Not available

PAK2008000713 No mutation No mutation Not available

PAK2008000714 No mutation Not done Not available

PAK2008000715 No mutation Not done Not available

PAK2008000716 531(TCG→TTG) Not done Not available

PAK2008000717 No mutation Not done Not available

Page 200: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

180

Code LiPA results Sequencing DST

PAK2008000718 No mutation Not done Not available

PAK2008000719 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2008000720 No mutation No mutation Not available

PAK2008000721 No mutation No mutation Not available

PAK2008000722 No mutation No mutation Not available

PAK2008000723 531(TCG→TTG) Not done Not available

PAK2008000724 531(TCG→TTG) Not done Not available

PAK2008000725 531(TCG→TTG) Not done Not available

PAK2008000726 531(TCG→TTG) Not done Not available

PAK2008000727 526(CAC→???) Not available Not available

PAK2008000728 No mutation Not done Not available

PAK2008000729 511(CTG→CCG) Not done Not available

PAK2008000730 No mutation Not done Not available

PAK2008000731 No mutation Not done Not available

PAK2008000732 526(CAC→GAC) Not done Not available

PAK2008000733 No mutation Not done Not available

PAK2008000734 No mutation Not done Not available

PAK2008000735 No mutation Not done Not available

PAK2008000736 No mutation Not done Not available

PAK2008000737 No mutation Not done Not available

PAK2009000062 No mutation No mutation Not available

PAK2009000064 No mutation No mutation Not available

PAK2009000077 No mutation Not done Resistant

PAK2009000078 No mutation No mutation Not available

PAK2009000079 No mutation Not done Resistant

PAK2009000082 No mutation No mutation Not available

PAK2009000083 No mutation Not done Resistant

PAK2009000085 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2009000089 No mutation No mutation Sensitive

PAK2009000090 No mutation No mutation Not available

PAK2009000092 No mutation No mutation Resistant

PAK2009000094 No mutation No mutation Sensitive

PAK2009000095 No mutation No mutation Not available

PAK2009000106 No mutation No mutation Sensitive

Page 201: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

181

Code LiPA results Sequencing DST

PAK2009000112 No mutation No mutation Sensitive

PAK2009000113 531(TCG→TTG) 531(TCG→TTG) Sensitive

PAK2009000115 531(TCG→TTG) 531(TCG→TTG) and

548(CGC→TGC) outside the hotspot

Sensitive

PAK2009000119 No mutation No mutation Not available

PAK2009000122 531(TCG→TGG) 531(TCG→TGG) and

571(CTG→CCG) Resistant

PAK2009000127 518 AAC deletion 518 AAC deletion Resistant

PAK2009000129 No mutation No mutation Resistant

PAK2009000130 No mutation No mutation Resistant

PAK2009000132 No mutation Not done Resistant

PAK2009000133 No mutation No mutation Resistant

PAK2009000136 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2009000139 No mutation Not done Resistant

PAK2009000148 No mutation Not done Not available

PAK2009000149 No mutation No mutation Resistant

PAK2009000154 No mutation Not done Resistant

PAK2009000157 No mutation 520(CCG→CCA) Resistant

PAK2009000158 No mutation Not done Resistant

PAK2009000159 No mutation No mutation Resistant

PAK2009000160 No mutation Not done Resistant

PAK2009000168 No mutation Not done Not available

PAK2009000169 No mutation Not done Not available

PAK2009000170 No mutation Not done Not available

PAK2009000171 No mutation Not done Resistant

PAK2009000172 No mutation Not done Resistant

PAK2009000173 No mutation Not done Resistant

PAK2009000174 531(TCG→TTG) 531(TCG→TTG) Not available

PAK2010000128 No mutation Not done Not available

PAK2010000196 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2010000197 No mutation Not done Resistant

PAK2010000198 No mutation Not done Resistant

PAK2010000199 No mutation No mutation Resistant

Page 202: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

182

Code LiPA results Sequencing DST

PAK2010000200 No mutation Not done Resistant

PAK2010000202 No mutation Not done Resistant

PAK2010000203 No mutation Not done Resistant

PAK2010000205 No mutation Not done Not available

PAK2010000207 No mutation Not done Resistant

PAK2010000208 No mutation Not done Resistant

PAK2010000210 531(TCG→TTG) 531(TCG→TTG) Resistant

PAK2010000211 No mutation Not done Not available

PAK2010000213 No mutation Not done Not available

PAK2010000214 No mutation Not done Resistant

PAK2010000218 No mutation Not done Resistant

PAK2010000219 No mutation Not done Resistant

PAK2010000221 No mutation Not done Resistant

* Probe specific to this mutation was not present in the assay

3.11.12 Approximate cost study of the developed in-house assay

Approximate cost of the developed In-house assay was calculated which

included cost of collection of samples, DNA extraction, PCR, membrane, all

disposables, hybridization and detection. Our assay costs €3.16 per sample when a

single sample was analyzed. The detail description of the consumables along with the

approximate cost is given in the table 3.14.

Table 3.14 Approximate Cost of the Developed In-house Assay

Quantity Price Quantity used

per test Price per test

(Rs.)

DNA Extraction Vacutainer tubes 100 1300 1 13

Syringe 100 900 1 9

Pipet tips (total) 500 300 25 30.6

Eppendorff (total) 500 550 4 5

Proteinase K (10mg/mL) 1mL 2000

~10

Page 203: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

183

Quantity Price Quantity used

per test Price per test

(Rs.)

PCR

Master Mix 250 Rx 6000 1 100

Primers for regular and nested PCR with Biotin modification

100µM×4 8330 2.1µM 44

PCR tubes 1000 1300 6 6

Gloves (total) 525 50 pair 4 42

DNA ladder 100 Rx 10,000 5 samples per gel 20

Agarose 500 g 37,000 0.1 g/reaction 8

TBE 1L 55

~6

Blotting

Nylon membrane 30 cm×3m 45000 30cm/80 samples 15

Oligos 30 oligo×50bp 37,500 8 pM per blot per

oligo 90

20XSSPE 1L 300 1mL 0.3

Hybridization

Biotin Chromogenic

Detection Kit

(Fermantas Cat #

K0662)

30 Blots 30,000 1000/15 67

Total

465.9 = €3.16

3.11.13 Frequency of mutations in rpoB gene of M. tuberculosis strains prevalent in Pakistan

Analysis of 515 isolates for the detection of mutations in rpoB gene revealed a

mutation profile that did not show a significant difference. Eighty one percent

(n=416) isolates showed no mutation while nineteen percent (n=99) isolates showed

mutations in rpoB gene. Dominant mutations were point substitution mutations (93%)

while deletion mutations had lesser contribution (3%). Mutations at codon 531 were

found at remarkably high frequency (64%). Other codons in hotspot region that had

mutations were 526, 516, 511 and 518 with the frequencies of 12%, 11%, 5% and 2%,

Page 204: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

184

respectively. Novel mutations observed outside the hotspot region constitute 4% and

these were found in codon 571, 569, 548 and 506. The frequency of mutations is

listed in table 3.15 while figure 3.30 provides overall spectrum of the mutations in

rpoB gene.

Table 3.15 Overall Spectrum of Mutations Observed in rpoB Gene of M. tuberculosis Culture Isolates

Codon Nucleotide change

Amino acid change Type No. of

isolates

Mutation frequency

(%)

571 CTG→CCG Leu→Pro Substitution 1 1

569 ATC→AAC Ile→Asn Substitution 1 1

548 CGC→TGC Arg→Cys Substitution 1 1

531 TCG→TTG Ser→Leu Substitution 57

64 531 TCG→TGG Ser→Trp Substitution 9 531 TCG→*

Ser→* --- 2

526 CAC→CGC His→Arg Substitution 1

12

526 CAC→GAC His→Asp Substitution 4 526 CAC→* His→* --- 1 526 CAC→TAC His→Tyr Substitution 3 526 CAC→TGC His→Cys Substitution 1 526 CAC→CTG His→Leu Substitution 1 526 CAC→AAC His→Asn Substitution 3

520 CCG→CCA Pro→Pro Silent 1 1

518 AACdeletion - Deletion 2 2

517 CAG→CAA Gln→Gln Silent 1 1

516 GAC CAG deletions

- Deletion 1 11 516 GAC→GTC Asp→Val Substitution 10

516 GAC→TAC Asp→Tyr Substitution 1

515 ATG→* Met→* --- 1 1

511 CTG→CCG Leu→Pro Substitution 5 5

506 GAC→ATC Asp→Ile Substitution 1 1

spaWt_1 * * --- 1 1

* These isolates could not be sequenced

Page 205: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

185

Figure 3.33 Percentage of different mutations observed in rpoB Gene of M.

tuberculosis culture isolates

3.11.14 Comparison of phenotypic drug sensitivity profile of different laboratories with genotypic drug sensitivity for rifampicin

The phenotypic drug sensitivity data as provided by different laboratories was

compared with genotypic drug sensitivity data. The samples included in this

comparison were 477 in number for which both the phenotypic and genotypic data

was available. The percent concordance of phenotypic DST with genotypic DST for

rifampicin is given in the table 3.16.

Laboratory 1

A total of 111 isolates from this laboratory were collected. The drug

sensitivity profile of 96 samples was available that designated 85 as RIFS while 11 as

RIFR. Genotypic drug sensitivity data revealed mutations in all the 11 RIFR isolates in

hotspot region of rpoB gene while no mutation was observed in any of RIFS isolates.

Results of 11 RIFR and 13 RIFS isolates were confirmed by sequencing.

Laboratory 2

A total of 38 isolates were received from this laboratory. Phenotypic drug

sensitivity profile designated 33 out of 38 isolates as RIFR while 5 as RIFS. Genotypic

drug sensitivity data showed mutations in 24 phenotypically RIFR and one RIFS

isolate while 9 RIFR and 4 RIFS isolates did not show any mutation.

Page 206: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

186

Table 3.16 Percentage Concordance of Phenotypic and Genotypic DST for rifampicin

Genotypic rifampicin sensitivity data % age

concordance

Resistant Sensitive

Phe

noty

pic

rifam

pici

n se

nsiti

vity

dat

a

Laboratory 1 Resistant 11 0

100 Sensitive 0 85

Laboratory 2 Resistant 24 9

84.84 Sensitive 1 4

Laboratory 3 Resistant 7 30

25.58 Sensitive 2 4

Laboratory 4 Resistant 9 14 75.67 Sensitive 4 47

Laboratory 5 Resistant 7 6

90.62 Sensitive 3 80

Laboratory 6 Resistant 8 22 100 Sensitive 0 0

Only samples for which both phenotypic as well as genotypic DST data was available were included in the comparison

Laboratory 3

Out of 79 M. tuberculosis isolates collected from this laboratory, phenotypic

drug sensitivity data was available for 43 isolates that designated 37 as RIFR while 6

as RIFS. Genotypic screening detected mutations in 7 RIFR and 2 RIFS while 30 RIFR

and 4 RIFS isolates did not show any mutation. Isolates that were designated sensitive

by phenotypic DST but resistant by genotypic DST were found to have mutations in

codon 531 and these results were confirmed by sequencing.

Laboratory 4

A total of 80 M. tuberculosis isolates were included from this laboratory in

rifampicin drug resistance study. Phenotypic drug sensitivity data, available for 74

Page 207: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

187

isolates, designated 23 isolates as RIFR while 51 as RIFS. Genotypic screening

detected mutations in 9 RIFR and 4 RIFS isolates while no mutation was detected in 14

RIFR and 47 RIFS isolates. Isolates that were designated sensitive by phenotypic DST

but resistant by genotypic DST were found to have mutations in codon 531 and 516.

Results of 14 isolates including 4 RIFS isolates showing mutations were confirmed by

sequencing.

Laboratory 5

A total of 96 M. tuberculosis isolates were included from this laboratory. Out

of 56 isolates for which phenotypic drug sensitivity data was available, 13 isolates

were rifampicin resistant while 83 were rifampicin sensitive. Genotypic screening

detected mutations in 7 RIFR and 3 RIFS isolates while no mutation was detected in 6

RIFR and 80 RIFS. The results of 4 phenotypically and genotypically RIFS isolates

were confirmed by sequencing.

Laboratory 6

A total of 78 samples were screened in this study. Drug sensitivity data for 30

isolates was available that were reported to be resistant (100%) with proportion

method. Genotypic drug sensitivity data designated only 8 isolates as resistant while

22 as sensitive. Results obtained by spoligoriftyping or in-house line probe assay were

confirmed by sequencing for 12 isolates.

3.11.15 Frequency of mutations in “hotspot” region of rpoB gene in clinical specimens

Patients referred to NIBGE for the diagnosis of tuberculosis were screened

using primers specific for IS6110. Those found to be positive by PCR (44 in number)

were also tested for the presence or absence of mutations in “hotspot” region of rpoB

gene. Majority of the patients belonged to Faisalabad and its adjoining cities. The

samples consisted of 37 blood and 6 sputum specimen. Out of these 43 samples, only

2 samples showed the presence of mutation in rpoB gene which was found to be in

codon 511(CTG→CCG) and 531(TCG→TTG). Isolate that showed mutation in

codon 531 was found to have hetero resistance (mixed infection) as indicated by the

presence of positive hybridization signals both for wild type as well as mutant probes

Page 208: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

188

specific for this mutation. All other samples were found to have no mutation in

hotspot region of rpoB gene (table 3.17). Hence the frequency of mutations in hotspot

region of rpoB gene in clinical samples was found to be 4.5 %.

Table 3.17 Mutations in “Hotspot” Region of rpoB Gene in Clinical Specimens

Sr.No. NIBGE code

City Specimen RH-LiPA

1 06 Faisalabad Blood No mutation

2 07 Faisalabad Blood No mutation

3 08 Faisalabad Blood No mutation

4 R2476 Faisalabad Blood No mutation

5 R2477 Faisalabad Blood No mutation

6 R2493 Faisalabad Blood No mutation

7 R2497 Faisalabad Blood No mutation

8 R2498 Kamalia Blood No mutation

9 R2501 Faisalabad Blood No mutation

10 R2503 Faisalabad Blood No mutation

11 R2506 Faisalabad Blood No mutation

12 R2500 Faisalabad Blood No mutation

13 R2572 Faisalabad Sputum No mutation

14 R2573 Faisalabad Blood No mutation

15 R2465 Faisalabad Blood No mutation

16 R2478 Faisalabad Blood No mutation

17 R2521 Faisalabad Blood No mutation

18 R2560 Faisalabad Blood No mutation

19 R2542 Faisalabad Blood No mutation

20 R2543 Faisalabad Blood No mutation

21 R2540 Faisalabad Blood No mutation

22 R2533 Faisalabad Blood No mutation

23 09 Faisalabad Blood No mutation

24 R2532 Saangla Hill Blood No mutation

25 R2530 Faisalabad Blood No mutation

26 R2531 Faisalabad Blood No mutation

Page 209: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

189

Sr.No. NIBGE code

City Specimen RH-LiPA

27 R2555 Faisalabad Blood No mutation

28 R2528 Faisalabad Blood No mutation

29 R2517 Faisalabad Blood No mutation

30 R2505 Jaranwala Blood No mutation

31 R2534 Toba Tek Singh Blood No mutation

32 R2536 Gojra Blood No mutation

33 R2455 Faisalabad Blood No mutation

34 R2545 Jaranwala Blood No mutation

35 R2483 Faisalabad Blood No mutation

36 R2550 Faisalabad Blood No mutation

37 R2535 Faisalabad Blood No mutation

38 01 Faisalabad Sputum No mutation

39 R2640 Faisalabad Sputum No mutation

40 R2643 Faisalabad Sputum No mutation

41 02 Faisalabad Sputum No mutation

42 R2655 Faisalabad Sputum No mutation

43 R2502 Faisalabad Blood 511(CTG→CCG)

44 R2657 Faisalabad Blood 531(TCG→TTG)

3.12 Characterization of mutations associated with Isoniazid resistance using microbeads based assay

3.12.1 Data interpretation

Mean fluorescence intensities were taken as positive or negative hybridization

signals according to the cut-off values specific for each probes. The final display of

the analysis was in the form of solid/un-filled blocks which corresponds to the

presence or absence of hybridization signals as shown in figure 3.13.

3.12.2 Mutations in promoter region of inhA gene and katG gene

A total of 457 isolates were screened for the detection of mutations at codon

315 of katG gene and at position -8 and -15 of promoter region of inhA gene by

Page 210: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

190

microbead based assay. Results were available for 404 isolates while 52 isolates did

not succeed. Three hundred and twenty eight (81%) isolates showed none of the tested

mutations in katG and promoter region of inhA gene while 76 (19%) isolates showed

mutations in either katG and/or in inhA gene. One isolate (0.24%) was found to have

hetero-resistance as it showed positive hybridization signals both for wild type as well

as mutant probe. In 94% isolates, single mutation was observed while 5% isolates

showed double mutations.

Well Sample Kat

G_3

15_W

t

InhA

_-15

_Wt

KatG

_315_m

ut C

KatG

_315_m

ut A

InhA

_-1

5_m

ut T

InhA

_-8

_m

ut A

Resi

stanc

e p

redi

ctio

n

A1 1 ■ ■ ❏ ❏ ❏ ■ RB1 2 ■ ■ ❏ ❏ ❏ ❏ SC1 3 ■ ■ ❏ ❏ ❏ ❏ SD1 4 ■ ■ ❏ ❏ ❏ ❏ SE1 5 ■ ■ ❏ ❏ ❏ ■ RF1 6 ■ ■ ❏ ❏ ❏ ❏ SG1 7 ❏ ■ ❏ ■ ❏ ❏ RH1 8 ■ ❏ ❏ ❏ ■ ❏ RA2 9 ■ ■ ❏ ❏ ❏ ❏ SB2 10 ❏ ■ ■ ❏ ❏ ❏ RC2 11 ■ ■ ❏ ❏ ❏ ❏ SD2 12 ■ ■ ❏ ❏ ❏ ❏ SE2 13 ■ ■ ❏ ❏ ❏ ■ RF2 14 ❏ ■ ■ ❏ ❏ ❏ RG2 15 ■ ■ ❏ ❏ ❏ ❏ S

Mutation detection WT Probes Mut Probes

Figure 3.34 Final display of the interpreted microbead assay results for isoniazid

Column 1: well number Column 2: samples identification Column 3-4: wild-type probes Column 5-8: mutant probes Column 9: prediction of drug resistance

The frequency of mutations at codon 315 of katG gene was found to be higher

(72%) as compared to that of in promoter region of inhA gene (23%). Out of 63

mutations observed at codon 315 of katG, the frequency of (AGC→ACC) substitution

mutation was found to be high, as 57 isolates (90%) were found to possess this

mutation. Only 3 (5%) isolates showed (AGC→AAC) mutation while another 3 (5%)

isolates showed unknown mutation at codon 315 of katG as indicated by the absence

Page 211: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

191

of hybridization signals both for wild as well as mutant probes specific for codon 315.

At -15 position of promoter region of inhA gene, 18 (90%) isolates showed (C→T)

substitution while 2 (10%) isolates showed unknown mutations at -15 position as

indicated by the absence of hybridization signals both for wild as well as mutant

probes specific for this position. None of the screened isolates showed any mutation at

-8 position of the promoter region of inhA gene. All the four isolates that showed

double mutations exhibited 315(AGC→ACC) mutation in combination with (C→T)

substitution at -15 promoter region of inhA gene. Detailed description about the

observed mutations is given in the table 3.20. The change in amino acid and relative

frequencies of mutations observed in katG gene and promoter region of inhA gene are

given in table 3.16.

3.12.3 Sensitivity and specificity of the microbead assay compared with DNA sequencing

PCR products of hotspot regions of katG and promoter region of inhA gene of

79 isolates were resolved on agarose gel to check the quality and size of amplified

products. The PCR products of 835bp and 612bp were observed for katG and

promoter region of inhA gene, respectively as shown in figure 3.35 and figure 3.36.

DNA sequencing of these 79 samples (43 isolates showing no mutation while

36 showing different mutations) served as reference to assess the accuracy of

mutation profile obtained by microbead assay (table 3.20). Seventy seven isolates

showed the results that were in complete agreement with the sequencing while

discrepant results were found in only two cases. All the isolates (n=43) that showed

no mutation in hotspot regions by sequencing were correctly identified by microbead

assay except one isolate. Microbead assay revealed that this isolate had an unknown

mutation at codon 315 as indicated by the absence of hybridization signal by the wild

as well as mutant probe specific for it but no mutation was detected by sequencing.

All the mutations identified by sequencing were correctly detected by microbead

assay except one mutation where microbead assay showed profile of a susceptible

isolate while this isolate was found to have mutation 315(AGC→ACC). Double

mutations were also confirmed for two isolates. Hotspot regions of katG and promoter

region of inhA gene for 4 isolates showing unknown mutations by microbead assay

could not be sequenced due to non-availability of DNA. Hence, the overall sensitivity

Page 212: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

192

and specificity of the microbead assay to detect targeted mutations remained 97% and

98%, respectively.

In addition to the above results, some novel mutations were also detected by

DNA sequencing. These include substitution mutations at codon 412(TGG→TGC), a

nonsense mutation at codon 413(TAC→TAA) and an insertion mutation of AGCC

after codon 344 of katG gene, while one isolate showed mutation at -20(C→T) in

inhA gene. All these isolates except the one exhibiting mutation at codon 413 were

designated as resistant by phenotypic drug sensitivity.

Figure 3.35 PCR amplification of katG gene of M. tuberculosis isolates

Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 1: “No DNA” negative control; Lane 2-6: PCR amplification products

Figure 3.36 PCR amplification of promoter region of inhA gene of M.

tuberculosis isolates Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 1: “No DNA” negative control; Lane 2-7: PCR amplification

products

Page 213: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

193

Table 3.18 Frequency of Mutations in katG and Promoter Region of inhA Gene Associated with Isoniazid Resistance in M. tuberculosis Isolates

Type and location of mutation Change in amino acid

Type of mutation

No. of isolates

Mutation frequency

(%) katG gene (Codon)

inhA gene (Nucleotide)

315(AGC→ACC) - Ser→Thr Substitution 57 66

315(AGC→AAC) - Ser→Asn Substitution 3 3

315(AGC→*) - Ser→* Substitution 3 3

412(TGG→TGC) - Trp→Cys Substitution 1 1

413(TAC→TAA) - Tyr→stop Nonsense 1 1

AGCC insertion - - Insertion 1 1

- -15(C→T) 18 21

- -15(C→*) 2 2

- -20(C→T) 1 1

* Could not be sequenced

Figure 3.37 Percent frequency of different mutations observed in katG and promoter region of inhA gene of M. tuberculosis culture isolates

3.12.4 Comparison of genotypic DST (by microbead assay) and phenotypic DST for Isoniazid

Phenotypic drug sensitivity data was available for 330 isolates out of which

296 could be amplified for genotypic microbead assay. Out of these 296 isolates 118

(40%) were INHR and 178 (60%) were INHS. Out of 118 INHR isolates, microbead

assay designated 53 (45%) isolates as resistant while 65 (55%) as susceptible. Results

of 43 out of these 65 isolates were confirmed by DNA sequencing. All except 3

isolates showed no mutation for the tested regions. These 3 isolates showed mutations

at codon 412(TGG→TGC) and 413(TAC→TAA) and 315(AGC→ACC) in katG

Page 214: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

194

gene. Out of 178 INHS isolates, microbead based assay designated 172 isolates as

INHS while 6 as INHR. All these 6 isolates showed 315(AGC→ACC) mutation in

katG gene which is known to cause resistance for isoniazid in M. tuberculosis. With

all this data sensitivity and specificity of the microbead based assay in relation to

phenotypic drug sensitivity was found to be 50% and 72%, respectively.

3.12.5 Comparison of phenotypic drug sensitivity profile of different laboratories with genotypic drug sensitivity for isoniazid

The phenotypic drug sensitivity data as provided by different laboratories was

compared with genotypic drug sensitivity data. The samples included in this

comparison were 299 in number for which both the phenotypic and genotypic data

was available.

Table 3.19 Percentage Concordance of Phenotypic and Genotypic DST for Isoniazid

Genotypic isoniazid sensitivity data % age

concordance Resistant Sensitive

Phe

noty

pic

ison

iazi

d se

nsiti

vity

dat

a

Laboratory 1 Resistant 20 4

95.6 Sensitive 0 68

Laboratory 2 Resistant 12 5

70.6 Sensitive 0 0

Laboratory 3 Resistant 4 11

29.4 Sensitive 1 1

Laboratory 4 Resistant 10 25

64 Sensitive 2 38

Laboratory 5 Resistant 9 12 80.3 Sensitive 2 48

Laboratory 1

Out of 111 samples included from this laboratory, phenotypic drug sensitivity

data was available for 92 isolates that designated 24 as INHR while 68 INHS. Out of

Page 215: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

195

these 92 isolates, genotypic drug sensitivity data revealed mutations in 20 INHR

isolates while no mutation was observed in 4 INHR isolates. Results of 19 INHR and

11 INHS isolates were confirmed by sequencing.

Laboratory 2

Out of 38 isolates included from this laboratory, phenotypic DST data was

available for only 17 isolates. All of which were phenotypic INHR isolates. Genotypic

drug sensitivity data detected mutations in 12 isolates while no mutation was observed

in 5 INHR isolates. Results of all these isolates were confirmed by DNA sequencing.

Laboratory 3

Out of 79 isolates from this laboratory, 17 were included in the comparison

where phenotypic drug sensitivity data designated 15 isolates as INHR while 2 as

INHS. Genotypic screening detected no mutations in 11 INHR and 1INHS isolates

while mutations were observed in 4 INHR and 1I NHS isolates. Mutation at codon

315(AGC→ACC) was observed in phenotypic INHS isolate. Results of 13 phenotypic

INHR isolates where genotypic DST designated 10 susceptible and 3 resistant were

confirmed by DNA sequencing.

Laboratory 4

A total of 75 M. tuberculosis isolates were included from this laboratory.

Phenotypic drug sensitivity designated 35 as INHR while 40 as INHS. Genotypic

screening detected no mutation in 25 INHR and 38INHS isolates while mutations were

detected in 10 INHR and 2I NHS isolates. One INHS isolate was found to have

mutations in codon 315(AGC→ACC) while the other showed mutation at -15(C→T).

Results of 28 phenotypic INHR isolates to which genotypic DST designated 21

resistant and 7 sensitive, were confirmed by DNA sequencing.

Laboratory 5

A total of 71 M. tuberculosis isolates were included from this laboratory.

Phenotypic drug sensitivity data designated 21 isolates as INHR while 50 as INHS.

Genotypic screening detected no mutation in 12 INHR and 48 INHS isolates while 9

Page 216: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

196

INHR and 2 INHS isolates were found to have mutations. The 2 INHS isolates were

found to have mutation at codon 315 of katG gene. Results of 13 phenotypic INHR

isolates designated 9 sensitive and 4 resistant by genotypic DST were confirmed by

sequencing.

3.13 Poor standards of phenotypic drug susceptibility in the country

We found mutations rpoB531(TCG→TTG) or rpoB516(GAC→GTC) in 9

isolates out of 243 (4%) labeled rifampicin sensitive and mutation

katG315(AGC→ACC) or inhA-15(C→T) in 6 isolates out of 178 (3%) labeled

isoniazid sensitive isolates after phenotypic DST by the laboratories that performed

the initial phenotypic drug sensitivity. In addition, 43 out of 93 (46%) of the isolates

labeled as rifampicin resistant and 63 of 121(52%) of the isolates labeled as isoniazid

resistant showed no mutation with a test expected to have more than 99% of

sensitivity (Gomgnimbou et al., 2012; Gomgnimbou et al., 2013a).

3.14 Cumulative genotypic drug susceptibility to Rifampicin and Isoniazid

Of 383 isolates for which genotypic drug sensitivity profile was available for

both rifampicin and isoniazid, 277 (83%) were sensitive based on mutational analysis.

For the remaining 106 (27%) isolates, 38 (36%) were MDR; 28 (26%) isolates were

resistant only to Rif while 40 (38%) were resistant only for INH.

Out of 317 isolates with phenotypic drug sensitivity results available for

multiple drug resistance, 196 isolates (62%) were sensitive. For the remaining 121

(38%) isolates, 73 (60%) were MDR, 47 (39%) resistant only for Rif while one isolate

(0.8%) was resistant only for INH. The frequency of mutation at codon 315 in MDR

isolates was comparable (79% versus 72%) to that in non-MDR, isoniazid resistant

isolates.

3.15 Association of M. tuberculosis lineages with specific mutations

Statistical analysis showed that there is no statistically significant correlation

between the mutation at codon 526 of rpoB gene and CAS1-Dehli isolates

(Chi2=1=0.84; p=0.40; n=26 for CAS-Dehli, n=27 for all other isolates) as well as

between the mutation at codon 315 of katG and CAS isolates (Chi2=1=0.032; p=0.85;

n=37 for CAS, n=26 for all other isolates).

Page 217: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

197

Table 3.20 Detected Mutations in katG and Prmoter region of inhA Gene Associated with Isoniazid Resistance in M. tuberculosis Isolates

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK1998000063 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK1998000065 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

PAK1998000067 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK1998000069 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK1998000070 ■ ■ ❏ ❏ ❏ ❏ 412(TGG→TGC) No mutation No mutation Resistant

PAK1998000071 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

PAK1998000072 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK1998000073 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK1998000074 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK1998000107 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK1998000109 ❏ ■ ❏ ❏ ❏ ❏ AGCC insertion after

codon 344 No mutation 315(AGC→???) Resistant

PAK1998000110 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK1998000111 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

Page 218: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

198

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK1998000123 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

PAK1998000131 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK1998000155 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000156 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000164 ■ ■ ❏ ❏ ❏ ❏ 413(TAC→TAA) No mutation No mutation Resistant

PAK1998000167 ❏ ■ ❏ ■ ❏ ❏ Not done Not done 315(AGC→AAC) Resistant

PAK1998000905 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000907 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000908 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000909 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000910 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000911 ■ ❏ ❏ ❏ ■ ❏ Not done Not done -15(C→T) Not available

PAK1998000912 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK1998000913 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000914 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

Page 219: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

199

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK1998000915 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000916 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000917 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000918 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000919 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000920 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000921 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000922 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000923 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000924 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000925 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000927 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000928 ■ ❏ ❏ ❏ ■ ❏ Not done Not done -15(C→T) Not available

PAK1998000929 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000932 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

Page 220: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

200

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK1998000937 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000938 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK1998000942 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2005000076 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK2005000103 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2005000126 ■ ❏ ❏ ❏ ■ ❏ Not done Not done -15(C→T) Not available

PAK2008000539 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000540 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000541 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000542 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2008000543 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000544 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000545 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000546 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000547 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 221: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

201

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2008000548 ❏ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000550 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2008000552 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2008000553 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2008000554 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000555 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2008000556 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000557 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000558 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000559 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000560 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2008000561 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000562 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000563 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000564 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

Page 222: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

202

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2008000565 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) and

463(CGG→CTG) No mutation 315(AGC→ACC) Resistant

PAK2008000566 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) and

463(CGG→CTG) No mutation 315(AGC→ACC) Resistant

PAK2008000567 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000568 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000569 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000571 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000572 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000573 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000574 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000575 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000576 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000577 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 223: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

203

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2008000578 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) and

463(CGG→CTG) No mutation 315(AGC→ACC) Resistant

PAK2008000579 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000581 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000582 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000583 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000584 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000585 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000586 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000587 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000588 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000589 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) and

463(CGG→CTG) No mutation 315(AGC→ACC) Resistant

PAK2008000590 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000591 ■ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Sensitive

Page 224: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

204

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2008000592 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000593 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000594 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000595 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000596 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

PAK2008000597 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000598 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000600 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

PAK2008000601 ■ ❏ ❏ ❏ ❏ ❏ Not done Not done 315(AGC→???) Resistant

PAK2008000602 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000603 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000604 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000605 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000606 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000607 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 225: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

205

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2008000608 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000609 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000610 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000611 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000612 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000614 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000616 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000617 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000618 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000619 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000620 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

PAK2008000621 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000622 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000623 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000624 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

Page 226: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

206

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2008000625 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000626 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000627 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000628 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000629 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000630 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000631 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000632 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Sensitive

PAK2008000633 ■ ❏ ❏ ❏ ■ ❏ Not done Not done -15(C→T) Resistant

PAK2008000634 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000635 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000636 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000639 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000640 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000644 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 227: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

207

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2008000646 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2008000649 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2008000651 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2009000064 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000077 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000079 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000082 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000083 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000085 ❏ ❏ ■ ❏ ■ ❏ Not done Not done 315(AGC→ACC)

and -15(C→T) Not available

PAK2009000086 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000090 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000092 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000093 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK2009000094 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

Page 228: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

208

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2009000095 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000097 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000112 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No muataion Sensitive

PAK2009000113 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Sensitive

PAK2009000115 ❏ ❏ ■ ❏ ■ ❏ 315(AGC→ACC) -15(C→T) 315(AGC→ACC)

and -15(C→T) Resistant

PAK2009000122 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2009000127 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No muataion Resistant

PAK2009000129 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000130 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No muttion Resistant

PAK2009000133 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2009000139 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2009000148 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2009000149 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2009000154 ❏ ■ ❏ ❏ ❏ ❏ Not done Not done 315(AGC→???) Resistant

Page 229: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

209

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2009000157 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2009000158 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2009000159 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000160 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000161 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000168 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2009000169 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2009000170 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000171 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2009000172 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2009000173 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2010000128 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2010000197 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000198 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2010000199 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

Page 230: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

210

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2010000200 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000202 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2010000203 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000204 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2010000205 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000206 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2010000207 ■ ❏ ❏ ❏ ■ ❏ No mutation -15(C→T) -15(C→T) Resistant

PAK2010000208 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000210 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2010000211 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000213 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000214 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000218 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2010000219 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2010000221 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

Page 231: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

211

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000088 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000215 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK2011000223 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000224 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Sensitive

PAK2011000225 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000226 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000227 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Sensitive

PAK2011000228 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Sensitive

PAK2011000229 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000230 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000231 ■ ■ ❏ ❏ ❏ ❏ Not done Not done N mutation Sensitive

PAK2011000232 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000233 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

PAK2011000234 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000235 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 232: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

212

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000236 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000237 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000238 ■ ❏ ❏ ❏ ■ ❏ Not done Not done -15(C→T) Resistant

PAK2011000239 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000240 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000241 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000242 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000243 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000245 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000246 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000247 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000248 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000249 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000250 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000251 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 233: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

213

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000252 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000253 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000254 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000255 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000256 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000257 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000258 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000259 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000260 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000261 ■ ❏ ❏ ❏ ■ ❏ No mutation -15(C→T) -15(C→T) Resistant

PAK2011000262 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000263 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000264 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000265 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000266 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

Page 234: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

214

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000267 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000268 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000269 ■ ❏ ❏ ❏ ■ ❏ No mutation -15(C→T) -15(C→T) Resistant

PAK2011000270 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000271 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000272 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000273 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000274 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000275 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000276 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Resistant

PAK2011000277 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000278 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000279 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000280 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

Page 235: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

215

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000281 ■ ❏ ❏ ❏ ■ ❏ No mutation -15(C→T) and -

20(C→T) -15(C→T) and -

20(C→T) Resistant

PAK2011000282 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000283 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000284 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000285 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000286 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000288 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000289 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000290 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000291 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000293 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000294 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000295 ❏ ■ ❏ ■ ❏ ❏ Not done Not done 315(AGC→AAC) Not available

PAK2011000296 ❏ ■ ❏ ■ ❏ ❏ Not done Not done 315(AGC→AAC) Not available

Page 236: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

216

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000297 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000298 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000299 ❏ ❏ ■ ❏ ■ ❏ Not done Not done 315(AGC→ACC)

and -15(C→T) Resistant

PAK2011000401 ❏ ❏ ■ ❏ ■ ❏ 315(AGC→ACC) -15(C→T) 315(AGC→ACC)

and -15(C→T) Resistant

PAK2011000402 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000403 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000404 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000405 ■ ❏ ❏ ❏ ■ ❏ No mutation -15(C→T) -15(C→T) Resistant

PAK2011000406 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000407 ■ ❏ ❏ ❏ ■ ❏ Not done Not done 15(C-->T) Resistant

PAK2011000408 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000409 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000410 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 237: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

217

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000411 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000412 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000413 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000414 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000415 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000416 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000417 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000418 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000420 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000421 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000422 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000423 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000424 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000425 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000426 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 238: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

218

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000427 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000428 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000429 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000430 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000431 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000432 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000433 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000434 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000435 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000436 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000437 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000439 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000440 ■ ❏ ❏ ❏ ■ ❏ Not done Not done -15(C→T) Sensitive

PAK2011000441 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000442 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 239: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

219

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000443 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000444 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000445 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000447 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000448 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000450 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000451 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000453 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000454 ■ ■ ❏ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000455 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000456 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2011000457 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000458 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000459 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000460 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

Page 240: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

220

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000461 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000462 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2011000463 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000464 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000465 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000466 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000467 ❏ ❏ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC)

and -15(C→?) Resistant

PAK2011000468 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000469 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000470 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000471 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000472 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000473 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000474 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

Page 241: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

221

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000476 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000477 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000478 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000479 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000481 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000482 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000483 ■ ❏ ❏ ❏ ■ ❏ No mutation -15(C→T) -15(C→T) Resistant

PAK2011000485 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000486 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000487 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000488 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000489 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000490 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000491 ❏ ■ ■ ❏ ❏ ❏ 315(AGC→ACC) No mutation 315(AGC→ACC) Resistant

PAK2011000492 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

Page 242: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

222

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2011000493 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Sensitive

PAK2011000494 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2011000495 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000497 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000498 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Resistant

PAK2011000499 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000501 ■ ■ ❏ ❏ ❏ ❏ No mutation No mutation No mutation Resistant

PAK2011000503 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000504 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000505 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2011000506 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Sensitive

PAK2012000507 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000508 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000509 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000510 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

Page 243: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

223

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2012000511 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000512 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000513 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000514 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK2012000515 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000516 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000517 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000518 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK2012000519 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK2012000520 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000521 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000522 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK2012000523 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000524 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000525 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

Page 244: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

224

Key

Kat

G_3

15_W

t

InhA

_-15

_Wt

Kat

G_3

15_m

ut C

Kat

G_3

15_m

ut A

InhA

_-15

_mut

T

InhA

_-8_

mut

A

katG hotspot sequencing inhA hotspot sequencing

Microbead assay results

Phenotypic DST

PAK2012000526 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000527 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000528 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000529 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000530 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000531 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000532 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000533 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000534 ■ ❏ ❏ ❏ ■ ❏ Not done Not done -15(C→T) Not available

PAK2012000535 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000536 ■ ■ ❏ ❏ ❏ ❏ Not done Not done No mutation Not available

PAK2012000537 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

PAK2012000538 ❏ ■ ■ ❏ ❏ ❏ Not done Not done 315(AGC→ACC) Not available

Page 245: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

225

3.16 Characterization of mutations in embB gene associated with ethambutol resistance in M. tuberculosis culture isolates

The PCR products of the hotspot regions of emb gene of 37 isolates were

resolved on agarose gel to check the quality and size of amplified products. The size

of the PCR product was 484 bp.

Figure 3.38 PCR amplification of emb gene of M. tuberculosis isolates Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 1: “No DNA” negative control; Lane 2-8: PCR amplification

products

Out of 37 ethambutol resistant isolates, 16 (43%) isolates showed no mutation

while 21 (57%) isolates showed 5 different kinds of mutations in the emb gene (table

3.22). All these mutations had change in nucleotide at codon 306. Nucleotide changes

observed were (ATG→ATA), (ATG→GTG), (ATG→ATC), (ATG→CTG) and

(ATG→ATT). The corresponding amino acid change and relative frequencies of

mutations observed in emb gene are given in table 3.21.

Table 3.21 Frequency of Mutations in embB Gene Associated with Ethambutol Resistance in M. tuberculosis Isolates

Position of mutation (Codon)

Change in codon

Amino acid transition

Type of mutation

No. of isolates

Mutation frequency

(%)

306 ATG→ATA Met→Ile Substitution 8 38

306 ATG→GTG Met→Val Substitution 7 33

306 ATG→ATC Met→Ile Substitution 3 14

306 ATG→CTG Met→Leu Substitution 2 9

306 ATG→ATT Met→Ile Substitution 1 5

Page 246: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

226

Table 3.22 Detected Mutations in embB Gene of M. tuberculosis Sr. No. Key Sequencing results Phenotypic

DST

1 PAK1998000065 306(ATG→ATA) Resistant

2 PAK1998000070 No mutation Resistant

3 PAK1998000071 306(ATG→ATA) Resistant

4 PAK1998000072 No mutation Resistant

5 PAK1998000074 306(ATG→GTG) Resistant

6 PAK1998000107 306(ATG→ATT) Resistant

7 PAK1998000111 306(ATG→GTG) Resistant

8 PAK1998000167 306(ATG→ATC) Resistant

9 PAK1998000191 No mutation Resistant

10 PAK2008000551 No mutation Resistant

11 PAK2008000565 306(ATG→ATA) Resistant

12 PAK2008000578 306(ATG→ATA) Resistant

13 PAK2008000579 No mutation Resistant

14 PAK2008000583 No mutation Resistant

15 PAK2008000620 306(ATG→GTG) Resistant

16 PAK2008000634 306(ATG→ATC) Resistant

17 PAK2009000122 306(ATG→ATA) Resistant

18 PAK2009000136 306(ATG→CTG) Resistant

19 PAK2010000197 No mutation Resistant

20 PAK2010000202 No mutation Resistant

21 PAK2010000205 No mutation Resistant

22 PAK2010000207 No mutation Resistant

23 PAK2010000210 306(ATG→GTG) Resistant

24 PAK2010000211 No mutation Resistant

25 PAK2010000214 No mutation Resistant

26 PAK2010000219 No mutation Resistant

27 PAK2011000277 306(ATG→ATA) Resistant

28 PAK2011000402 306(ATG→CTG) Resistant

29 PAK2011000404 No mutation Resistant

30 PAK2011000405 306(ATG→ATC) Resistant

Page 247: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

227

Sr. No. Key Sequencing results Phenotypic

DST

31 PAK2011000406 306(ATG→GTG) Resistant

32 PAK2011000408 306(ATG→ATA) Resistant

33 PAK2011000440 No mutation Resistant

34 PAK2011000451 No mutation Resistant

35 PAK2011000454 306(ATG→ATA) Resistant

36 PAK2011000467 306(ATG→GTG) Resistant

37 PAK2011000483 306(ATG→GTG) Resistant

3.17 Characterization of mutations in rrs and rpsL genes associated with streptomycin resistance in M. tuberculosis culture isolates

PCR products obtained by amplification of hotspot regions of rrs and rpsL

gene were resolved on agarose gel to check the quality and size of amplified products.

552 bp and 645 bp amplified fragments were observed for rrs and rpsL gene,

respectively.

Figure 3.39 PCR amplification of rpsL gene of M. tuberculosis isolates

Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 1: “No DNA” negative control; Lane 2-6: PCR amplification

products

Page 248: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

228

Figure 3.40 PCR amplification of rrs gene of M. tuberculosis isolates

Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 1: “No DNA” negative control; Lane 2-7: PCR amplification

products

Of 99 streptomycin resistant isolates, 28 (28%) showed mutation in either rpsL

or in rrs gene (Table 3.24) while 71 (72%) isolates did not show any mutation in

analyzed regions. Distribution of mutations in rpsL and rrs gene was 57% and 43%,

respectively. Analysis of rpsL hotspot showed that sixteen (16%) isolates harbored

mutations while 83 (84%) did not show any mutation. Most frequent mutation found

was substitution mutation at codon 43(AAG→AGG). Other mutations observed at

position 40(ACC→ACT), 118(GGC→GGA) and at 126(TGC→TGT) were silent

mutations.

Twelve (12%) isolates were found to have alterations in the rrs gene while 87

(88%) isolates did not show any mutation. Nucleotide changes found in rrs gene were

alteration at position 282(G→T), 420(C→T), 513(A→C), 512(C→T), 516(C→T) and

648(A→C). Corresponding amino acid change and relative frequencies of mutations

observed in rpsL and rrs gene are given in table 3.23.

Page 249: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

229

Table 3.23 Frequency of Mutations in rrs and rpsL Genes Associated with Streptomycin Resistance in M. tuberculosis Isolates

Type and location of mutation Amino acid

change

Type of mutation

No of isolates

Mutation frequency

(%) rpsL gene (Codon)

rrs gene (Nucleotide

position)

40(ACC→ACT) - Thr→Thr Silent 1 4

43(AAG→AGG) - Lys→Arg Substitution 13 46

118(GGC→GGA) - Gly→Gly Silent 1 4

126(TGC→TGT) - Cys→Cys Silent 1 4

- 282(G→T) - 1 4

- 420(C→T) - 1 4

- 512(C→T) - 2 7

- 513(A→C) - 6 21

- 516(C→T) - 1 4

- 648(A→C) - 1 4

Table 3.24 Detectd Mutations in rpsL and rrs Genes of M. tuberculosis

Key rpsL sequencing rrs sequencing Phenotypic DST

PAK1998000067 No mutation 512(CAG→TAG) Resistant

PAK1998000069 43(AAG→AGG) No mutation Resistant

PAK1998000071 No mutation No mutation Resistant

PAK1998000072 118(GGC→GGA) No mutation Resistant

PAK1998000074 No mutation 512(CAG→TAG) Resistant

PAK1998000107 No mutation No mutation Resistant

PAK1998000111 No mutation 433(CGA→CTA) Resistant

PAK1998000131 No mutation No mutation Resistant

PAK1998000167 No mutation No mutation Resistant

PAK1998000620 43(AAG→AGG) No mutation Resistant

PAK1998000624 No mutation No mutation Resistant

PAK1998000627 43(AAG→AGG) No mutation Resistant

PAK1998000633 No mutation No mutation Resistant

Page 250: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

230

Key rpsL sequencing rrs sequencing Phenotypic DST

PAK1998000636 No mutation No mutation Resistant

PAK1998000640 No mutation No mutation Resistant

PAK1998000649 No mutation No mutation Resistant

PAK1998000650 43(AAG→AGG) No mutation Resistant

PAK1998000651 No mutation No mutation Resistant

PAK2008000550 No mutation No mutation Resistant

PAK2008000551 No mutation No mutation Resistant

PAK2008000552 No mutation No mutation Resistant

PAK2008000553 No mutation No mutation Resistant

PAK2008000557 No mutation No mutation Resistant

PAK2008000558 No mutation No mutation Resistant

PAK2008000560 No mutation No mutation Resistant

PAK2008000565 No mutation No mutation Resistant

PAK2008000566 No mutation 512(CAG→CCG) Resistant

PAK2008000578 43(AAG→AGG) No mutation Resistant

PAK2008000585 No mutation No mutation Resistant

PAK2008000586 No mutation No mutation Resistant

PAK2008000590 No mutation No mutation Resistant

PAK2008000595 No mutation No mutation Resistant

PAK2008000600 43(AAG→AGG) No mutation Resistant

PAK2008000602 No mutation No mutation Resistant

PAK2008000608 No mutation No mutation Resistant

PAK2009000122 No mutation No mutation Resistant

PAK2009000127 43(AAG→AGG) No mutation Resistant

PAK2009000130 126(TGC→TGT) No mutation Resistant

PAK2009000133 No mutation No mutation Resistant

PAK2009000136 No mutation No mutation Resistant

PAK2009000139 No mutation No mutation Resistant

PAK2009000148 No mutation No mutation Resistant

PAK2009000154 No mutation No mutation Resistant

PAK2009000171 No mutation No mutation Resistant

Page 251: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

231

Key rpsL sequencing rrs sequencing Phenotypic DST

PAK2009000173 No mutation No mutation Resistant

PAK2010000197 No mutation No mutation Resistant

PAK2010000202 No mutation No mutation Resistant

PAK2010000203 No mutation No mutation Resistant

PAK2010000204 No mutation No mutation Resistant

PAK2010000205 No mutation No mutation Resistant

PAK2010000207 No mutation No mutation Resistant

PAK2010000208 No mutation No mutation Resistant

PAK2010000213 No mutation No mutation Resistant

PAK2010000214 No mutation No mutation Resistant

PAK2010000218 No mutation No mutation Resistant

PAK2010000221 No mutation No mutation Resistant

PAK2011000222 43(AAG→AGG) No mutation Resistant

PAK2011000229 No mutation No mutation Resistant

PAK2011000238 43(AAG→AGG) No mutation Resistant

PAK2011000242 No mutation No mutation Resistant

PAK2011000243 No mutation No mutation Resistant

PAK2011000251 No mutation No mutation Resistant

PAK2011000258 No mutation No mutation Resistant

PAK2011000260 No mutation No mutation Resistant

PAK2011000268 No mutation No mutation Resistant

PAK2011000270 No mutation No mutation Resistant

PAK2011000272 No mutation No mutation Resistant

PAK2011000273 No mutation 512(CAG→CCG) Resistant

PAK2011000274 No mutation No mutation Resistant

PAK2011000275 No mutation No mutation Resistant

PAK2011000276 No mutation No mutation Resistant

PAK2011000279 No mutation No mutation Resistant

PAK2011000280 No mutation No mutation Resistant

PAK2011000281 No mutation 481(TCG→TTG) Resistant

PAK2011000401 No mutation No mutation Resistant

Page 252: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

232

Key rpsL sequencing rrs sequencing Phenotypic DST

PAK2011000402 No mutation 513(CCG→CTG) Resistant

PAK2011000403 43(AAG→AGG) No mutation Resistant

PAK2011000404 43(AAG→AGG) No mutation Resistant

PAK2011000405 No mutation 512(CAG→CCG) Resistant

PAK2011000406 43(AAG→AGG) No mutation Resistant

PAK2011000408 No mutation No mutation Resistant

PAK2011000409 No mutation 557(TAC→TCC) Resistant

PAK2011000440 No mutation No mutation Resistant

PAK2011000445 No mutation No mutation Resistant

PAK2011000450 No mutation No mutation Resistant

PAK2011000451 No mutation 512(CAG→>CCG) Resistant

PAK2011000453 No mutation No mutation Resistant

PAK2011000454 No mutation No mutation Resistant

PAK2011000456 40(ACC→ACT) No mutation Resistant

PAK2011000459 No mutation No mutation Resistant

PAK2011000460 No mutation 512(CAG→CCG) Resistant

PAK2011000466 No mutation 512(CAG→CCG) Sensitive

PAK2011000467 43(AAG→AGG) No mutation Resistant

PAK2011000469 No mutation No mutation Resistant

PAK2011000470 No mutation No mutation Resistant

PAK2011000471 No mutation No mutation Resistant

PAK2011000476 No mutation No mutation Resistant

PAK2011000483 No mutation No mutation Resistant

PAK2011000484 No mutation No mutation Resistant

Page 253: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

233

3.18 Characterization of mutations in pncA gene associated with pyrazinamide resistance in M. tuberculosis culture isolates

3.18.1 Analysis of PncA1 and PncA2 PCR products by agarose gel electrophoresis

PCR products from PncA1 and PncA2 primers were resolved on agarose gel to

check the quality and quantity of amplified products. The size of the PCR product was

180 bp and 216 bp for PncA1 and PncA2 amplifications, respectively.

Figure 3.41 PCR amplification of pncA1 segment of pncA gene of M.

tuberculosis isolates Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 7: “No DNA” negative control; Lane 1-6: PCR amplification products

Figure 3.42 PCR amplification of pncA2 segment of pncA gene of M.

tuberculosis isolates Lane L: 50 bp DNA ladder (Fermentas Cat # SM 0373) Lane 1: “No DNA” negative control; Lane 2-6: PCR amplification products

Page 254: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

234

3.18.2 SSCP analysis of PncA1 and PncA2 amplification products by polyacrylamide gel electrophoresis

Denatured PCR products of both pncA1 and pncA2 segments were resolved

on polyacrylamide gel along with H37Rv as positive control. Samples that showed the

mobility shift as compared to positive control were selected for sequencing to identify

the potential mutations.

Figure 3.43 SSCP analysis of pncA1 segment by polyacrylamide gel

elecrophoresis Lane L: 50 bp DNA ladder (Invitrogen Cat # 10416-014)

Lane 5-8,10-11 and 16-23: isolates showing no mobility shift Lane 1-4,9, 12-15: isolates showing mobility shift Lane 24: positive control H37Rv

Figure 23.44 SSCP analysis of pncA2 segment by polyacrylamide gel

elecrophoresis Lane L: 50 bp DNA ladder (Invitrogen Cat # 10416-014) Lane 1-7: isolates showing no mobility shift Lane 8: positive control H37Rv

Page 255: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

235

Of 317 isolates screened for the presence or absence of any mutation in coding

region of PncA gene, results were available for 302 isolates for pncA1 segment while

of 295 isolates for pncA2 segment. Complete set of results were available for 280

isolates (Table 3.26). Out of these 280 isolates, 268 (96%) did not show any shift in

mobility of denatured PCR products, while 12 (4%) isolates showed conformational

change as compared to that of H37Rv. All these isolates showed conformational

change for segment pncA1 while none of the sample showed any conformational

change in pncA2 segment.

3.18.3 Identification of mutations by DNA Sequencing of pncA gene associated with pyrazinamide resistance

PCR products obtained by pncA primers were resolved on agarose gel to

check the quality and size of the amplified products. A 829 bp amplification product

was observed.

Figure 3.45 PCR amplification of pncA gene in M. tuberculosis

isolates Lane L: 50 bp DNA ladder (Fermentas Cat # SM0373) Lane 1: “No DNA” negative control Lane 2-8: PCR amplification products

All the 4 isolates sequenced for which no mobility shift was observed in SSCP

analysis showed no mutation in the pncA gene in sequencing analysis while 8 out of

12 isolates that showed mobility shift in SSCP analysis were found to possess

mutations in targeted coding region of pncA gene. Five (38%) isolates out of 12

isolates showing mobility shift had silent mutation at codon 65(TCC→TCT). The

substitution mutations observed in 3 (23%) isolates were at codon 54(CCG→CTG),

Page 256: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

236

58(TTC→CTC) and 76(ACT→CCT). DNA of the four isolates showing mobility

shift in SSCP analysis was not available for the DNA sequencing. Detailed

description of the observed mutations is given in the table 3.25 while corresponding

amino acid change and frequencies of observed mutations is given in the table 3.25.

Table 3.25 Frequency of Mutations in pncA Gene Associated with Pyrazinamide Resistance in M. tuberculosis Isolates

Position of mutation(codon)

Change in codon

Change in amino acid

No. of isolates

Type of mutation

Mutation frequency

(%) 54 CCG→CTG Pro→Leu 1 Substitution 8%

58 TTC→CTC Phe→Leu 1 Substitution 8%

65 TCC→TCT Ser→Ser 5 Silent 38%

76 ACT→CCT Thr→Arg 1 Substitution 8%

Segment pncA2 Couldn’t be sequenced ___ 4 ___ 38%

Table 3.26 Detected Mutations in pncA Gene Associated with Pyrazinamide Resistance in M. tuberculosis Isolates

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK1998000063 × × Not done

PAK1998000067 × × Not done

PAK1998000107 Mobility shift × Not available

PAK1998000109 × × Not done

PAK1998000110 Mobility shift × Not available

PAK1998000111 × × Not done

PAK1998000131 × × Not done

PAK1998000147 × × Not done

PAK1998000155 × × Not done

PAK1998000156 × × Not done

PAK1998000164 × × Not done

PAK1998000905 × × Not done

PAK1998000906 × × Not done

Page 257: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

237

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK1998000907 × × Not done

PAK1998000908 × × Not done

PAK1998000909 × × Not done

PAK1998000911 × × Not done

PAK1998000912 × × Not done

PAK1998000913 × × Not done

PAK1998000914 × × Not done

PAK1998000915 × × Not done

PAK1998000916 × × Not done

PAK1998000917 × × Not done

PAK1998000918 × × Not done

PAK1998000922 × × Not done

PAK1998000923 × × Not done

PAK2005000076 Mobility shift × Not available

PAK2005000103 × × Not done

PAK2005000126 Mobility shift × 58(TTC→CTC)

PAK2008000556 × × Not done

PAK2009000062 × × Not done

PAK2009000064 × × Not done

PAK2009000077 × × Not done

PAK2009000078 × × Not done

PAK2009000079 × × Not done

PAK2009000082 × × Not done

PAK2009000083 × × Not done

PAK2009000085 × × Not done

PAK2009000086 × × Not done

PAK2009000089 × × Not done

PAK2009000090 × × Not done

Page 258: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

238

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2009000092 × × Not done

PAK2009000093 × × Not done

PAK2009000094 × × Not done

PAK2009000095 × × Not done

PAK2009000097 × × Not done

PAK2009000106 × × Not done

PAK2009000113 × × Not done

PAK2009000115 × × Not done

PAK2009000116 × × Not done

PAK2009000119 × × Not done

PAK2009000122 × × Not done

PAK2009000127 × × Not done

PAK2009000129 Mobility shift × 65(TCC→TCT)

PAK2009000133 × × Not done

PAK2009000136 × × Not done

PAK2009000139 × × Not done

PAK2009000148 × × Not done

PAK2009000149 × × Not done

PAK2009000154 × × Not done

PAK2009000157 × × Not done

PAK2009000158 × × Not done

PAK2009000159 × × Not done

PAK2009000160 × × Not done

PAK2009000161 × × Not done

PAK2009000169 × × Not done

PAK2009000170 × × Not done

PAK2009000171 × × Not done

PAK2009000172 × × Not done

Page 259: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

239

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2009000173 × × Not done

PAK2009000174 × × Not done

PAK2010000197 × × Not done

PAK2010000198 × × Not done

PAK2010000199 × × Not done

PAK2010000200 × × Not done

PAK2010000202 × × Not done

PAK2010000203 × × Not done

PAK2010000204 × × Not done

PAK2010000205 × × Not done

PAK2010000206 × × Not done

PAK2010000207 × × Not done

PAK2010000208 × × Not done

PAK2010000210 × × Not done

PAK2010000211 × × Not done

PAK2010000214 × × Not done

PAK2010000218 × × Not done

PAK2010000219 × × Not done

PAK2010000221 × × Not done

PAK2011000088 × × Not done

PAK2011000215 × × Not done

PAK2011000222 × × Not done

PAK2011000223 × × Not done

PAK2011000224 × × Not done

PAK2011000225 × × Not done

PAK2011000226 × × Not done

PAK2011000227 × × Not done

PAK2011000228 × × Not done

Page 260: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

240

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2011000229 × × Not done

PAK2011000230 × × Not done

PAK2011000231 × × Not done

PAK2011000232 × × Not done

PAK2011000233 × × Not done

PAK2011000234 × × Not done

PAK2011000235 × × No mutation

PAK2011000236 × × Not done

PAK2011000237 × × Not done

PAK2011000238 × × No mutation

PAK2011000239 × × Not done

PAK2011000240 × × Not done

PAK2011000241 × × Not done

PAK2011000242 × × Not done

PAK2011000243 × × Not done

PAK2011000244 × × Not done

PAK2011000245 × × Not done

PAK2011000246 × × Not done

PAK2011000247 Mobility shift × 65(TCC→TCT)

PAK2011000248 × × Not done

PAK2011000249 × × No mutation

PAK2011000250 × × Not done

PAK2011000251 × × Not done

PAK2011000252 × × Not done

PAK2011000253 × × Not done

PAK2011000254 × × Not done

PAK2011000255 Mobility shift × 65(TCC→TCT)

Page 261: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

241

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2011000256 × × Not done

PAK2011000257 × × Not done

PAK2011000258 × × Not done

PAK2011000259 × × Not done

PAK2011000260 × × Not done

PAK2011000261 × × Not done

PAK2011000262 × × Not done

PAK2011000263 × × Not done

PAK2011000264 × × Not done

PAK2011000265 × × Not done

PAK2011000266 × × Not done

PAK2011000267 × × Not done

PAK2011000268 × × Not done

PAK2011000269 × × Not done

PAK2011000270 × × Not done

PAK2011000271 × × Not done

PAK2011000272 × × Not done

PAK2011000273 × × Not done

PAK2011000274 × × Not done

PAK2011000275 × × Not done

PAK2011000277 × × Not done

PAK2011000278 × × Not done

PAK2011000279 × × Not done

PAK2011000280 × × Not done

PAK2011000281 × × Not done

PAK2011000282 × × Not done

PAK2011000283 × × Not done

Page 262: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

242

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2011000284 × × Not done

PAK2011000285 × × Not done

PAK2011000286 × × Not done

PAK2011000288 × × Not done

PAK2011000289 × × Not done

PAK2011000290 × × Not done

PAK2011000291 × × Not done

PAK2011000293 × × Not done

PAK2011000294 Mobility shift × 65(TCC→TCT)

PAK2011000295 × × Not done

PAK2011000296 × × Not done

PAK2011000297 × × Not done

PAK2011000298 × × Not done

PAK2011000299 × × Not done

PAK2011000401 × × Not done

PAK2011000402 × × Not done

PAK2011000403 × × Not done

PAK2011000404 Mobility shift × 76(ACT→CCT)

PAK2011000405 × × Not done

PAK2011000406 Mobility shift × 54(CCG→CTG)

PAK2011000407 × × Not done

PAK2011000408 × × Not done

PAK2011000409 × × Not done

PAK2011000410 × × Not done

PAK2011000411 × × Not done

PAK2011000412 × × Not done

PAK2011000413 × × Not done

PAK2011000414 × × Not done

Page 263: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

243

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2011000415 × × Not done

PAK2011000416 × × Not done

PAK2011000417 × × Not done

PAK2011000418 × × Not done

PAK2011000419 × × Not done

PAK2011000420 × × Not done

PAK2011000421 × × Not done

PAK2011000422 × × Not done

PAK2011000423 × × Not done

PAK2011000424 × × Not done

PAK2011000425 Mobility shift × 65(TCC→TCT)

PAK2011000426 × × Not done

PAK2011000427 × × Not done

PAK2011000428 × × No mutation

PAK2011000429 × × Not done

PAK2011000430 × × Not done

PAK2011000431 × × Not done

PAK2011000432 × × Not done

PAK2011000433 × × Not done

PAK2011000434 × × Not done

PAK2011000435 × × Not done

PAK2011000436 × × Not done

PAK2011000441 × × Not done

PAK2011000442 × × Not done

PAK2011000443 × × Not done

PAK2011000444 × × Not done

PAK2011000445 × × Not done

Page 264: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

244

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2011000450 × × Not done

PAK2011000455 × × Not done

PAK2011000456 × × Not done

PAK2011000458 × × Not done

PAK2011000459 × × Not done

PAK2011000460 × × Not done

PAK2011000461 × × Not done

PAK2011000462 × × Not done

PAK2011000463 × × Not done

PAK2011000464 × × Not done

PAK2011000465 × × Not done

PAK2011000466 × × Not done

PAK2011000467 Mobility shift × Not available

PAK2011000469 × × Not done

PAK2011000470 × × Not done

PAK2011000471 × × Not done

PAK2011000472 × × Not done

PAK2011000473 × × Not done

PAK2011000474 × × Not done

PAK2011000476 × × Not done

PAK2011000477 × × Not done

PAK2011000478 × × Not done

PAK2011000479 × × Not done

PAK2011000481 × × Not done

PAK2011000482 × × Not done

PAK2011000483 × × Not done

PAK2011000484 × × Not done

PAK2011000485 × × Not done

Page 265: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

245

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2011000486 × × Not done

PAK2011000487 × × Not done

PAK2011000488 × × Not done

PAK2011000489 × × Not done

PAK2011000490 × × Not done

PAK2011000491 × × Not done

PAK2011000492 × × Not done

PAK2011000493 × × Not done

PAK2011000494 × × Not done

PAK2011000495 × × Not done

PAK2011000497 × × Not done

PAK2011000498 × × Not done

PAK2011000499 × × Not done

PAK2011000500 × × Not done

PAK2011000501 × × Not done

PAK2011000502 × × Not done

PAK2011000503 × × Not done

PAK2011000504 × × Not done

PAK2011000505 × × Not done

PAK2011000506 × × Not done

PAK2012000507 × × Not done

PAK2012000508 × × Not done

PAK2012000509 × × Not done

PAK2012000510 × × Not done

PAK2012000511 × × Not done

PAK2012000512 × × Not done

PAK2012000514 × × Not done

Page 266: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

246

Key SSCP results of pncA1 segment

SSCP results of pncA2 segment

pncA gene sequencing

PAK2012000515 × × Not done

PAK2012000516 × × Not done

PAK2012000517 × × Not done

PAK2012000518 × × Not done

PAK2012000519 × × Not done

PAK2012000520 × × Not done

PAK2012000521 × × Not done

PAK2012000522 × × Not done

PAK2012000523 × × Not done

PAK2012000524 × × Not done

PAK2012000525 × × Not done

PAK2012000527 × × Not done

PAK2012000528 × × Not done

PAK2012000529 × × Not done

PAK2012000530 × × Not done

PAK2012000531 × × Not done

PAK2012000532 × × Not done

PAK2012000534 × × Not done

PAK2012000538 × × Not done

× stands for “no mobility shift”

Page 267: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

247

DISCUSSION

Pakistan is a large and 6th most populated country of the world (area: 796,095

km2 and population: approximately over 186 million) where tuberculosis has always

remained a public health concern. It is situated in South East Asia that alone harbors

60% TB cases. The high incident rate (231/100,000 population) and increase of MDR

in the country demands efforts, focusing on various TB control strategies to accelerate

the progress to achieve the millennium development goal of WHO which is to halve

TB prevalence and to halve TB mortality by 2015 compared with their levels in 1990

(WHO, 2012).

4.1 M. tuberculosis strain diversity based on 43 format spoligotyping

We found CAS1-Delhi lineage to be the most prevalent one throughout the

country (69% of the genotyped isolates). These results are in concordance with earlier

studies from Pakistan (Ayaz et al., 2012; Hasan et al., 2006; Siddiqi et al., 2002;

Tanveer et al., 2008), India (Bhanu et al., 2002; Sankar et al., 2013; Sharma et al.,

2008; Varma-Basil et al., 2011) as well as from Bangladesh (Rahim et al., 2007). The

second largest lineage found was the ill-defined T family (8%) followed by Ural (6%)

and EAI (6%) lineages. This shows that EAI is of relative low prevalence as

compared to previous reports from Pakistan (Hasan et al., 2006; Tanveer et al., 2008)

where EAI lineage was found to be the second largest lineage of M. tuberculosis

isolates circulating in the population. This could be due to large sample size from

eastern part of the country (Lahore and Faisalabad) in our study as compared to that in

previous studies. The relative prevalence of different lineages can also be influenced

by immigrants or frequent travelers across the border areas. This is particularly true in

a country like Pakistan that hosts large number of immigrants and travelers from

neighboring countries where tuberculosis is highly endemic.

The presence of significantly high proportion of EAI strains [χ²(df=2)=8.4;

p=0.015; nLahore+Faisalabad=80; nKarachi=36; nRawalpindi=140] found in the eastern part of

the country as compared to the other parts is rational as Pakistan is sharing its

geographical border with India that has high proportion of EAI genotype after CAS

Page 268: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

248

(Narayanan et al., 2008; Varma-Basil et al., 2011). It is interesting to mention that

clusters of M. tuberculosis lineages; Beijing, Haarlem, and African are associated

with outbreaks in different parts of the world (Brudey et al., 2006; Cadmus et al.,

2011; Gagneux and Small, 2007). Further these lineages have also been described as

predominant pathotypes in the world (Kato-Maeda et al., 2001). In contrast to this,

EAI and CAS lineages have remained endemic in East Asian countries (Narayanan et

al., 2008; Rajapaksa et al., 2008; Singh et al., 2004; Tanveer et al., 2008). All these

studies clearly show that various genotypes remain confined to the respective

geographical regions like CAS family has remained confined in this subcontinent with

minimum tendency to spread out. This might be due to the slow rate of genetic

diversion in M. tuberculosis and also difference in host ethinicity (Singh et al., 2004).

Despite the fact that Pakistan is sharing its geographical boundaries with

China where Beijing spoligotype is highly endemic, our study shows that the Beijing

strains (3%) are not playing an important role in disease transmission in Pakistan and

there is no outbreak of these strains. These results are in agreement with a previous

study (Tanveer et al., 2008) but are in contrast with that of Hasan et al., (2006). These

authors reported 7% prevalence of Beijing strains in Karachi, in contrast to only 3%

found in the present study. Beijing genotype had been reported from the northern and

central part of the country in previous studies while we found none. Hence,

prospective epidemiological studies including molecular analyses are needed to

confirm the genetic diversity of M. tuberculosis isolates in Pakistan with more

representative samples.

4.2 Discriminatory power of 68 format Spoligotyping

In the present study, use of 68 spacer format spoligotyping could not

appreciably increase the strain differentiation. Addition of 25 more spacers could split

only 3 clusters out of 13 clusters, obtained by the combination of 43 spacer format

spoligotyping and 24 MIRU-VNTR typing format. Analysis on the strain family scale

showed that only CAS and T families could achieve strain differentiation. Previous

studies (Brudey et al., 2004; Javed et al., 2007; van der Zanden et al., 2002) showed

Page 269: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

249

that the introduction of additional 25 spacers can significantly improve the strain

differentiation particularly in human and large animal adopted MTBC PGG1

subspecies which is not the case with Haarlem (PGG2) strains. In 2010, Jian et al.,

showed that the use of 68 spacer format can provide better strain differentiation

particularly for the M. africanum, EAI and M. bovis while it could not provide

appreciable strain differentiation for the CAS. They suggested the use of this format

for the population-based molecular epidemiological studies in South East Asia where

the EAI clade is highly prevalent. In contrast to their study, we found no strain

differentiation in the EAI strains rather CAS family showed the highest level of strain

differentiation. These contrasting results might be due to the difference in number of

representative isolates belonging to each family in both the studies.

4.3 Genotyping using 24 MIRU-VNTR format

Our study highlights the usefulness of 24 MIRU-VNTR typing in screening

the M. tuberculosis isolates form Pakistan. Although a number of studies have been

reported on spoligotyping of M. tuberculosis strains from Pakistan but only very few

studies have used MIRU-VNTR for molecular typing of M. tuberculosis. All of these

studies have relied on the use of either 12 or 15 MIRU-VNTR format. However, it has

already been reported that the discriminatory power of 12 loci MIRU-VNTR typing is

less than that of IS6110 RFLP, a gold standard for genotyping of M. tuberculosis

isolates. Use of 24 loci format is superior to the 12 and 15 and may exceed the

discriminatory power of IS6110 RFLP typing when used in combination with

spoligotyping (Bidovec-Stojkovic et al., 2011; Christianson et al., 2010).

A previous study, where in five exact tandem repeats (ETR) were used to type

113 M. tuberculosis isolates only from Rawalpindi District of Pakistan, showed

clustering of one third of the isolates, which were further discriminated by an IS6110

based analysis (Gascoyne-Binzi et al., 2002). Ayaz et al., (2012) performed 15 loci

MIRU-VNTR typing on 41 isolates only from Karachi District of Pakistan, while Ali

et al., (2007) used standard 12 loci format to identify the alleles most discriminatory

for CAS1 family (n=178). All these studies didn’t represent the M. tuberculosis

Page 270: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

250

population in the country. Although Ali et al., (2007) provided the discriminatory

powers of various loci but none of these studies provided the comparison of the

discriminatory powers of standard 12, 15 and 24 loci MIRU-VNTR typing formats for

the strains circulating in Pakistan.

M. tuberculosis isolates (n=225) in the present study had been differentiated

into 150 patterns, including 24 clusters with clustering rate of 0.228, by spoligotyping

while MIRU-VNTR typing differentiated 168 pattern, including 57 clusters with

clustering rate of 0.133. The discriminatory power of the 24 MIRU-VNTR typing was

found to be higher as compared to spoligotyping format which is in concordance with

previous studies (Chatterjee and Mistry, 2013; Martinez-Guarneros et al., 2013).

Although the combination of both techniques resulted in increased number of patterns

yet the discriminatory power remained very close to the 24 loci MIRU-VNTR typing

in contrast to the previous findings (Pitondo-Silva et al., 2013).

Valcheva et al., (2008) compared the use of 24, 15 and 12 loci to genotype 73

strains of M. tuberculosis and achieved a discriminatory index of 0.997, 0.996 and

0.994 respectively. Similarly, in the present study the 12 loci MIRU-VNTR had lesser

discriminatory power (0.9828) as compared to that of the 15 loci (0.992) and 24 loci

format (0.9971). This is in agreement with the previous finding (Christianson et al.,

2010) where the discriminatory power of the MIRU-VNTR typing was reported to be

proportional to the number of loci analyzed. However, Ali et al., (2007) reported

higher discriminatory power of 12 loci (0.999) as compared to what we found. This is

because their study was conducted to assess the alleles most discriminatory for CAS1

family.

4.4 Determination of “fast lane” screening markers

The usefulness of MIRU-VNTR loci to discriminate between strains varies in

different geographical settings depending upon the population of M. tuberculosis

(Chaoui et al., 2013; Chatterjee and Mistry, 2013; Chen et al., 2012; Dong et al.,

2012; Liu et al., 2013; Zhang et al., 2013). Therefore, it is important to determine the

most discriminatory loci for each country depending on the majority of the

Page 271: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

251

representative M. tuberculosis strains of that region. In the present study, highly

discriminatory loci were found to be the Qub 26, MIRU 10, Mtub 04, MIRU 26 and

MIRU 31 (ETR E) while MIRU 16, Qub 4156, Mtub 21, ETR A, MIRU 39, Mtub 39,

Mtub 30, MIRU 24, Qub 11b, MIRU 40 and ETR C as moderately discriminative.

Other loci, including ETR B, MIRU 23, MIRU 04 (ETR D), Mtub 29, Mtub 34,

MIRU 27, MIRU 02 and MIRU 20 showed poor discriminatory power. We found that

the set of MIRU-VNTR loci comprising of Qub 26, MIRU 10, Mtub 04, MIRU 26,

MIRU 31 (ETR E), MIRU 16, Qub 4156 and Mtub 21 can be used as ‘fast lane’

screening markers for differentiation of M. tuberculosis isolates from Pakistan.

4.5 The transmission dynamics of tuberculosis

Our results showed a high diversity and relatively low clonality of M.

tuberculosis isolates as indicated by the RTI (15% by 100% identity and 23% by

SLV). This transmission rate is quite low when considering the high population

density of the country and recent studies involving highly endemic countries. For

instance, in Nigeria where the prevalence is expected to be 3 times lower than in

Pakistan (WHO, 2012), the RTI was of 21.5% when using the same calculation

method (100% identity at 24 MIRU-VNTR + spoligotyping pattern) and of 38% when

allowing for SLV (Tessema et al., 2013). Similarly, 24 MIRU-VNTR-clustered

isolates (a measure similar to RTI) accounted for 34% in Saudi Arabia and 45% in

North-West Ethiopia (Al-Hajoj et al., 2013; Lawson et al., 2012). If further confirmed

by prospective more representative studies, such a low transmission rate could suggest

that the reactivation of M. tuberculosis infection could be the driving force for high

disease burden in the Province. This would suggest that recent health policies in this

provice had a great impact on TB prevalence and transmission. We suggest that a

more comprehensive country-wide epidemiological study (at least 5,000 isolates

would have been necessary to faithfully characterize the diversity for the about

100,000 culture positive isolates of new cases detected each year) should be carried

out to know the true picture of disease transmission in the country.

Page 272: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

252

The disease transmission index (RTI) was found to be higher for the

Rawalpindi district as compared to that of Lahore + Faisalabad. This might be due to

a large number of immigrants from Afghanistan, resident in the Rawalpindi district.

Unregulated movement of the Afghan immigrants across the porous Pakistan-

Afghanistan border is presenting a great challenge to tuberculosis control program in

the country providing a fertile ground where MDR strains can thrive. Such

populations require special focus for better case detection, follow up and treatment.

4.6 Assessment of freely available databases for lineage assignation

Assigning isolates to M. tuberculosis lineages using online tools is possible

using 3 different interfaces: TB-lineage, SITVITWEB that can handle spoligotype-

only data, and MIRU-VNTRPlus that is designed to use 24 MIRU-VNTR data.

Despite having been validated and being widely used, they all exhibited errors when

applied to our isolates. This uncovered the inability of all the databases in classifying

(mainly TB-lineage and SpolDB4/SITVITWEB) or giving wrong lineage assignation

(TB-Lineage and MIRU-VNTRplus). Another limit of these databases is in naming of

sublineages. This problem is because of the fact that these databases are not upgraded

regularly and hence give problems in deciding whether the lineage and sublineage

should be assigned according to old system or the system be upgraded regularly and

used accordingly? All databases choose to keep original naming, for instance, the

name of H4 sublineage, in fact, baptized into Ural since 2010, (Abadia et al., 2010;

Kovalev et al., 2005) is still used in SITVITWEB. However, this could have led to the

overestimation of prevalence of Haarlem sublineage in our isolates as Ural sublineage

is much more prevalent (6.5%) as compared to true Haarlem sublineage (0.8%). We

identified that TB-lineage gives inaccurate results when compared to the reference

assignation. SITVITWEB and MIRU-VNTRplus performed well, but lacked

appropriate or exact assignation for 20% of the isolates. All this highlights the need to

design new tools with higher performance in lineage assignation.

Page 273: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

253

4.7 Low cost, in-house, reverse hybridization line blot assay

Early and accurate detection of the pathogen in clinical specimens and its drug

sensitivity can help in controlling the disease. Genotypic (unlike phenotypic) assays

do not require viable cultures but require the accurate knowledge of both the target

gene and the mutations associated with resistance. The first paper on detection of

mutations for screening of drug resistant tuberculosis was published in 1993 (Telenti

et al., 1993) and since then a wealth of data has been accumulated on the mutations

found in isolates resistant to specific drugs. In most of the cases, rifampicin resistance

is accompanied with resistance to other first line drugs like isoniazid. Hence,

rifampicin resistance can be used as surrogate marker for MDR-TB (Lin et al., 2004;

Namaei et al., 2006; Telenti et al., 1997).

Reverse hybridization line probe assay can screen a large number of isolates to

detect mutations in a single run. These assays use negatively charged Biodyne C

membrane to immobilize short stretches of oligonucleotides. However, these

oligonucleotides must be modified to have terminal amino group that on activation of

Biodyne C membrane with EDAC will make covalent bonding to the carboxyl group

present on the membrane. This strategy seems attractive and convenient yet is

expensive to adopt. Hence, we explored the possibility of using oligonucleotides

without amino group modification and used positively charged nylon membrane

which does not require EDAC activation. For effective binding of oligonucleotides,

poly (dT) tail was added at the 3´end to improve their binding. In our blots unequal

intensity of signals for wild type oligonucleotides was observed. This may be due to

the difference in optimum temperature for hybridization and washing steps for all the

oligonucleotides included. Efforts will be made to overcome this problem by

designing new probes.

Our in-house assay faithfully detected not only the substitution and deletion

mutations but also unknown mutations indirectly leading to the sensitivity and

specificity of 96% and 97%, respectively, when compared with DNA sequencing. The

assay also identified mixed infection in the clinical sample. Studies have shown that

culture can reduce the clonal complexity of the strains and in most samples (6/10),

Page 274: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

254

after culture, only one strain will be identified in mixed infections (Martin et al.,

2010). This suggests that culture based diagnosis of TB can lead to the under

representation of the mixed infection. The detection of mixed infection could have

direct implication for the individual patient as well as spread of drug resistant strains

especially in high TB burden settings.

The time consuming phenotypic DST leads to delay in initiation of appropriate

treatment and transmission of drug resistant strains of M. tuberculosis to close

contacts. The turnaround time for the in-house assay developed in this study is 11

hours including DNA extraction from clinical specimens, PCR and hybridization.

This can contribute significantly in reducing the burden of MDR in country.

Our assay was found to be more cost effective (€3.16 per sample) when

compared with commercially available kits used to determine the rifampicin

resistance in M. tuberculosis. The RIFO assay costs €5.62 per sample when 10

samples are analyzed simultaneously and €4.18 per sample when 40 samples are

handled. The commercially available kit (INNOLiPa, Innogenetics) costs €35 per

test, excluding the costs for import and transport which vary from country to country

and are especially high in developing countries. The actual cost for this assay per

sample in the Netherlands is €35, in Italy €45, in Argentina €55 and in India €90

(Morcillo et al., 2002). The commercially available kit costs US$ 100 per test,

including the costs for import and transport in Pakistan. Hence, our assay could be

used as a low cost alternative to commercially available kits both for the research as

well as diagnostic purposes particularly in the resource poor and middle income

settings where cost is a major parameter to transfer of new technology.

4.8 Genotypic assessment of rifampicin resistance

Mutations in codon 531 of rpoB gene were the major contributor conferring

resistance to rifampicin followed by codon 526 and codon 516. These observations

are similar to the reports from other parts of the world (US, China, Georgia Argentina

(Cavusoglu et al., 2002; Gomgnimbou et al., 2012; Imperiale et al., 2013; Kapur et al.,

1994; Mani et al., 2001; Matsiota-Bernard et al., 1998; Tang et al., 2013) while in

Page 275: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

255

contrast to the reports from Pakistan, (Ali et al., 2011; Farooqi et al., 2012) Hungary

(Bartfai et al., 2001), Morocco (Sabouni et al., 2008) or from Asian countries (Hirano

et al., 1999) where mutations at codon 516 are most prevalent.

An additional interesting finding was that some isolates showed novel

mutations outside the 81bp core region, along with or without mutations in the core

region. This finding is in agreement with other reports indicating geographic

variations in mutations (Bobadilla-del-Valle et al., 2001; Pozzi et al., 1999; Yuen et

al., 1999).

4.9 Dominance of mutation at codon 315 of katG in isoniazid resistant isolates

Resistance to isoniazid is mediated by mutations in several genes, most

commonly at codon 315 of katG gene and the promoter region of inhA gene (Hazbon

et al., 2006; Kiepiela et al., 2000; Mathuria et al., 2009; Ramaswamy and Musser,

1998). The mutation in inhA or its promoter region can cause 21-24% of INH

resistance; moreover, the promoter mutations (mainly at position -15 of promoter

region of inhA gene) is more common than the mutations in the structural gene

(Musser et al., 1996). In the present study we found that 72% and 23% of mutations

are in katG gene and in the inhA promoter region, respectively. Substitution mutation

Ser315Thr in the katG gene is found to be associated with relatively high level of

resistance to INH (Zhang et al., 2005) and high TB burden regions are found to have a

higher prevalence of this substitution compared to regions where the prevalence of TB

is intermediate or low (Hu et al., 2010; Mokrousov et al., 2002). The incidence (66%)

of the katG (Ser315Thr) alteration in the present study is not as high as those reported

in north eastern Russia (Mokrousov et al., 2002), Nepal (Poudel et al., 2013),

Bangladesh and Vietnam (Caws et al., 2006) but is higher than that reported in other

parts of the world including India and China (Guo et al., 2008; Hu et al., 2010;

Mathuria et al., 2009; Nusrath Unissa et al., 2008; Yuan et al., 2012) and also in a

previous study from Pakistan (Farooqi et al., 2012).

In promoter region of inhA gene -15 (C→T) substitution was predominant

(21%). These findings are similar to the study from China (Luo et al., 2010) while in

Page 276: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

256

contrast to the one conducted in Argentina, China and the previous study in Pakistan

(Farooqi et al., 2012; Imperiale et al., 2013; Zhang et al., 2005). However, it remains

to be ascertained whether the novel mutations detected in this study are associated

with INH resistance or not. To assess their specific effects on katG function and

promoter of inhA gene, further studies are needed.

4.10 Unreliable standards of phenotypic drug susceptibility in the country

Our results identified unreliable standard of phenotypic drug sensitivity in the

country, since we found mutations for rifampicin or isoniazid in codons that are

already proven to be conferring resistance to these drugs. Moreover, 46% of

rifampicin and 52% of isoniazid resistant isolates by phenotypic DST were found to

have no mutation in genes frequently associated with drug resistance. The low

sensitivity and specificity of the phenotypic DST may be due to poor quality or extra

quantity of the antibiotics or laboratory errors. The poor standard of DST indicates the

need of external quality assessment for the maintenance and improvement of the

standard of the phenotypic DST since, it is used for the selection of effective regimens

to treat tuberculosis patients as well as for evaluation of efficiency of tuberculosis

control program and development of strategies to cope with the problem of drug

resistant tuberculosis.

Interestingly, phenotypic DST designated 29% isolates as RifR and 40% as

INHR, genotypic DST reduced this percentage to 17% and 21%, respectively. This

suggests that drug resistance may be overestimated by local hospitals. As a

consequence, prevalence of MDR-TB in Pakistan as published by WHO, may slightly

be overestimated.

4.11 Co-existence of resistance to rifampicin and isoniazid

Genotyping techniques designated 36% isolates as MDR, 26% as resistance to

only rifampicin while 38% for only isoniazid. On the other hand, phenotypic DST

results designated 61% isolates as MDR, 39% resistant for rifampicin only while

0.8% resistant for isoniazid only. Three, possible explanations could be given for

Page 277: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

257

these contrasting observations. First, the rifampicin or isoniazid resistance

determining mutations either might be present outside the targeted hotspot regions of

the rpoB gene, katG or inhA genes for the other resistant isolates. This is supported by

the fact that some isolates, possessing mutations in codon 506 and 569 of rpoB gene

while in case of katG gene codon 412 and the AGCC insertion after codon 344 and -

20(C→T) in inhA gene could possibly justify the drug resistance in these isolates.

The evidence of new mutations in the present study indicates that mutations continue

to arise most probably because of the ability of the M. tuberculosis to adapt to the

drug exposure. This demands further investigation of resistant isolates form different

geographical settings with larger sample size. Secondly, mutations in kasA, ndh, and

the oxyR-ahpC intergenic region (Sajduda et al., 2004) might also be contributing in

development of isoniazid resistance. Substandard performance of phenotypic drug

sensitivity might be the third possible explaination.

4.12 Association of M. tuberculosis lineages with specific mutations

A few studies report that some lineages are associated with specific mutations

at the hotspot region of rpoB and katG gene. More specifically, Ali et al., (2009)

identified a higher prevalence of mutations at codon 526 of rpoB gene in CAS1-Dehli

isolates and of mutation 315 in katG gene in CAS isolates. No statistically significant

association could be detected in the present study for rpoB526 or katG315 suggesting

that previously reported association between lineage and mutations might be a chance

event.

4.13 Dominance of substitution mutations at codon 306 of embB gene

In the present study we found mutations in ethambutol resistance determining

region in 57% of EMBR isolates (by phenotypic DST) while 43% isolates did not

show any mutation in the targeted region. This suggests that other genes or

mechanisms might be contributing for ethambutol resistance in M. tuberculosis. It has

been reported that the embB306 mutants provide advantage to M. tuberculosis to

develop INH and/or RIF resistance, hence, patients possessing this mutation should be

Page 278: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

258

carefully monitored for treatment failure and the possible emergence of MDR (Safi et

al., 2008).

4.14 Dominance of rpsL 43 and rrs 513 mutation in streptomycin resistant isolates

In the present study, we found that only 28% of the STRR isolates had a

mutation either in the rpsL or rrs genes which is quite contrasting to the results of

studies conducted in European countries and the USA that have reported higher

overall rates (37-67%) of STRR isolates with these mutations (Brzostek et al., 2004b;

Cooksey et al., 1996; Cuevas-Cordoba et al., 2013; Dobner et al., 1997; Perdigao et

al., 2008; Ramaswamy et al., 2004).The highest frequencies of mutations were

observed in Japan, China and Latvia with 77.8%, 85.2% and 85%, respectively

(Katsukawa et al., 1997; Shi et al., 2007; Tracevska et al., 2004). In contrast, no

mutation was detected in STRR isolates in Northern India (Siddiqi et al., 2002).

Regarding the genes associated with streptomycin resistance, we found that

57% of the isolates had mutations in the rpsL gene. The most frequent mutation was

substitution mutation at codon 43rpsL (46%) while no mutation was observed in the

codon 88rpsL. This observation is contrasting to the results of the earlier study

conducted in Pakistan (Khan et al, 2013) where mutations were detected both at

codon 43rpsL and 88rpsL in 50% of the isolates. This conflict might be due to the

difference in the isolates selected in both studies. The frequency of mutations at codon

43rpsL is comparable to the previous study (Jnawali et al., 2013b) while the

difference is remarkable in the studies from China and Japan where this mutation was

found with the frequency of 91% and 78%, respectively (Fukuda et al., 1999; Shi et

al., 2007).

The frequency of mutations in the rrs gene observed in the present study

(43%) is high compared with previous studies (ranging from 2.3% to 24%) (Dobner et

al., 1997; Jnawali et al., 2013b; Katsukawa et al., 1997; Shi et al., 2007; Sreevatsan et

al., 1996b; Tracevska et al., 2004; Tudo et al., 2010). The alterations located at

positions 512(C→T) (7%), 513(A→C) (21%) and 516(C→T) (4%) of rr sgene have

Page 279: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

259

previously been reported in several studies (Cuevas-Cordoba et al., 2013; Dobner et

al., 1997; Katsukawa et al., 1997; Shi et al., 2007; Sreevatsan et al., 1996b) and have

also been included in the TB Drug Resistance Mutation Database, published in 2009

(Sandgren et al., 2009), however, to our knowledge, the alteration at position

282(G→T), 420(C→T) and 648(A→C) are novel.

In the present study we did not find any mutation in the 72% of the STRR

isolates. A lower proportion of genetic alteration in STRR isolates have reported in

other studies with 51% in Poland (Brzostek et al., 2004) and 53% in Japan (Fukuda et

al., 1999). This is much higher than the 14.8% reported in China (Shi et al., 2007),

23% in Mexico (Cuevas-Cordoba et al., 2013), 25% (Jnawali et al., 2013a) and 28%

(Jnawali et al., 2013b) in Korea and 33.3% in Portugal (Perdigao et al., 2008). Other

unknown mechanisms such as efflux pumps, the gibB gene (Spies et al., 2008) or

alterations in the cell envelope that lead to decreased permeability, reduced drug

uptake or enhanced efflux (Meier et al., 1996; Sharma et al., 2010) have been

suggested as possible explanation for the absence of mutations in these hotspots.

4.15 Low prevalence of mutations in targeted regions of pncA gene for pyrazinamide resistance

In the present study, we found very few isolates (4%) that showed the

mutations in the targeted coding regions of pncA gene and majority of these were

silent mutations. This might be due to the fact that in the present study, we couldn’t

target the whole gene and there is no “hotspot” region identified in pncA gene yet.

Further, pyrazinamide resistant isolates with normal pyrazinamidase activity and wild

type pncA gene have also been reported (Singh et al., 2006). Bhuju et al., (2013)

found lesser correlation between PZA resistance and mutations in pncA gene (45.7%).

This suggests that other resistance determining mechanisms might be involved such

as recently identified mutations in RpsA gene (Tan et al., 2013). Further studies are

needed to assess the mutations associated with pyrazinamide resistance covering the

newly identified targets to have the complete mutation spectrum for this geographical

setting.

Page 280: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

260

4.16 Dominance of the mutations associated with low biological cost

The development of the resistance mutations often leads to the associated

biological cost in bacteria because mutations generally target essential highly

conserved genes (Borrell and Gagneux, 2009). Although acquisition of the mutations

is associated with the loss of fitness yet it has been reported that certain mutations e.g.

the mutation in codon 43 of the rpsL gene (Bottger and Springer, 2008), the mutation

(Ser→Thr) at codon 315 of katG gene (Pym et al., 2002) and the (Ser→Leu) mutation

of codon 531 of rpoB gene poses a relative fitness greater than or equal to 1.0, a

fitness considered equivalent to the susceptible M. tuberculosis strains (Billington et

al., 1999; Mariam et al., 2004). Spies et al., (2013) measured the biological cost of the

M. tuberculosis isolates in the presence of certain mutations. They found that strains

harboring mutations (Lys→Arg) at codon 43 of rpsL gene, (Ser→Leu) at codon 531

of rpoB gene and (Ser→Leu) at codon 315 of the katG gene grow faster than the

susceptible strains. The substitution mutation (Lys→Arg) at codon 43 of rpsL gene is

no cost mutation in Escherichia coli and Salmonella enterica subsp. Entericaserovar

Typhimurium too (Tubulekas and Hughes, 1993). Further, (Ser→Leu) substitution

mutation at codon 315 of the katG gene is known to have high degree of INH

resistance and is only katG mutation associated with successful transmission

(Gagneux et al., 2006a).

The dominance of all these mutations in the resistant isolates collected from

this particular geographical setting is of serious concern as these resistant strains

bearing the resistant determinants having no biological cost, can spread over time due

to natural selection resulting in epidemic. To prevent these epidemics of the resistant

strains, early and accurate diagnosis of the drug resistant strains should be ensured

which can lead to the timely treatment avoiding the occurrence and transmission of

the resistant strains in the community.

4.17 Usefulness of genotyping and SNP screening methods

Our in-house line probe assay is well suited for the SNP analysis. It showed

high sensitivity and specificity not only for the M. tuberculosis culture isolates but

Page 281: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

261

also performed very well in clinical specimens. The rapid turnaround time and the low

cost of the assay make it suitable to be used in resource poor high TB burden settings

where rapid and efficient screening of the MDR can help improve TB control

program.

Use of 24 loci MIRU-VNTR analysis in duplex format performed very well in

the present study. Further, this typing technique is well suitable to this setting not only

because of its high discriminatory power (HGDI=0.99) but also because of the lower

cost and decreased turnaround time as compared to the simplex 24 loci MIRU-VNTR

typing.

Our results confirmed the high sensitivity and specificity of spoligoriftyping as

genotyping technique. Moreover, this technique furnishes information on rifampicin

sensitivity along with a pattern that can be used to assign a lineage or sublineage to M.

tuberculosis isolates. This assignation is interesting for a follow-up of tuberculosis

diversity as should be carried out in high-burden countries such as Pakistan.

Page 282: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

262

Recommendations and future research directions

General recommendations:

• TB control programs should educate health-care providers in the community

about the need for prompt reporting of suspected cases. Health-care providers

should be educated about the signs and symptoms of TB, diagnostic methods,

prevention, and treatment which can lead to correct diagnosis and treatment,

decrease in the incidence of multidrug resistance, and consequently will stop

the spread of TB in the community.

• Steps should be taken to identify active TB cases so as to shorten the period of

infectivity and consequently to reduce the chances of disease transmission in

close contacts.

• There is need for prompt and effective contact investigation. Populations at

high risk for TB infection should be screened and provided therapy to prevent

progression to active TB.

• TB patients or those suspected to have TB should have an access to

comprehensive and affordable clinical TB services.

• Patients’ non-compliance to anti-TB drugs is also an important factor that

leads to development of MDR TB and XDR TB, hence, the research of

associated behavioral and social factors should be conducted to identify ways

to improve successful completion of prescribed regimen.

• DOTS program should be improved to increase the patient’s compliance to

anti-TB treatment. This will ensure successful treatment and help prevent

development of disease attributable to drug-resistant TB.

• Targeted tuberculin testing programs should be in place to identify the persons

who are at high risk for progression to active TB. These persons will benefit

by treatment of latent TB infection.

Page 283: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

263

• Strategies that prevent reactivation of the disease should be implemented.

Specific recommendations

• New, rapid, and cost-effective diagnostic methods are needed to decrease the

number of point sources, hence substantially reducing disease transmission.

Implementation of the developed in-house assay in conjunction with

traditional DST assays could prove to be effective in this regard.

• The unreliable standard of phenotypic DST identified in the study pinpoints

the need for quality control and quality assurance. External quality assessment

at regular time intervals to improve phenotypic DST standards in the country

is also required.

• Genotypic drug susceptibility testing for AFB smear-positive sputum from TB

patients who are suspected to have drug-resistant disease or who are from a

region or population with a high prevalence of drug resistance should be

performed and the results should be used for “personalized treatment”.

• There is convincing evidence for the role of MTBC strain diversity in human

disease. Studies should be conducted to monitor the variability of M.

tuberculosis strains with the representative set of samples from each region of

the country at regular intervals, in order to have true picture about the genetic

diversity in particular geographical settings.

• National TB control program could be assisted with the use of high throughput

techniques like “Spoligotyping” and “TB-SPRINT” at the reference lab level

in order to provide the disease surveillance on the basis of genotyping and

drug sensitivity patterns simultaneously.

• There is need to develop new and effective drug regimens for the treatment of

TB, including drugs to cure MDR TB and XDR and to prevent development of

active disease among persons who are infected latently with drug-resistant M.

tuberculosis.

Page 284: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

264

Future research directions

Tuberculosis control also requires research into new preventive measures,

diagnostic approaches, and drugs, which were beyond the scope of this dissertation.

• A broad concerted effort is urgently needed to develop operational-research

capacity, allocate appropriate resources, and encourage all sectors to work

together to promote operational research in TB control. The policy makers

should be taken on board to incorporate research as a priority to improve TB

control, as identified by the Global Plan to Stop TB 2011–2015.

• Epidemiologic studies that make use of genotyping tools are recommended to

elucidate disease transmission dynamics and risk factors for MDR and XDR

TB. There should be facilities to rapidly identify and respond to domestic and

international XDR TB outbreaks.

• Research is needed to advance understanding of genetics and growth

characteristics of M. tuberculosis, host-pathogen interaction and the

association of genotypic and biological markers with infection, disease, and

drug resistance. The reason for dominance of one particular strain in a

particular geographical setting has to be explored.

• Studies must be done to pinpoint specific factors important for reactivation of

the M. tuberculosis strains in the regions where the major driving force of

disease spread is reactivation.

• New tools with higher performance in lineage assignation to faithfully

describe M. tuberculosis diversity are needed. Further, existing online tools

should be upgraded to compare the disease transmission and virulence of

families and lineages, worldwide.

• Long term strategies include the development of prophylactic tool that could

prevent the infection and progression of the disease.

• Ultimately, an effective vaccine is needed to eliminate TB.

Page 285: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

265

REFERENCES

Abadia, E., Zhang, J., dos Vultos, T., Ritacco, V., Kremer, K., Aktas, E., Matsumoto,

T., Refregier, G., van Soolingen, D., Gicquel, B., Sola, C., 2010. Resolving lineage

assignation on Mycobacterium tuberculosis clinical isolates classified by

spoligotyping with a new high-throughput 3R SNPs based method. Infect. Genet.

Evol. 10, 1066-1074.

Abbadi, S., Rashed, H.G., Morlock, G.P., Woodley, C.L., El Shanawy, O., Cooksey,

R.C., 2001. Characterization of IS6110 restriction fragment length polymorphism

patterns and mechanisms of antimicrobial resistance for multidrug-resistant isolates of

Mycobacterium tuberculosis from a major reference hospital in Assiut, Egypt. J. Clin.

Microbiol. 39, 2330-2334.

Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A., Carniel, E., 1999.

Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia

pseudotuberculosis. Proc. Natl. Acad. Sci. U S A 96, 14043-14048.

Al-Hajoj, S., Varghese, B., Al-Habobe, F., Shoukri, M.M., Mulder, A., van

Soolingen, D., 2013. Current trends of Mycobacterium tuberculosis molecular

epidemiology in Saudi Arabia and associated demographical factors. Infect. Genet.

Evol. 16, 362-368.

Alderwick, L.J., Birch, H.L., Mishra, A.K., Eggeling, L., Besra, G.S., 2007. Structure,

function and biosynthesis of the Mycobacterium tuberculosis cell wall:

arabinogalactan and lipoarabinomannan assembly with a view to discovering new

drug targets. Biochem. Soc. Trans. 35, 1325-1328.

Ali, A., Hasan, R., Jabeen, K., Jabeen, N., Qadeer, E., Hasan, Z., 2011.

Characterization of mutations conferring extensive drug resistance to Mycobacterium

tuberculosis isolates in Pakistan. Antimicrob. Agents. Chemother. 55, 5654-5659.

Page 286: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

266

Ali, A., Hasan, Z., Moatter, T., Tanveer, M., Hasan, R., 2009. M. tuberculosis Central

Asian Strain 1 MDR isolates have more mutations in rpoB and katG genes compared

with other genotypes. Scand. J. Infect. Dis. 41, 37-44.

Ali, A., Hasan, Z., Tanveer, M., Siddiqui, A.R., Ghebremichael, S., Kallenius, G.,

Hasan, R., 2007. Characterization of Mycobacterium tuberculosis Central Asian

Strain 1 using mycobacterial interspersed repetitive unit genotyping. BMC Microbiol.

7, 76.

Allix-Beguec, C., Harmsen, D., Weniger, T., Supply, P., Niemann, S., 2008.

Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for

online analysis of genotyping data and phylogenetic identification of Mycobacterium

tuberculosis complex isolates. J. Clin. Microbiol. 46, 2692-2699.

Allix, C., Supply, P., Fauville-Dufaux, M., 2004. Utility of fast mycobacterial

interspersed repetitive unit-variable number tandem repeat genotyping in clinical

mycobacteriological analysis. Clin. Infect. Dis. 39, 783-789.

Ayaz, A., Hasan, Z., Jafri, S., Inayat, R., Mangi, R., Channa, A.A., Malik, F.R., Ali,

A., Rafiq, Y., Hasan, R., 2012. Characterizing Mycobacterium tuberculosis isolates

from Karachi, Pakistan: drug resistance and genotypes. Int. J. Infect. Dis. 16, e303-

309.

Baker, L., Brown, T., Maiden, M.C., Drobniewski, F., 2004. Silent nucleotide

polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg. Infect. Dis.

10, 1568-1577.

Barlow, R.E., Gascoyne-Binzi, D.M., Gillespie, S.H., Dickens, A., Qamer, S.,

Hawkey, P.M., 2001. Comparison of variable number tandem repeat and IS6110-

restriction fragment length polymorphism analyses for discrimination of high- and

low-copy-number IS6110 Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 39,

2453-2457.

Page 287: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

267

Barnes, P.F., Cave, M.D., 2003. Molecular epidemiology of tuberculosis. N. Engl. J.

Med. 349, 1149-1156.

Barnes, P.F., Yang, Z., Preston-Martin, S., Pogoda, J.M., Jones, B.E., Otaya, M.,

Eisenach, K.D., Knowles, L., Harvey, S., Cave, M.D., 1997. Patterns of tuberculosis

transmission in Central Los Angeles. JAMA 278, 1159-1163.

Bartfai, Z., Somoskovi, A., Kodmon, C., Szabo, N., Puskas, E., Kosztolanyi, L.,

Farago, E., Mester, J., Parsons, L.M., Salfinger, M., 2001. Molecular characterization

of rifampin-resistant isolates of Mycobacterium tuberculosis from Hungary by DNA

sequencing and the line probe assay. J. Clin. Microbiol. 39, 3736-3739.

Bates, J.H., 1979. Diagnosis of tuberculosis. Chest. 76, 757-763.

Behr, M.A., Wilson, M.A., Gill, W.P., Salamon, H., Schoolnik, G.K., Rane, S., Small,

P.M., 1999. Comparative genomics of BCG vaccines by whole-genome DNA

microarray. Science 284, 1520-1523.

Bergmann, J.S., Woods, G.L., 1997. Reliability of mycobacteria growth indicator tube

for testing susceptibility of Mycobacterium tuberculosis to ethambutol and

streptomycin. J. Clin. Microbiol. 35, 3325-3327.

Bernstein, J., Lott, W.A., Steinberg, B.A., Yale, H.L., 1952. Chemotherapy of

experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related

compounds. Am. Rev. Tuberc. 65, 357-364.

Bhanu, N.V., van Soolingen, D., van Embden, J.D., Dar, L., Pandey, R.M., Seth, P.,

2002. Predominace of a novel Mycobacterium tuberculosis genotype in the Delhi

region of India. Tuberculosis (Edinb) 82, 105-112.

Bhuju, S., Fonseca Lde, S., Marsico, A.G., de Oliveira Vieira, G.B., Sobral, L.F.,

Stehr, M., Singh, M., Saad, M.H., 2013. Mycobacterium tuberculosis isolates from

Page 288: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

268

Rio de Janeiro reveal unusually low correlation between pyrazinamide resistance and

mutations in the pncA gene. Infect. Genet. Evol. 19, 1-6.

Bidovec-Stojkovic, U., Zolnir-Dovc, M., Supply, P., 2011. One year nationwide

evaluation of 24-locus MIRU-VNTR genotyping on Slovenian Mycobacterium

tuberculosis isolates. Respir. Med. 105 Suppl 1, S67-73.

Billington, O.J., McHugh, T.D., Gillespie, S.H., 1999. Physiological cost of rifampin

resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob. Agents.

Chemother. 43, 1866-1869.

Blessington, B., Beiraghi, A., 1990. Study of the stereochemistry of ethambutol using

chiral liquid chromatography and synthesis. J. Chromatogr. A 522, 195-203.

Bloom, B.R., Murray, C.J., 1992. Tuberculosis: commentary on a reemergent killer.

Science 257, 1055-1064.

Bobadilla-del-Valle, M., Ponce-de-Leon, A., Arenas-Huertero, C., Vargas-Alarcon,

G., Kato-Maeda, M., Small, P.M., Couary, P., Ruiz-Palacios, G.M., Sifuentes-

Osornio, J., 2001. rpoB Gene mutations in rifampin-resistant Mycobacterium

tuberculosis identified by polymerase chain reaction single-stranded conformational

polymorphism. Emerg. Infect. Dis. 7, 1010-1013.

Borrell, S., Gagneux, S., 2009. Infectiousness, reproductive fitness and evolution of

drug-resistant Mycobacterium tuberculosis. Int. J. Tuberc. Lung. Dis. 13, 1456-1466.

Bottger, E.C., Springer, B., 2008. Tuberculosis: drug resistance, fitness, and strategies

for global control. Eur. J. Pediatr. 167, 141-148.

Braden, C.R., Templeton, G.L., Cave, M.D., Valway, S., Onorato, I.M., Castro, K.G.,

Moers, D., Yang, Z., Stead, W.W., Bates, J.H., 1997. Interpretation of restriction

fragment length polymorphism analysis of Mycobacterium tuberculosis isolates from

a state with a large rural population. J. Infect. Dis. 175, 1446-1452.

Page 289: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

269

Brandli, O., 1998. The clinical presentation of tuberculosis. Respiration 65, 97-105.

Brennan, P.J., Nikaido, H., 1995. The envelope of mycobacteria. Annu. Rev.

Biochem. 64, 29-63.

Brisson-Noel, A., Aznar, C., Chureau, C., Nguyen, S., Pierre, C., Bartoli, M., Bonete,

R., Pialoux, G., Gicquel, B., Garrigue, G., 1991. Diagnosis of tuberculosis by DNA

amplification in clinical practice evaluation. Lancet 338, 364-366.

Brosch, R., Gordon, S.V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K.,

Garnier, T., Gutierrez, C., Hewinson, G., Kremer, K., Parsons, L.M., Pym, A.S.,

Samper, S., van Soolingen, D., Cole, S.T., 2002. A new evolutionary scenario for the

Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. U S A 99, 3684-3689.

Brosch, R., Philipp, W.J., Stavropoulos, E., Colston, M.J., Cole, S.T., Gordon, S.V.,

1999. Genomic analysis reveals variation between Mycobacterium tuberculosis

H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect. Immun. 67, 5768-

5774.

Brossier, F., Veziris, N., Truffot-Pernot, C., Jarlier, V., Sougakoff, W., 2006.

Performance of the genotype MTBDR line probe assay for detection of resistance to

rifampin and isoniazid in strains of Mycobacterium tuberculosis with low- and high-

level resistance. J. Clin. Microbiol. 44, 3659-3664.

Brudey, K., Driscoll, J.R., Rigouts, L., Prodinger, W.M., Gori, A., Al-Hajoj, S.A.,

Allix, C., Aristimuno, L., Arora, J., Baumanis, V., Binder, L., Cafrune, P., Cataldi, A.,

Cheong, S., Diel, R., Ellermeier, C., Evans, J.T., Fauville-Dufaux, M., Ferdinand, S.,

Garcia de Viedma, D., Garzelli, C., Gazzola, L., Gomes, H.M., Guttierez, M.C.,

Hawkey, P.M., van Helden, P.D., Kadival, G.V., Kreiswirth, B.N., Kremer, K.,

Kubin, M., Kulkarni, S.P., Liens, B., Lillebaek, T., Ho, M.L., Martin, C., Mokrousov,

I., Narvskaia, O., Ngeow, Y.F., Naumann, L., Niemann, S., Parwati, I., Rahim, Z.,

Rasolofo-Razanamparany, V., Rasolonavalona, T., Rossetti, M.L., Rusch-Gerdes, S.,

Sajduda, A., Samper, S., Shemyakin, I.G., Singh, U.B., Somoskovi, A., Skuce, R.A.,

Page 290: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

270

van Soolingen, D., Streicher, E.M., Suffys, P.N., Tortoli, E., Tracevska, T., Vincent,

V., Victor, T.C., Warren, R.M., Yap, S.F., Zaman, K., Portaels, F., Rastogi, N., Sola,

C., 2006. Mycobacterium tuberculosis complex genetic diversity: mining the fourth

international spoligotyping database (SpolDB4) for classification, population genetics

and epidemiology. BMC Microbiol. 6, 23.

Brudey, K., Gutierrez, M.C., Vincent, V., Parsons, L.M., Salfinger, M., Rastogi, N.,

Sola, C., 2004. Mycobacterium africanum genotyping using novel spacer

oligonucleotides in the direct repeat locus. J. Clin. Microbiol. 42, 5053-5057.

Brzostek, A., Sajduda, A., Sliwinski, T., Augustynowicz-Kopec, E., Jaworski, A.,

Zwolska, Z., Dziadek, J., 2004b. Molecular characterisation of streptomycin-resistant

Mycobacterium tuberculosis strains isolated in Poland. Int. J. Tuberc. Lung. Dis. 8,

1032-1035.

Burgess, R.R., Erickson, B., Gentry, D., Gribstov, M., Hager, D., Lesley, S.,

Strickland, M., Thompson, N., 1987. Bacterial RNA polymerase subunits and genes.

Cold Spring Harbor, N.Y, New york, pp. 3-15.

Burman, W.J., Reves, R.R., Hawkes, A.P., Rietmeijer, C.A., Yang, Z., el-Hajj, H.,

Bates, J.H., Cave, M.D., 1997. DNA fingerprinting with two probes decreases

clustering of Mycobacterium tuberculosis. Am. J. Respir. Crit. Care. Med. 155, 1140-

1146.

Cadmus, S., Hill, V., van Soolingen, D., Rastogi, N., 2011. Spoligotype profile of

Mycobacterium tuberculosis complex strains from HIV-positive and -negative

patients in Nigeria: a comparative analysis. J. Clin. Microbiol. 49, 220-226.

Caminero, J.A., 2010. Multidrug-resistant tuberculosis: epidemiology, risk factors and

case finding. Int. J. Tuberc. Lung. Dis. 14, 382-390.

Camus, J.C., Pryor, M.J., Medigue, C., Cole, S.T., 2002. Re-annotation of the genome

sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148, 2967-2973.

Page 291: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

271

Carter, A.P., Clemons, W.M., Brodersen, D.E., Morgan-Warren, R.J., Wimberly,

B.T., Ramakrishnan, V., 2000. Functional insights from the structure of the 30S

ribosomal subunit and its interactions with antibiotics. Nature 407, 340-348.

Case, C., Kandola, K., Chui, L., Li, V., Nix, N., Johnson, R., 2013. Examining DNA

fingerprinting as an epidemiology tool in the tuberculosis program in the Northwest

Territories, Canada. Int. J. Circumpolar. Health. 72.

Cavusoglu, C., Hilmioglu, S., Guneri, S., Bilgic, A., 2002. Characterization of rpoB

mutations in rifampin-resistant clinical isolates of Mycobacterium tuberculosis from

Turkey by DNA sequencing and line probe assay. J. Clin. Microbiol. 40, 4435-4438.

Caws, M., Duy, P.M., Tho, D.Q., Lan, N.T., Hoa, D.V., Farrar, J., 2006. Mutations

prevalent among rifampin- and isoniazid-resistant Mycobacterium tuberculosis

isolates from a hospital in Vietnam. J. Clin. Microbiol. 44, 2333-2337.

CDC, 1993. Initial therapy for tuberculosis in the era of multidrug resistance.

Recommendations of the Advisory Council for the Elimination of Tuberculosis.

MMWR Recomm. Rep. 42, 1-8.

Chaisson, R.E., 2003. Treatment of chronic infections with rifamycins: is resistance

likely to follow? Antimicrob. Agents. Chemother. 47, 3037-3039.

Chaoui, I., Zozio, T., Lahlou, O., Sabouni, R., Abid, M., El Aouad, R., Akrim, M.,

Amzazi, S., Rastogi, N., El Mzibri, M., 2013. Contribution of spoligotyping and

MIRU-VNTRs to characterize prevalent Mycobacterium tuberculosis genotypes

infecting tuberculosis patients in Morocco. Infect. Genet. Evol. S1567-1348.

Chapman, A.L., Munkanta, M., Wilkinson, K.A., Pathan, A.A., Ewer, K., Ayles, H.,

Reece, W.H., Mwinga, A., Godfrey-Faussett, P., Lalvani, A., 2002. Rapid detection of

active and latent tuberculosis infection in HIV-positive individuals by enumeration of

Mycobacterium tuberculosis-specific T cells. AIDS 16, 2285-2293.

Page 292: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

272

Chatterjee, A., Mistry, N., 2013. MIRU-VNTR profiles of three major

Mycobacterium tuberculosis spoligotypes found in western India. Tuberculosis

(Edinb) 93, 250-256.

Chauca, J.A., Palomino, J.C., Guerra, H., 2007. Evaluation of rifampicin and

isoniazid susceptibility testing of Mycobacterium tuberculosis by a

mycobacteriophage D29-based assay. J. Med. Microbiol. 56, 360-364.

Chaves, F., Yang, Z., el Hajj, H., Alonso, M., Burman, W.J., Eisenach, K.D., Dronda,

F., Bates, J.H., Cave, M.D., 1996. Usefulness of the secondary probe pTBN12 in

DNA fingerprinting of Mycobacterium tuberculosis. J. Clin. Microbiol. 34, 1118-

1123.

Chen, P., Bishai, W.R., 1998. Novel selection for isoniazid (INH) resistance genes

supports a role for NAD+-binding proteins in mycobacterial INH resistance. Infect.

Immun. 66, 5099-5106.

Chen, Y.Y., Chang, J.R., Huang, W.F., Kuo, S.C., Su, I.J., Sun, J.R., Chiueh, T.S.,

Huang, T.S., Chen, Y.S., Dou, H.Y., 2012. Genetic diversity of the Mycobacterium

tuberculosis Beijing family based on SNP and VNTR typing profiles in Asian

countries. PLoS One. 7, e39792.

Cheng, X., Zhang, J., Yang, L., Xu, X., Liu, J., Yu, W., Su, M., Hao, X., 2007. A new

Multi-PCR-SSCP assay for simultaneous detection of isoniazid and rifampin

resistance in Mycobacterium tuberculosis. J. Microbiol. Methods. 70, 301-305.

Christianson, S., Wolfe, J., Orr, P., Karlowsky, J., Levett, P.N., Horsman, G.B.,

Thibert, L., Tang, P., Sharma, M.K., 2010. Evaluation of 24 locus MIRU-VNTR

genotyping of Mycobacterium tuberculosis isolates in Canada. Tuberculosis (Edinb)

90, 31-38.

Page 293: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

273

Chun, J.Y., Kim, K.J., Hwang, I.T., Kim, Y.J., Lee, D.H., Lee, I.K., Kim, J.K., 2007.

Dual priming oligonucleotide system for the multiplex detection of respiratory viruses

and SNP genotyping of CYP2C19 gene. Nucleic. Acids. Res. 35, e40.

Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon,

S.V., Eiglmeier, K., Gas, S., Barry, C.E., 3rd, Tekaia, F., Badcock, K., Basham, D.,

Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T.,

Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J.,

Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A.,

Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E.,

Taylor, K., Whitehead, S., Barrell, B.G., 1998. Deciphering the biology of

Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-

544.

Colice, G.L., 1995. Pulmonary tuberculosis. Is resurgence due to reactivation or new

infection? Postgrad. Med. 97, 35-38, 44, 47-38.

Comas, I., Homolka, S., Niemann, S., Gagneux, S., 2009. Genotyping of genetically

monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights

the limitations of current methodologies. PLoS One 4, e7815.

Cooksey, R.C., Morlock, G.P., McQueen, A., Glickman, S.E., Crawford, J.T., 1996.

Characterization of streptomycin resistance mechanisms among Mycobacterium

tuberculosis isolates from patients in New York City. Antimicrob. Agents.

Chemother. 40, 1186-1188.

Cowan, L.S., Mosher, L., Diem, L., Massey, J.P., Crawford, J.T., 2002. Variable-

number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy

numbers of IS6110 by using mycobacterial interspersed repetitive units. J. Clin.

Microbiol. 40, 1592-1602.

Page 294: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

274

Cruciani, M., Scarparo, C., Malena, M., Bosco, O., Serpelloni, G., Mengoli, C., 2004.

Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid

media, for detection of mycobacteria. J. Clin. Microbiol. 42, 2321-2325.

Cuevas-Cordoba, B., Cuellar-Sanchez, A., Pasissi-Crivelli, A., Santana-Alvarez, C.A.,

Hernandez-Illezcas, J., Zenteno-Cuevas, R., 2013. rrs and rpsL mutations in

streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico. J.

Microbiol. Immunol. Infect. 46, 30-34.

Daley, C.L., Small, P.M., Schecter, G.F., Schoolnik, G.K., McAdam, R.A., Jacobs,

W.R., Jr., Hopewell, P.C., 1992. An outbreak of tuberculosis with accelerated

progression among persons infected with the human immunodeficiency virus. An

analysis using restriction-fragment-length polymorphisms. N. Engl. J. Med. 326, 231-

235.

Damper, P.D., Epstein, W., 1981. Role of the membrane potential in bacterial

resistance to aminoglycoside antibiotics. Antimicrob. Agents. Chemother. 20, 803-

808.

Daniel, T.M., 2005. Robert Koch and the pathogenesis of tuberculosis. Int. J. Tuberc.

Lung. Dis. 9, 1181-1182.

Daniel, T.M., 2006. The history of tuberculosis. Respir. Med. 100, 1862-1870.

Dar, L., Sharma, S.K., Bhanu, N.V., Broor, S., Chakraborty, M., Pande, J.N., Seth, P.,

1998. Diagnosis of pulmonary tuberculosis by polymerase chain reaction for MPB64

gene: an evaluation in a blind study. Indian. J. Chest. Dis. Allied. Sci. 40, 5-16.

Das, S., Paramasivan, C.N., Lowrie, D.B., Prabhakar, R., Narayanan, P.R., 1995.

IS6110 restriction fragment length polymorphism typing of clinical isolates of

Mycobacterium tuberculosis from patients with pulmonary tuberculosis in Madras,

south India. Tuber. Lung. Dis. 76, 550-554.

Page 295: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

275

David, H.L., 1970. Probability distribution of drug-resistant mutants in unselected

populations of Mycobacterium tuberculosis. Appl. Microbiol. 20, 810-814.

Davies, P.D., Pai, M., 2008. The diagnosis and misdiagnosis of tuberculosis. Int. J.

Tuberc. Lung. Dis. 12, 1226-1234.

De Wit, D., Steyn, L., Shoemaker, S., Sogin, M., 1990. Direct detection of

Mycobacterium tuberculosis in clinical specimens by DNA amplification. J. Clin.

Microbiol. 28, 2437-2441.

Deng, J.Y., Zhang, X.E., Lu, H.B., Liu, Q., Zhang, Z.P., Zhou, Y.F., Xie, W.H., Fu,

Z.J., 2004. Multiplex detection of mutations in clinical isolates of rifampin-resistant

Mycobacterium tuberculosis by short oligonucleotide ligation assay on DNA chips. J.

Clin. Microbiol. 42, 4850-4852.

Dever, L.A., Dermody, T.S., 1991. Mechanisms of bacterial resistance to antibiotics.

Arch. Intern. Med. 151, 886-895.

Di Perri, G., Bonora, S., 2004. Which agents should we use for the treatment of

multidrug-resistant Mycobacterium tuberculosis? J. Antimicrob. Chemother. 54, 593-

602.

Dickinson, J.M., Mitchison, D.A., 1981. Experimental models to explain the high

sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am. Rev. Respir.

Dis. 123, 367-371.

Dobner, P., Bretzel, G., Rusch-Gerdes, S., Feldmann, K., Rifai, M., Loscher, T.,

Rinder, H., 1997. Geographic variation of the predictive values of genomic mutations

associated with streptomycin resistance in Mycobacterium tuberculosis. Mol. Cell.

Probes. 11, 123-126.

Doetsch, R.N., 1978. Benjamin Marten and his "New Theory of Consumptions".

Microbiol. Rev. 42, 521-528.

Page 296: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

276

Dong, H., Shi, L., Zhao, X., Sang, B., Lv, B., Liu, Z., Wan, K., 2012. Genetic

diversity of Mycobacterium tuberculosis isolates from Tibetans in Tibet, China. PLoS

One 7, e33904.

Drobniewski, F., Nikolayevskyy, V., Balabanova, Y., Bang, D., Papaventsis, D.,

2012. Diagnosis of tuberculosis and drug resistance: what can new tools bring us? Int.

J. Tuberc. Lung. Dis. 16, 860-870.

Drobniewski, F.A., Wilson, S.M., 1998. The rapid diagnosis of isoniazid and

rifampicin resistance in Mycobacterium tuberculosis--a molecular story. J. Med.

Microbiol. 47, 189-196.

Ducasse-Cabanot, S., Cohen-Gonsaud, M., Marrakchi, H., Nguyen, M., Zerbib, D.,

Bernadou, J., Daffe, M., Labesse, G., Quemard, A., 2004. In vitro inhibition of the

Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA by

isoniazid. Antimicrob. Agents. Chemother. 48, 242-249.

Edlin, B.R., Tokars, J.I., Grieco, M.H., Crawford, J.T., Williams, J., Sordillo, E.M.,

Ong, K.R., Kilburn, J.O., Dooley, S.W., Castro, K.G., et al., 1992. An outbreak of

multidrug-resistant tuberculosis among hospitalized patients with the acquired

immunodeficiency syndrome. N. Engl. J. Med. 326, 1514-1521.

Eisenach, K.D., Cave, M.D., Bates, J.H., Crawford, J.T., 1990. Polymerase chain

reaction amplification of a repetitive DNA sequence specific for Mycobacterium

tuberculosis. J. Infect. Dis. 161, 977-981.

Eisenach, K.D., Crawford, J.T., Bates, J.H., 1988. Repetitive DNA sequences as

probes for Mycobacterium tuberculosis. J. Clin. Microbiol. 26, 2240-2245.

Escalante, P., Ramaswamy, S., Sanabria, H., Soini, H., Pan, X., Valiente-Castillo, O.,

Musser, J.M., 1998. Genotypic characterization of drug-resistant Mycobacterium

tuberculosis isolates from Peru. Tuber. Lung. Dis. 79, 111-118.

Page 297: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

277

Fan, J.B., Chen, X., Halushka, M.K., Berno, A., Huang, X., Ryder, T., Lipshutz, R.J.,

Lockhart, D.J., Chakravarti, A., 2000. Parallel genotyping of human SNPs using

generic high-density oligonucleotide tag arrays. Genome. Res. 10, 853-860.

Fang, Z., Morrison, N., Watt, B., Doig, C., Forbes, K.J., 1998. IS6110 transposition

and evolutionary scenario of the direct repeat locus in a group of closely related

Mycobacterium tuberculosis strains. J. Bacteriol. 180, 2102-2109.

Farooqi, J.Q., Khan, E., Alam, S.M., Ali, A., Hasan, Z., Hasan, R., 2012. Line probe

assay for detection of rifampicin and isoniazid resistant tuberculosis in Pakistan. J.

Pak. Med. Assoc. 62, 767-772.

Feil, E.J., Spratt, B.G., 2001. Recombination and the population structures of bacterial

pathogens. Annu. Rev. Microbiol. 55, 561-590.

Ferro, B.E., Garcia, P.K., Nieto, L.M., van Soolingen, D., 2013. Predictive Value of

Molecular Drug Resistance Testing of Mycobacterium tuberculosis Isolates in Valle

del Cauca, Colombia. J. Clin. Microbiol. 51, 2220-2224.

Filliol, I., Driscoll, J.R., Van Soolingen, D., Kreiswirth, B.N., Kremer, K., Valetudie,

G., Anh, D.D., Barlow, R., Banerjee, D., Bifani, P.J., Brudey, K., Cataldi, A.,

Cooksey, R.C., Cousins, D.V., Dale, J.W., Dellagostin, O.A., Drobniewski, F.,

Engelmann, G., Ferdinand, S., Gascoyne-Binzi, D., Gordon, M., Gutierrez, M.C.,

Haas, W.H., Heersma, H., Kallenius, G., Kassa-Kelembho, E., Koivula, T., Ly, H.M.,

Makristathis, A., Mammina, C., Martin, G., Mostrom, P., Mokrousov, I., Narbonne,

V., Narvskaya, O., Nastasi, A., Niobe-Eyangoh, S.N., Pape, J.W., Rasolofo-

Razanamparany, V., Ridell, M., Rossetti, M.L., Stauffer, F., Suffys, P.N., Takiff, H.,

Texier-Maugein, J., Vincent, V., De Waard, J.H., Sola, C., Rastogi, N., 2002. Global

distribution of Mycobacterium tuberculosis spoligotypes. Emerg. Infect. Dis. 8, 1347-

1349.

Filliol, I., Motiwala, A.S., Cavatore, M., Qi, W., Hazbon, M.H., Bobadilla del Valle,

M., Fyfe, J., Garcia-Garcia, L., Rastogi, N., Sola, C., Zozio, T., Guerrero, M.I., Leon,

Page 298: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

278

C.I., Crabtree, J., Angiuoli, S., Eisenach, K.D., Durmaz, R., Joloba, M.L., Rendon, A.,

Sifuentes-Osornio, J., Ponce de Leon, A., Cave, M.D., Fleischmann, R., Whittam,

T.S., Alland, D., 2006. Global phylogeny of Mycobacterium tuberculosis based on

single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution,

phylogenetic accuracy of other DNA fingerprinting systems, and recommendations

for a minimal standard SNP set. J. Bacteriol. 188, 759-772.

Finken, M., Kirschner, P., Meier, A., Wrede, A., Bottger, E.C., 1993. Molecular basis

of streptomycin resistance in Mycobacterium tuberculosis: alterations of the

ribosomal protein S12 gene and point mutations within a functional 16S ribosomal

RNA pseudoknot. Mol. Microbiol. 9, 1239-1246.

Freixo, I.M., Caldas, P.C., Martins, F., Brito, R.C., Ferreira, R.M., Fonseca, L.S.,

Saad, M.H., 2002. Evaluation of Etest strips for rapid susceptibility testing of

Mycobacterium tuberculosis. J. Clin. Microbiol. 40, 2282-2284.

Fukuda, M., Koga, H., Ohno, H., Yang, B., Hirakata, Y., Maesaki, S., Tomono, K.,

Tashiro, T., Kohno, S., 1999. Relationship between genetic alteration of the rpsL gene

and streptomycin susceptibility of Mycobacterium tuberculosis in Japan. J.

Antimicrob. Chemother. 43, 281-284.

Gagneux, S., Burgos, M.V., DeRiemer, K., Encisco, A., Munoz, S., Hopewell, P.C.,

Small, P.M., Pym, A.S., 2006a. Impact of bacterial genetics on the transmission of

isoniazid-resistant Mycobacterium tuberculosis. PLoS. Pathog. 2, e61.

Gagneux, S., DeRiemer, K., Van, T., Kato-Maeda, M., de Jong, B.C., Narayanan, S.,

Nicol, M., Niemann, S., Kremer, K., Gutierrez, M.C., Hilty, M., Hopewell, P.C.,

Small, P.M., 2006b. Variable host-pathogen compatibility in Mycobacterium

tuberculosis. Proc. Natl. Acad. Sci. U S A 103, 2869-2873.

Gagneux, S., Small, P.M., 2007. Global phylogeography of Mycobacterium

tuberculosis and implications for tuberculosis product development. Lancet. Infect.

Dis. 7, 328-337.

Page 299: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

279

Garnier, T., Eiglmeier, K., Camus, J.C., Medina, N., Mansoor, H., Pryor, M., Duthoy,

S., Grondin, S., Lacroix, C., Monsempe, C., Simon, S., Harris, B., Atkin, R., Doggett,

J., Mayes, R., Keating, L., Wheeler, P.R., Parkhill, J., Barrell, B.G., Cole, S.T.,

Gordon, S.V., Hewinson, R.G., 2003. The complete genome sequence of

Mycobacterium bovis. Proc Natl. Acad. Sci. U S A 100, 7877-7882.

Gascoyne-Binzi, D.M., Barlow, R.E., Essex, A., Gelletlie, R., Khan, M.A., Hafiz, S.,

Collyns, T.A., Frizzell, R., Hawkey, P.M., 2002. Predominant VNTR family of strains

of Mycobacterium tuberculosis isolated from South Asian patients. Int. J. Tuberc.

Lung. Dis. 6, 492-496.

Gascoyne-Binzi, D.M., Barlow, R.E., Frothingham, R., Robinson, G., Collyns, T.A.,

Gelletlie, R., Hawkey, P.M., 2001. Rapid identification of laboratory contamination

with Mycobacterium tuberculosis using variable number tandem repeat analysis. J.

Clin. Microbiol. 39, 69-74.

Gerhold, D., Rushmore, T., Caskey, C.T., 1999. DNA chips: promising toys have

become powerful tools. Trends. Biochem. Sci. 24, 168-173.

Githui, W.A., Kwamanga, D., Chakaya, J.M., Karimi, F.G., Waiyaki, P.G., 1993.

Anti-tuberculous initial drug resistance of Mycobacterium tuberculosis in Kenya: a

ten-year review. East. Afr. Med. J. 70, 609-612.

Godfrey-Faussett, P., Maher, D., Mukadi, Y.D., Nunn, P., Perriens, J., Raviglione, M.,

2002. How human immunodeficiency virus voluntary testing can contribute to

tuberculosis control. Bull. World. Health. Organ. 80, 939-945.

Golden, M.P., Vikram, H.R., 2005. Extrapulmonary tuberculosis: an overview. Am.

Fam. Physician. 72, 1761-1768.

Gomgnimbou, M.K., Abadia, E., Zhang, J., Refregier, G., Panaiotov, S., Bachiyska,

E., Sola, C., 2012. "Spoligoriftyping," a dual-priming-oligonucleotide-based direct-

Page 300: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

280

hybridization assay for tuberculosis control with a multianalyte microbead-based

hybridization system. J. Clin. Microbiol. 50, 3172-3179.

Gomgnimbou, M.K., Hernandez-Neuta, I., Panaiotov, S., Bachiyska, E., Palomino,

J.C., Martin, A., Del Portillo, P., Refregier, G., Sola, C., 2013a. "TB-SPRINT:

TUBERCULOSIS-SPOLIGO-RIFAMPIN-ISONIAZID TYPING" an All-in-One

assay technique for surveillance and control of multi-drug resistant tuberculosis on

Luminex(R) devices. J. Clin. Microbiol. 51, 3527-34.

Gomgnimbou, M.K., Hernandez-Neuta, I., Panaiotov, S., Bachiyska, E., Palomino,

J.C., Martin, A., Del Portillo, P., Refregier, G., Sola, C., 2013b. Tuberculosis-

Spoligo-Rifampin-Isoniazid Typing: an All-in-One Assay Technique for Surveillance

and Control of Multidrug-Resistant Tuberculosis on Luminex Devices. J. Clin.

Microbiol. 51, 3527-3534.

Gordon, S.V., Brosch, R., Billault, A., Garnier, T., Eiglmeier, K., Cole, S.T., 1999.

Identification of variable regions in the genomes of tubercle bacilli using bacterial

artificial chromosome arrays. Mol. Microbiol. 32, 643-655.

Green, E., Obi, L.C., Okoh, A.I., Nchabeleng, M., de Villiers, B.E., Letsoalo, T.,

Hoosen, A.A., Bessong, P.O., Ndip, R.N., 2013. IS6110 restriction fragment length

polymorphism typing of drug-resistant Mycobacterium tuberculosis strains from

northeast South Africa. J. Health. Popul. Nutr. 31, 1-10.

Groenen, P.M., Bunschoten, A.E., van Soolingen, D., van Embden, J.D., 1993. Nature

of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis;

application for strain differentiation by a novel typing method. Mol. Microbiol. 10,

1057-1065.

Guo, J.H., Xiang, W.L., Zhao, Q.R., Luo, T., Huang, M., Zhang, J., Zhao, J., Yang,

Z.R., Sun, Q., 2008. Molecular characterization of drug-resistant Mycobacterium

tuberculosis isolates from Sichuan Province in china. Jpn. J. Infect. Dis. 61, 264-268.

Page 301: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

281

Gutacker, M.M., Mathema, B., Soini, H., Shashkina, E., Kreiswirth, B.N., Graviss,

E.A., Musser, J.M., 2006. Single-nucleotide polymorphism-based population genetic

analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J. Infect. Dis.

193, 121-128.

Gutacker, M.M., Smoot, J.C., Migliaccio, C.A., Ricklefs, S.M., Hua, S., Cousins,

D.V., Graviss, E.A., Shashkina, E., Kreiswirth, B.N., Musser, J.M., 2002. Genome-

wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium

tuberculosis complex organisms: resolution of genetic relationships among closely

related microbial strains. Genetics. 162, 1533-1543.

Hasan, Z., Tanveer, M., Kanji, A., Hasan, Q., Ghebremichael, S., Hasan, R., 2006.

Spoligotyping of Mycobacterium tuberculosis isolates from Pakistan reveals

predominance of Central Asian Strain 1 and Beijing isolates. J. Clin. Microbiol. 44,

1763-1768.

Hauck, F.R., Neese, B.H., Panchal, A.S., El-Amin, W., 2009. Identification and

management of latent tuberculosis infection. Am. Fam. Physician. 79, 879-886.

Hawkey, P.M., Smith, E.G., Evans, J.T., Monk, P., Bryan, G., Mohamed, H.H.,

Bardhan, M., Pugh, R.N., 2003. Mycobacterial interspersed repetitive unit typing of

Mycobacterium tuberculosis compared to IS6110-based restriction fragment length

polymorphism analysis for investigation of apparently clustered cases of tuberculosis.

J. Clin. Microbiol. 41, 3514-3520.

Hazbon, M.H., Brimacombe, M., Bobadilla del Valle, M., Cavatore, M., Guerrero,

M.I., Varma-Basil, M., Billman-Jacobe, H., Lavender, C., Fyfe, J., Garcia-Garcia, L.,

Leon, C.I., Bose, M., Chaves, F., Murray, M., Eisenach, K.D., Sifuentes-Osornio, J.,

Cave, M.D., Ponce de Leon, A., Alland, D., 2006. Population genetics study of

isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium

tuberculosis. Antimicrob. Agents. Chemother. 50, 2640-2649.

Page 302: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

282

Heifets, L., Lindholm-Levy, P., 1989. Comparison of bactericidal activities of

streptomycin, amikacin, kanamycin, and capreomycin against Mycobacterium avium

and M. tuberculosis. Antimicrob. Agents. Chemother. 33, 1298-1301.

Hermans, P.W., van Soolingen, D., Bik, E.M., de Haas, P.E., Dale, J.W., van

Embden, J.D., 1991. Insertion element IS987 from Mycobacterium bovis BCG is

located in a hot-spot integration region for insertion elements in Mycobacterium

tuberculosis complex strains. Infect Immun 59, 2695-2705.

Hirano, K., Abe, C., Takahashi, M., 1999. Mutations in the rpoB gene of rifampin-

resistant Mycobacterium tuberculosis strains isolated mostly in Asian countries and

their rapid detection by line probe assay. J. Clin. Microbiol. 37, 2663-2666.

Hirsh, A.E., Tsolaki, A.G., DeRiemer, K., Feldman, M.W., Small, P.M., 2004. Stable

association between strains of Mycobacterium tuberculosis and their human host

populations. Proc. Natl. Acad. Sci. U. S. A. 101, 4871-4876.

Hong, X., Hopfinger, A.J., 2004. Molecular modeling and simulation of

Mycobacterium tuberculosis cell wall permeability. Biomacromolecules. 5, 1066-

1077.

Hu, Y., Hoffner, S., Jiang, W., Wang, W., Xu, B., 2010. Extensive transmission of

isoniazid resistant M. tuberculosis and its association with increased multidrug-

resistant TB in two rural counties of eastern China: a molecular epidemiological

study. BMC Infect. Dis. 10, 43.

Hughes, A.L., Friedman, R., Murray, M., 2002. Genomewide pattern of synonymous

nucleotide substitution in two complete genomes of Mycobacterium tuberculosis.

Emerg. Infect. Dis. 8, 1342-1346.

Hunter, P.R., Gaston, M.A., 1988. Numerical index of the discriminatory ability of

typing systems: an application of Simpson's index of diversity. J. Clin. Microbiol. 26,

2465-2466.

Page 303: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

283

Iademarco, M.F., Castro, K.G., 2003. Epidemiology of tuberculosis. Semin. Respir.

Infect. 18, 225-240.

Imperiale, B.R., Zumarraga, M.J., Di Giulio, A.B., Cataldi, A.A., Morcillo, N.S.,

2013. Molecular and phenotypic characterisation of Mycobacterium tuberculosis

resistant to anti-tuberculosis drugs. Int. J. Tuberc. Lung. Dis. 17, 1088-1093.

Iseman, M.D., 1994. Evolution of drug-resistant tuberculosis: a tale of two species.

Proc. Natl. Acad. Sci. U. S. A. 91, 2428-2429.

Iseman, M.D., 2002. Tuberculosis therapy: past, present and future. Eur. Respir. J.

Suppl. 36, 87s-94s.

Ishihama, A., 1988. Promoter selectivity of prokaryotic RNA polymerases. Trends.

Genet. 4, 282-286.

Jansen, R., van Embden, J.D., Gaastra, W., Schouls, L.M., 2002. Identification of a

novel family of sequence repeats among prokaryotes. OMICS 6, 23-33.

Jassal, M.S., Bishai, W.R., 2010. Epidemiology and challenges to the elimination of

global tuberculosis. Clin. Infect. Dis. 50 Suppl 3, S156-164.

Javed, M.T., Aranaz, A., de Juan, L., Bezos, J., Romero, B., Alvarez, J., Lozano, C.,

Mateos, A., Dominguez, L., 2007. Improvement of spoligotyping with additional

spacer sequences for characterization of Mycobacterium bovis and M. caprae isolates

from Spain. Tuberculosis. (Edinb) 87, 437-445.

Jnawali, H.N., Hwang, S.C., Park, Y.K., Kim, H., Lee, Y.S., Chung, G.T., Choe,

K.H., Ryoo, S., 2013a. Characterization of mutations in multi- and extensive drug

resistance among strains of Mycobacterium tuberculosis clinical isolates in Republic

of Korea. Diagn Microbiol. Infect. Dis. 76, 187-196.

Jnawali, H.N., Yoo, H., Ryoo, S., Lee, K.J., Kim, B.J., Koh, W.J., Kim, C.K., Kim,

H.J., Park, Y.K., 2013b. Molecular genetics of Mycobacterium tuberculosis resistant

Page 304: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

284

to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea. World. J.

Microbiol. Biotechnol. 29, 975-982.

Johnson, R., Streicher, E.M., Louw, G.E., Warren, R.M., van Helden, P.D., Victor,

T.C., 2006. Drug resistance in Mycobacterium tuberculosis. Curr. Issues. Mol. Biol.

8, 97-111.

Johnston, D.E. and McClure, W.R., 1976. Abortive initiation of in vitro RNA

synthesis on bacteriophage lambda DNA polymerase. Cold Spring Harbor

Laboratory, New York.

Kamerbeek, J., Schouls, L., Kolk, A., van Agterveld, M., van Soolingen, D., Kuijper,

S., Bunschoten, A., Molhuizen, H., Shaw, R., Goyal, M., van Embden, J., 1997.

Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for

diagnosis and epidemiology. J. Clin. Microbiol. 35, 907-914.

Kapur, V., Li, L.L., Iordanescu, S., Hamrick, M.R., Wanger, A., Kreiswirth, B.N.,

Musser, J.M., 1994. Characterization by automated DNA sequencing of mutations in

the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant

Mycobacterium tuberculosis strains from New York City and Texas. J. Clin.

Microbiol. 32, 1095-1098.

Kato-Maeda, M., Rhee, J.T., Gingeras, T.R., Salamon, H., Drenkow, J., Smittipat, N.,

Small, P.M., 2001. Comparing genomes within the species Mycobacterium

tuberculosis. Genome. Res. 11, 547-554.

Katsukawa, C., Tamaru, A., Miyata, Y., Abe, C., Makino, M., Suzuki, Y., 1997.

Characterization of the rpsL and rrs genes of streptomycin-resistant clinical isolates

of Mycobacterium tuberculosis in Japan. J. Appl. Microbiol. 83, 634-640.

Khoo, K.H., Douglas, E., Azadi, P., Inamine, J.M., Besra, G.S., Mikusova, K.,

Brennan, P.J., Chatterjee, D., 1996. Truncated structural variants of

Page 305: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

285

lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis.

Inhibition of arabinan biosynthesis by ethambutol. J. Biol. Chem. 271, 28682-28690.

Kiepiela, P., Bishop, K.S., Smith, A.N., Roux, L., York, D.F., 2000. Genomic

mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid

resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa.

Tuber. Lung. Dis. 80, 47-56.

Kim, B.J., Lee, K.H., Park, B.N., Kim, S.J., Park, E.M., Park, Y.G., Bai, G.H., Kook,

Y.H., 2001. Detection of rifampin-resistant Mycobacterium tuberculosis in sputa by

nested PCR-linked single-strand conformation polymorphism and DNA sequencing.

J. Clin. Microbiol. 39, 2610-2617.

Kim, S.J., 2005. Drug-susceptibility testing in tuberculosis: methods and reliability of

results. Eur. Respir. J. 25, 564-569.

Kolk, A.H., Kox, L.F., Kuijper, S., Richter, C., 1994. Detection of Mycobacterium

tuberculosis in peripheral blood. Lancet. 344, 694.

Kolk, A.H., Schuitema, A.R., Kuijper, S., van Leeuwen, J., Hermans, P.W., van

Embden, J.D., Hartskeerl, R.A., 1992. Detection of Mycobacterium tuberculosis in

clinical samples by using polymerase chain reaction and a nonradioactive detection

system. J. Clin. Microbiol. 30, 2567-2575.

Kovalev, S.Y., Kamaev, E.Y., Kravchenko, M.A., Kurepina, N.E., Skorniakov, S.N.,

2005. Genetic analysis of Mycobacterium tuberculosis strains isolated in Ural region,

Russian Federation, by MIRU-VNTR genotyping. Int. J. Tuberc. Lung. Dis. 9, 746-

752.

Kremer, K., van Soolingen, D., Frothingham, R., Haas, W.H., Hermans, P.W., Martin,

C., Palittapongarnpim, P., Plikaytis, B.B., Riley, L.W., Yakrus, M.A., Musser, J.M.,

van Embden, J.D., 1999. Comparison of methods based on different molecular

epidemiological markers for typing of Mycobacterium tuberculosis complex strains:

Page 306: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

286

interlaboratory study of discriminatory power and reproducibility. J. Clin. Microbiol.

37, 2607-2618.

Kurbatova, E.V., Kaminski, D.A., Erokhin, V.V., Volchenkov, G.V., Andreevskaya,

S.N., Chernousova, L.N., Demikhova, O.V., Ershova, J.V., Kaunetis, N.V.,

Kuznetsova, T.A., Larionova, E.E., Smirnova, T.G., Somova, T.R., Vasilieva, I.A.,

Vorobieva, A.V., Zolkina, S.S., Cegielski, J.P., 2013. Performance of Cepheid (R)

Xpert MTB/RIF (R) and TB-Biochip (R) MDR in two regions of Russia with a high

prevalence of drug-resistant tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis. 32, 735-

743.

Kwara, A., Schiro, R., Cowan, L.S., Hyslop, N.E., Wiser, M.F., Roahen Harrison, S.,

Kissinger, P., Diem, L., Crawford, J.T., 2003. Evaluation of the epidemiologic utility

of secondary typing methods for differentiation of Mycobacterium tuberculosis

isolates. J. Clin. Microbiol. 41, 2683-2685.

Landry, J., Menzies, D., 2008. Preventive chemotherapy. Where has it got us? Where

to go next? Int. J. Tuberc. Lung. Dis. 12, 1352-1364.

Laraque, F., Griggs, A., Slopen, M., Munsiff, S.S., 2009. Performance of nucleic acid

amplification tests for diagnosis of tuberculosis in a large urban setting. Clin. Infect.

Dis. 49, 46-54.

Larsen, M.H., Vilcheze, C., Kremer, L., Besra, G.S., Parsons, L., Salfinger, M.,

Heifets, L., Hazbon, M.H., Alland, D., Sacchettini, J.C., Jacobs, W.R., Jr., 2002.

Overexpression of inhA, but not kasA, confers resistance to isoniazid and

ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol.

Microbiol. 46, 453-466.

Lawson, L., Yassin, M.A., Thacher, T.D., Olatunji, O.O., Lawson, J.O., Akingbogun,

T.I., Bello, C.S., Cuevas, L.E., Davies, P.D., 2008. Clinical presentation of adults with

pulmonary tuberculosis with and without HIV infection in Nigeria. Scand. J. Infect.

Dis. 40, 30-35.

Page 307: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

287

Lawson, L., Zhang, J., Gomgnimbou, M.K., Abdurrahman, S.T., Le Moullec, S.,

Mohamed, F., Uzoewulu, G.N., Sogaolu, O.M., Goh, K.S., Emenyonu, N., Refregier,

G., Cuevas, L.E., Sola, C., 2012. A molecular epidemiological and genetic diversity

study of tuberculosis in Ibadan, Nnewi and Abuja, Nigeria. PLoS One 7, e38409.

Lee, A.S., Tang, L.L., Lim, I.H., Bellamy, R., Wong, S.Y., 2002. Discrimination of

single-copy IS6110 DNA fingerprints of Mycobacterium tuberculosis isolates by

high-resolution minisatellite-based typing. J. Clin. Microbiol. 40, 657-659.

Lemus, D., Martin, A., Montoro, E., Portaels, F., Palomino, J.C., 2004. Rapid

alternative methods for detection of rifampicin resistance in Mycobacterium

tuberculosis. J. Antimicrob. Chemother. 54, 130-133.

Lemus, D., Montoro, E., Echemendia, M., Martin, A., Portaels, F., Palomino, J.C.,

2006. Nitrate reductase assay for detection of drug resistance in Mycobacterium

tuberculosis: simple and inexpensive method for low-resource laboratories. J. Med.

Microbiol. 55, 861-863.

Leung, A.N., 1999. Pulmonary tuberculosis: the essentials. Radiology. 210, 307-322.

Leung, E.T., Ho, P.L., Yuen, K.Y., Woo, W.L., Lam, T.H., Kao, R.Y., Seto, W.H.,

Yam, W.C., 2006. Molecular characterization of isoniazid resistance in

Mycobacterium tuberculosis: identification of a novel mutation in inhA. Antimicrob.

Agents. Chemother. 50, 1075-1078.

Lin, S.Y., Probert, W., Lo, M., Desmond, E., 2004. Rapid detection of isoniazid and

rifampin resistance mutations in Mycobacterium tuberculosis complex from cultures

or smear-positive sputa by use of molecular beacons. J. Clin. Microbiol. 42, 4204-

4208.

Lipshutz, R.J., Morris, D., Chee, M., Hubbell, E., Kozal, M.J., Shah, N., Shen, N.,

Yang, R., Fodor, S.P., 1995. Using oligonucleotide probe arrays to access genetic

diversity. Biotechniques. 19, 442-447.

Page 308: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

288

Liu, R.X., Li, Q.Z., Xing, L.L., Peng, Z., Zhu, C.M., Yang, Z.H., 2013. Genotyping of

clinical Mycobacterium tuberculosis isolates based on eight loci of MIRU-VNTR. Int.

J. Tuberc. Lung. Dis. 17, 243-245.

Loiez, C., Willery, E., Legrand, J.L., Vincent, V., Gutierrez, M.C., Courcol, R.J.,

Supply, P., 2006. Against all odds: molecular confirmation of an implausible case of

bone tuberculosis. Clin. Infect. Dis. 42, e86-88.

Lok, K.H., Benjamin, W.H., Jr., Kimerling, M.E., Pruitt, V., Mulcahy, D., Robinson,

N., Keenan, N.B., Dunlap, N.E., 2002. Molecular typing of Mycobacterium

tuberculosis strains with a common two-band IS6110 pattern. Emerg. Infect. Dis. 8,

1303-1305.

Luo, T., Zhao, M., Li, X., Xu, P., Gui, X., Pickerill, S., DeRiemer, K., Mei, J., Gao,

Q., 2010. Selection of mutations to detect multidrug-resistant Mycobacterium

tuberculosis strains in Shanghai, China. Antimicrob. Agents. Chemother. 54, 1075-

1081.

Mahmoudi, A., Iseman, M.D., 1993. Pitfalls in the care of patients with tuberculosis.

Common errors and their association with the acquisition of drug resistance. JAMA

270, 65-68.

Maiden, M.C., 2000. High-throughput sequencing in the population analysis of

bacterial pathogens of humans. Int. J. Med. Microbiol. 290, 183-190.

Mani, C., Selvakumar, N., Narayanan, S., Narayanan, P.R., 2001. Mutations in the

rpoB gene of multidrug-resistant Mycobacterium tuberculosis clinical isolates from

India. J. Clin. Microbiol. 39, 2987-2990.

Manjunath, N., Shankar, P., Rajan, L., Bhargava, A., Saluja, S., Shriniwas, 1991.

Evaluation of a polymerase chain reaction for the diagnosis of tuberculosis. Tubercle.

72, 21-27.

Page 309: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

289

Mariam, D.H., Mengistu, Y., Hoffner, S.E., Andersson, D.I., 2004. Effect of rpoB

mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis.

Antimicrob. Agents. Chemother. 48, 1289-1294.

Martin, A., Herranz, M., Ruiz Serrano, M.J., Bouza, E., Garcia de Viedma, D., 2010.

The clonal composition of Mycobacterium tuberculosis in clinical specimens could be

modified by culture. Tuberculosis. (Edinb) 90, 201-207.

Martinez-Guarneros, A., Rastogi, N., Couvin, D., Escobar-Gutierrez, A., Rossi, L.M.,

Vazquez-Chacon, C.A., Rivera-Gutierrez, S., Lozano, D., Vergara-Castaneda, A.,

Gonzalez, Y.M.J.A., Vaughan, G., 2013. Genetic diversity among multidrug-resistant

Mycobacterium tuberculosis strains in Mexico. Infect. Genet. Evol. 14, 434-443.

Mathuria, J.P., Nath, G., Samaria, J.K., Anupurba, S., 2009. Molecular

characterization of INH-resistant Mycobacterium tuberculosis isolates by PCR-RFLP

and multiplex-PCR in North India. Infect. Genet. Evol. 9, 1352-1355.

Matsiota-Bernard, P., Vrioni, G., Marinis, E., 1998. Characterization of rpoB

mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from

Greece. J. Clin. Microbiol. 36, 20-23.

McAdam, R.A., Hermans, P.W., van Soolingen, D., Zainuddin, Z.F., Catty, D., van

Embden, J.D., Dale, J.W., 1990. Characterization of a Mycobacterium tuberculosis

insertion sequence belonging to the IS3 family. Mol. Microbiol. 4, 1607-1613.

McNabb, S.J., Braden, C.R., Navin, T.R., 2002. DNA fngerprinting of

Mycobacterium tuberculosis: lessons learned and implications for the future. Emerg.

Infect. Dis. 8, 1314-1319.

Meier, A., Sander, P., Schaper, K.J., Scholz, M., Bottger, E.C., 1996. Correlation of

molecular resistance mechanisms and phenotypic resistance levels in streptomycin-

resistant Mycobacterium tuberculosis. Antimicrob. Agents. Chemother. 40, 2452-

2454.

Page 310: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

290

Mitchison, D.A., 2000. Role of individual drugs in the chemotherapy of tuberculosis.

Int J. Tuberc. Lung. Dis. 4, 796-806.

Mitchison, D.A., Nunn, A.J., 1986. Influence of initial drug resistance on the response

to short-course chemotherapy of pulmonary tuberculosis. Am. Rev. Respir. Dis. 133,

423-430.

Mokrousov, I., Narvskaya, O., Otten, T., Limeschenko, E., Steklova, L., Vyshnevskiy,

B., 2002. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant

Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001.

Antimicrob. Agents. Chemother. 46, 1417-1424.

Morcillo, N., Zumarraga, M., Alito, A., Dolmann, A., Schouls, L., Cataldi, A.,

Kremer, K., van Soolingen, D., 2002. A low cost, home-made, reverse-line blot

hybridisation assay for rapid detection of rifampicin resistance in Mycobacterium

tuberculosis. Int. J. Tuberc. Lung. Dis. 6, 959-965.

Medical Research Council (MRC). 1950. TREATMENT of pulmonary tuberculosis

with streptomycin and para-aminosalicylic acid; a Medical Research Council

investigation. Br. Med. J. 2, 1073-1085.

Musser, J.M., Kapur, V., Williams, D.L., Kreiswirth, B.N., van Soolingen, D., van

Embden, J.D., 1996. Characterization of the catalase-peroxidase gene (katG) and inhA

locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by

automated DNA sequencing: restricted array of mutations associated with drug

resistance. J. Infect. Dis. 173, 196-202.

Namaei, M.H., Sadeghian, A., Naderinasab, M., Ziaee, M., 2006. Prevalence of

primary drug resistant Mycobacterium tuberculosis in Mashhad, Iran. Indian. J. Med.

Res. 124, 77-80.

Page 311: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

291

Naqvi, S.A., Naseer, M., Kazi, A., Pethani, A., Naeem, I., Zainab, S., Fatmi, Z., 2012.

Implementing a public-private mix model for tuberculosis treatment in urban

Pakistan: lessons and experiences. Int. J. Tuberc. Lung. Dis. 16, 817-821.

Narayanan, S., Gagneux, S., Hari, L., Tsolaki, A.G., Rajasekhar, S., Narayanan, P.R.,

Small, P.M., Holmes, S., Deriemer, K., 2008. Genomic interrogation of ancestral

Mycobacterium tuberculosis from south India. Infect. Genet. Evol. 8, 474-483.

Neonakis, I.K., Gitti, Z., Krambovitis, E., Spandidos, D.A., 2008. Molecular

diagnostic tools in mycobacteriology. J. Microbiol. Methods. 75, 1-11.

Neu, H.C., 1992. The crisis in antibiotic resistance. Science 257, 1064-1073.

Nusrath Unissa, A., Selvakumar, N., Narayanan, S., Narayanan, P.R., 2008.

Molecular analysis of isoniazid-resistant clinical isolates of Mycobacterium

tuberculosis from India. Int. J. Antimicrob. Agents. 31, 71-75.

Pai, M., Kalantri, S., Pascopella, L., Riley, L.W., Reingold, A.L., 2005.

Bacteriophage-based assays for the rapid detection of rifampicin resistance in

Mycobacterium tuberculosis: a meta-analysis. J. Infect. 51, 175-187.

Pai, M., Zwerling, A., Menzies, D., 2008. Systematic review: T-cell-based assays for

the diagnosis of latent tuberculosis infection: an update. Ann. Intern. Med. 149, 177-

184.

Palomino, J.C., 2005. Nonconventional and new methods in the diagnosis of

tuberculosis: feasibility and applicability in the field. Eur. Respir. J. 26, 339-350.

Palomino, J.C., Martin, A., Portaels, F., 2007. Rapid drug resistance detection in

Mycobacterium tuberculosis: a review of colourimetric methods. Clin. Microbiol.

Infect. 13, 754-762.

Page 312: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

292

Palomino, J.C., Martin, A., Von Groll, A., Portaels, F., 2008. Rapid culture-based

methods for drug-resistance detection in Mycobacterium tuberculosis. J. Microbiol.

Methods. 75, 161-166.

Palys, T., Nakamura, L.K., Cohan, F.M., 1997. Discovery and classification of

ecological diversity in the bacterial world: the role of DNA sequence data. Int. J. Syst.

Bacteriol. 47, 1145-1156.

Perdigao, J., Macedo, R., Joao, I., Fernandes, E., Brum, L., Portugal, I., 2008.

Multidrug-resistant tuberculosis in Lisbon, Portugal: a molecular epidemiological

perspective. Microb. Drug. Resist. 14, 133-143.

Pitondo-Silva, A., Santos, A.C., Jolley, K.A., Leite, C.Q., Darini, A.L., 2013.

Comparison of three molecular typing methods to assess genetic diversity for

Mycobacterium tuberculosis. J. Microbiol. Methods. 93, 42-48.

Poudel, A., Maharjan, B., Nakajima, C., Fukushima, Y., Pandey, B.D., Beneke, A.,

Suzuki, Y., 2013. Characterization of extensively drug-resistant Mycobacterium

tuberculosis in Nepal. Tuberculosis. (Edinb) 93, 84-88.

Poulet, S., Cole, S.T., 1995. Characterization of the highly abundant polymorphic

GC-rich-repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch.

Microbiol. 163, 87-95.

Pozzi, G., Meloni, M., Iona, E., Orru, G., Thoresen, O.F., Ricci, M.L., Oggioni, M.R.,

Fattorini, L., Orefici, G., 1999. rpoB mutations in multidrug-resistant strains of

Mycobacterium tuberculosis isolated in Italy. J. Clin. Microbiol. 37, 1197-1199.

Purwar, S., Chaudhari, S., Katoch, V.M., Sampath, A., Sharma, P., Upadhyay, P.,

Chauhan, D.S., 2011. Determination of drug susceptibility patterns and genotypes of

Mycobacterium tuberculosis isolates from Kanpur district, North India. Infect. Genet.

Evol. 11, 469-475.

Page 313: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

293

Pym, A.S., Brodin, P., Majlessi, L., Brosch, R., Demangel, C., Williams, A., Griffiths,

K.E., Marchal, G., Leclerc, C., Cole, S.T., 2003. Recombinant BCG exporting ESAT-

6 confers enhanced protection against tuberculosis. Nat. Med. 9, 533-539.

Pym, A.S., Saint-Joanis, B., Cole, S.T., 2002. Effect of katG mutations on the

virulence of Mycobacterium tuberculosis and the implication for transmission in

humans. Infect. Immun. 70, 4955-4960.

Quemard, A., Lacave, C., Laneelle, G., 1991. Isoniazid inhibition of mycolic acid

synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum.

Antimicrob. Agents. Chemother. 35, 1035-1039.

Quemard, A., Sacchettini, J.C., Dessen, A., Vilcheze, C., Bittman, R., Jacobs, W.R.,

Jr., Blanchard, J.S., 1995. Enzymatic characterization of the target for isoniazid in

Mycobacterium tuberculosis. Biochemistry. 34, 8235-8241.

Quy, H.T., Cobelens, F.G., Lan, N.T., Buu, T.N., Lambregts, C.S., Borgdorff, M.W.,

2006. Treatment outcomes by drug resistance and HIV status among tuberculosis

patients in Ho Chi Minh City, Vietnam. Int. J. Tuberc. Lung. Dis. 10, 45-51.

Rahim, Z., Zaman, K., van der Zanden, A.G., Mollers, M.J., van Soolingen, D.,

Raqib, R., Begum, V., Rigouts, L., Portaels, F., Rastogi, N., Sola, C., 2007.

Assessment of population structure and major circulating phylogeographical clades of

Mycobacterium tuberculosis complex in Bangladesh suggests a high prevalence of a

specific subclade of ancient M. tuberculosis genotypes. J. Clin. Microbiol. 45, 3791-

3794.

Rajapaksa, U.S., Victor, T.C., Perera, A.J., Warren, R.M., Senevirathne, S.M., 2008.

Molecular diversity of Mycobacterium tuberculosis isolates from patients with

pulmonary tuberculosis in Sri Lanka. Trans. R. Soc. Trop. Med. Hyg. 102, 997-1002.

Ramaswamy, S., Musser, J.M., 1998. Molecular genetic basis of antimicrobial agent

resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung. Dis. 79, 3-29.

Page 314: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

294

Ramaswamy, S.V., Dou, S.J., Rendon, A., Yang, Z., Cave, M.D., Graviss, E.A., 2004.

Genotypic analysis of multidrug-resistant Mycobacterium tuberculosis isolates from

Monterrey, Mexico. J. Med. Microbiol. 53, 107-113.

Rastogi, N., Legrand, E., Sola, C., 2001. The mycobacteria: an introduction to

nomenclature and pathogenesis. Rev. Sci. Tech. 20, 21-54.

Rattan, A., Kalia, A., Ahmad, N., 1998. Multidrug-resistant Mycobacterium

tuberculosis: molecular perspectives. Emerg. Infect. Dis. 4, 195-209.

Raviglione, M.C., Narain, J.P., Kochi, A., 1992. HIV-associated tuberculosis in

developing countries: clinical features, diagnosis, and treatment. Bull. World. Health.

Organ. 70, 515-526.

Reed, M.B., Domenech, P., Manca, C., Su, H., Barczak, A.K., Kreiswirth, B.N.,

Kaplan, G., Barry, C.E., 3rd, 2004. A glycolipid of hypervirulent tuberculosis strains

that inhibits the innate immune response. Nature. 431, 84-87.

Reichman, L.B., 1991. Dealing with the resurgence of tuberculosis. Am. Fam.

Physician. 43, 448.

Rodrigues, C.S., Shenai, S.V., Almeida, D., Sadani, M.A., Goyal, N., Vadher, C.,

Mehta, A.P., 2007. Use of bactec 460 TB system in the diagnosis of tuberculosis.

Indian. J. Med. Microbiol. 25, 32-36.

Ross, B.C., Raios, K., Jackson, K., Dwyer, B., 1992. Molecular cloning of a highly

repeated DNA element from Mycobacterium tuberculosis and its use as an

epidemiological tool. J. Clin. Microbiol. 30, 942-946.

Rossau, R., Traore, H., De Beenhouwer, H., Mijs, W., Jannes, G., De Rijk, P.,

Portaels, F., 1997. Evaluation of the INNO-LiPA Rif. TB assay, a reverse

hybridization assay for the simultaneous detection of Mycobacterium tuberculosis

Page 315: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

295

complex and its resistance to rifampin. Antimicrob. Agents. Chemother. 41, 2093-

2098.

Rozwarski, D.A., Grant, G.A., Barton, D.H., Jacobs, W.R., Jr., Sacchettini, J.C., 1998.

Modification of the NADH of the isoniazid target (InhA) from Mycobacterium

tuberculosis. Science. 279, 98-102.

Sabouni, R., Kourout, M., Chaoui, I., Jordaan, A., Akrim, M., Victor, T., Maltouf

Filali, K., El Mzibri, M., Lahlou, O., El Aouad, R., 2008. Molecular analysis of

multidrug resistant Mycobacterium tuberculosis isolates from Morocco. Ann.

Microbiol. 58, 749-754.

Sadiq Noor Khan, S.N., Niemann, N., Gulfraz, M., Qayyum, M., Siddiqi, S., Mirza,

Z. S., Tahsin, S., Ebrahimi-Rad, M., Khanum, A. 2013. Molecular Characterization of

Multidrug-Resistant Isolates of Mycobacterium tuberculosis from Patients in Punjab,

Pakistan. Pak. J. Zool. 45, 93-100.

Safi, H., Sayers, B., Hazbon, M.H., Alland, D., 2008. Transfer of embB codon 306

mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to

ethambutol, isoniazid, and rifampin. Antimicrob. Agents. Chemother. 52, 2027-2034.

Sajduda, A., Brzostek, A., Poplawska, M., Augustynowicz-Kopec, E., Zwolska, Z.,

Niemann, S., Dziadek, J., Hillemann, D., 2004. Molecular characterization of

rifampin- and isoniazid-resistant Mycobacterium tuberculosis strains isolated in

Poland. J. Clin. Microbiol. 42, 2425-2431.

Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Cold Spring Harbour Laboratory

Press, Cold Spring Harbour, New York, 2nd ed. Cold Spring Harbour Laboratory

Press, Cold Spring Harbour, New York.

Sandgren, A., Strong, M., Muthukrishnan, P., Weiner, B.K., Church, G.M., Murray,

M.B., 2009. Tuberculosis drug resistance mutation database. PLoS. Med. 6, e2.

Page 316: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

296

Sankar, M.M., Singh, J., Diana, S.C., Singh, S., 2013. Molecular characterization of

Mycobacterium tuberculosis isolates from North Indian patients with extrapulmonary

tuberculosis. Tuberculosis (Edinb) 93, 75-83.

Saribas, Z., Kocagoz, T., Alp, A., Gunalp, A., 2003. Rapid detection of rifampin

resistance in Mycobacterium tuberculosis isolates by heteroduplex analysis and

determination of rifamycin cross-resistance in rifampin-resistant isolates. J. Clin.

Microbiol. 41, 816-818.

Savine, E., Warren, R.M., van der Spuy, G.D., Beyers, N., van Helden, P.D., Locht,

C., Supply, P., 2002. Stability of variable-number tandem repeats of mycobacterial

interspersed repetitive units from 12 loci in serial isolates of Mycobacterium

tuberculosis. J. Clin. Microbiol. 40, 4561-4566.

Schluger, N.W., Harkin, T. J., Rom, W. N., 1996. 1st ed. Little, Brown and Company,

New York, NY, USA.

Schroeder, E.K., Basso, L.A., Santos, D.S., de Souza, O.N., 2005. Molecular

dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-

resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH:

toward the understanding of NADH-InhA different affinities. Biophys. J. 89, 876-884.

Scior, T., Meneses Morales, I., Garces Eisele, S.J., Domeyer, D., Laufer, S., 2002.

Antitubercular isoniazid and drug resistance of Mycobacterium tuberculosis-a review.

Arch. Pharm. (Weinheim) 335, 511-525.

Scorpio, A., Lindholm-Levy, P., Heifets, L., Gilman, R., Siddiqi, S., Cynamon, M.,

Zhang, Y., 1997. Characterization of pncA mutations in pyrazinamide-resistant

Mycobacterium tuberculosis. Antimicrob. Agents. Chemother. 41, 540-543.

Scorpio, A., Zhang, Y., 1996. Mutations in pncA, a gene encoding

pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug

pyrazinamide in tubercle bacillus. Nat. Med. 2, 662-667.

Page 317: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

297

Seth, P., Ahuja, G.K., Bhanu, N.V., Behari, M., Bhowmik, S., Broor, S., Dar, L.,

Chakraborty, M., 1996. Evaluation of polymerase chain reaction for rapid diagnosis

of clinically suspected tuberculous meningitis. Tuber. Lung. Dis. 77, 353-357.

Shabbeer, A., Cowan, L.S., Ozcaglar, C., Rastogi, N., Vandenberg, S.L., Yener, B.,

Bennett, K.P., 2012. TB-Lineage: an online tool for classification and analysis of

strains of Mycobacterium tuberculosis complex. Infect. Genet. Evol. 12, 789-797.

Shamputa, I.C., Lee, J., Allix-Beguec, C., Cho, E.J., Lee, J.I., Rajan, V., Lee, E.G.,

Min, J.H., Carroll, M.W., Goldfeder, L.C., Kim, J.H., Kang, H.S., Hwang, S., Eum,

S.Y., Park, S.K., Lee, H., Supply, P., Cho, S.N., Via, L.E., Barry, C.E., 3rd, 2010.

Genetic diversity of Mycobacterium tuberculosis isolates from a tertiary care

tuberculosis hospital in South Korea. J. Clin. Microbiol. 48, 387-394.

Sharma, P., Chauhan, D.S., Upadhyay, P., Faujdar, J., Lavania, M., Sachan, S.,

Katoch, K., Katoch, V.M., 2008. Molecular typing of Mycobacterium tuberculosis

isolates from a rural area of Kanpur by spoligotyping and mycobacterial interspersed

repetitive units (MIRUs) typing. Infect. Genet. Evol. 8, 621-626.

Sharma, P., Kumar, B., Singhal, N., Katoch, V.M., Venkatesan, K., Chauhan, D.S.,

Bisht, D., 2010. Streptomycin induced protein expression analysis in Mycobacterium

tuberculosis by two-dimensional gel electrophoresis & mass spectrometry. Indian. J.

Med. Res. 132, 400-408.

Sharma, S.K., Mohan, A., 2004. Extrapulmonary tuberculosis. Indian. J. Med. Res.

120, 316-353.

Sheen, P., Mendez, M., Gilman, R.H., Pena, L., Caviedes, L., Zimic, M.J., Zhang, Y.,

Moore, D.A., Evans, C.A., 2009. Sputum PCR-single-strand conformational

polymorphism test for same-day detection of pyrazinamide resistance in tuberculosis

patients. J. Clin. Microbiol. 47, 2937-2943.

Page 318: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

298

Shi, R., Zhang, J., Li, C., Kazumi, Y., Sugawara, I., 2007. Detection of streptomycin

resistance in Mycobacterium tuberculosis clinical isolates from China as determined

by denaturing HPLC analysis and DNA sequencing. Microbes. Infect. 9, 1538-1544.

Shikama Mde, L., Silva, R.R., Martins, M.C., Giampaglia, C.M., Oliveira, R.S., Silva,

R.F., Silva, P.F., Telles, M.A., Martin, A., Palomino, J.C., 2009. Rapid detection of

resistant tuberculosis by nitrate reductase assay performed in three settings in Brazil.

J. Antimicrob. Chemother. 64, 794-796.

Shoeb, H.A., Bowman, B.U., Jr., Ottolenghi, A.C., Merola, A.J., 1985. Peroxidase-

mediated oxidation of isoniazid. Antimicrob. Agents. Chemother. 27, 399-403.

Siddiqi, N., Shamim, M., Hussain, S., Choudhary, R.K., Ahmed, N., Prachee,

Banerjee, S., Savithri, G.R., Alam, M., Pathak, N., Amin, A., Hanief, M., Katoch,

V.M., Sharma, S.K., Hasnain, S.E., 2002. Molecular characterization of multidrug-

resistant isolates of Mycobacterium tuberculosis from patients in North India.

Antimicrob. Agents. Chemother. 46, 443-450.

Siddiqi, S., Ahmed, A., Asif, S., Behera, D., Javaid, M., Jani, J., Jyoti, A., Mahatre,

R., Mahto, D., Richter, E., Rodrigues, C., Visalakshi, P., Rusch-Gerdes, S., 2012.

Direct drug susceptibility testing of Mycobacterium tuberculosis for rapid detection of

multidrug resistance using the Bactec MGIT 960 system: a multicenter study. J. Clin.

Microbiol. 50, 435-440.

Singh, P., Mishra, A.K., Malonia, S.K., Chauhan, D.S., Sharma, V.D., Venkatesan,

K., Katoch, V.M., 2006. The paradox of pyrazinamide: an update on the molecular

mechanisms of pyrazinamide resistance in Mycobacteria. J. Commun. Dis. 38, 288-

298.

Singh, U.B., Suresh, N., Bhanu, N.V., Arora, J., Pant, H., Sinha, S., Aggarwal, R.C.,

Singh, S., Pande, J.N., Sola, C., Rastogi, N., Seth, P., 2004. Predominant tuberculosis

spoligotypes, Delhi, India. Emerg. Infect. Dis. 10, 1138-1142.

Page 319: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

299

Slayden, R.A., Barry, C.E., 3rd, 2000. The genetics and biochemistry of isoniazid

resistance in Mycobacterium tuberculosis. Microbes. Infect. 2, 659-669.

Small, P.M., Hopewell, P.C., Singh, S.P., Paz, A., Parsonnet, J., Ruston, D.C.,

Schecter, G.F., Daley, C.L., Schoolnik, G.K., 1994. The epidemiology of tuberculosis

in San Francisco. A population-based study using conventional and molecular

methods. N. Engl. J. Med. 330, 1703-1709.

Small, P.M., Shafer, R.W., Hopewell, P.C., Singh, S.P., Murphy, M.J., Desmond, E.,

Sierra, M.F., Schoolnik, G.K., 1993. Exogenous reinfection with multidrug-resistant

Mycobacterium tuberculosis in patients with advanced HIV infection. N. Engl. J.

Med. 328, 1137-1144.

Smith, N.H., Dale, J., Inwald, J., Palmer, S., Gordon, S.V., Hewinson, R.G., Smith,

J.M., 2003. The population structure of Mycobacterium bovis in Great Britain: clonal

expansion. Proc. Natl. Acad. Sci. U. S. A. 100, 15271-15275.

Smith, N.H., Kremer, K., Inwald, J., Dale, J., Driscoll, J.R., Gordon, S.V., van

Soolingen, D., Hewinson, R.G., Smith, J.M., 2006. Ecotypes of the Mycobacterium

tuberculosis complex. J. Theor. Biol. 239, 220-225.

Smithwick, D.W., 1976. Laboratory manual for acid-fast microscopy, second ed. U.S.

Department of Health, Education, and Welfare CDC Atlanta, Georgia.

Somoskovi, A., Parsons, L.M., Salfinger, M., 2001. The molecular basis of resistance

to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir. Res.

2, 164-168.

Spies, F.S., da Silva, P.E., Ribeiro, M.O., Rossetti, M.L., Zaha, A., 2008.

Identification of mutations related to streptomycin resistance in clinical isolates of

Mycobacterium tuberculosis and possible involvement of efflux mechanism.

Antimicrob. Agents. Chemother. 52, 2947-2949.

Page 320: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

300

Spies, F.S., von Groll, A., Ribeiro, A.W., Ramos, D.F., Ribeiro, M.O., Dalla Costa,

E.R., Martin, A., Palomino, J.C., Rossetti, M.L., Zaha, A., da Silva, P.E., 2013.

Biological cost in Mycobacterium tuberculosis with mutations in the rpsL, rrs, rpoB,

and katG genes. Tuberculosis (Edinb) 93, 150-154.

Sreevatsan, S., Escalante, P., Pan, X., Gillies, D.A., 2nd, Siddiqui, S., Khalaf, C.N.,

Kreiswirth, B.N., Bifani, P., Adams, L.G., Ficht, T., Perumaalla, V.S., Cave, M.D.,

van Embden, J.D., Musser, J.M., 1996a. Identification of a polymorphic nucleotide in

oxyR specific for Mycobacterium bovis. J. Clin. Microbiol. 34, 2007-2010.

Sreevatsan, S., Pan, X., Stockbauer, K.E., Connell, N.D., Kreiswirth, B.N., Whittam,

T.S., Musser, J.M., 1997. Restricted structural gene polymorphism in the

Mycobacterium tuberculosis complex indicates evolutionarily recent global

dissemination. Proc. Natl. Acad. Sci. U. S. A. 94, 9869-9874.

Sreevatsan, S., Pan, X., Stockbauer, K.E., Williams, D.L., Kreiswirth, B.N., Musser,

J.M., 1996b. Characterization of rpsL and rrs mutations in streptomycin-resistant

Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob.

Agents. Chemother. 40, 1024-1026.

Steingart, K.R., Henry, M., Ng, V., Hopewell, P.C., Ramsay, A., Cunningham, J.,

Urbanczik, R., Perkins, M., Aziz, M.A., Pai, M., 2006. Fluorescence versus

conventional sputum smear microscopy for tuberculosis: a systematic review. The.

Lancet. Infec. Dis. 6, 570-581.

Sukkasem, S., Yanai, H., Mahasirimongkol, S., Yamada, N., Rienthong, D.,

Palittapongarnpim, P., Khusmith, S., 2013. Drug resistance and IS6110-RFLP patterns

of Mycobacterium tuberculosis in patients with recurrent tuberculosis in northern

Thailand. Microbiol. Immunol. 57, 21-29.

Sun, Z., Chao, Y., Zhang, X., Zhang, J., Li, Y., Qiu, Y., Liu, Y., Nie, L., Guo, A., Li,

C., 2008. Characterization of extensively drug-resistant Mycobacterium tuberculosis

clinical isolates in China. J. Clin. Microbiol. 46, 4075-4077.

Page 321: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

301

Supply, P., Allix, C., Lesjean, S., Cardoso-Oelemann, M., Rusch-Gerdes, S., Willery,

E., Savine, E., de Haas, P., van Deutekom, H., Roring, S., Bifani, P., Kurepina, N.,

Kreiswirth, B., Sola, C., Rastogi, N., Vatin, V., Gutierrez, M.C., Fauville, M.,

Niemann, S., Skuce, R., Kremer, K., Locht, C., van Soolingen, D., 2006. Proposal for

standardization of optimized mycobacterial interspersed repetitive unit-variable-

number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 44,

4498-4510.

Supply, P., Lesjean, S., Savine, E., Kremer, K., van Soolingen, D., Locht, C., 2001.

Automated high-throughput genotyping for study of global epidemiology of

Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J.

Clin. Microbiol. 39, 3563-3571.

Supply, P., Mazars, E., Lesjean, S., Vincent, V., Gicquel, B., Locht, C., 2000a.

Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome.

Mol. Microbiol. 36, 762-771.

Supply, P., Warren, R.M., Banuls, A.L., Lesjean, S., Van Der Spuy, G.D., Lewis,

L.A., Tibayrenc, M., Van Helden, P.D., Locht, C., 2003. Linkage disequilibrium

between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in

a high tuberculosis incidence area. Mol. Microbiol. 47, 529-538.

Takayama, K., Kilburn, J.O., 1989. Inhibition of synthesis of arabinogalactan by

ethambutol in Mycobacterium smegmatis. Antimicrob. Agents. Chemother. 33, 1493-

1499.

Tan, Y., Hu, Z., Zhang, T., Cai, X., Kuang, H., Liu, Y., Chen, J., Yang, F., Zhang, K.,

Tan, S., Zhao, Y., 2013. Role of pncA and rpsA Gene Sequencing in Diagnosis of

Pyrazinamide Resistance in Mycobacterium tuberculosis Isolates from Southern

China. J. Clin. Microbiol. 52, 291-297.

Tanaka, M.M., Francis, A.R., 2006. Detecting emerging strains of tuberculosis by

using spoligotypes. Proc. Natl. Acad. Sci. U. S. A. 103, 15266-15271.

Page 322: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

302

Tang, K., Sun, H., Zhao, Y., Guo, J., Zhang, C., Feng, Q., He, Y., Luo, M., Li, Y.,

Sun, Q., 2013. Characterization of rifampin-resistant isolates of Mycobacterium

tuberculosis from Sichuan in China. Tuberculosis (Edinb) 93, 89-95.

Tang, Y.-W., Stratton, C.W., 2007. In Advanced Techniques in Diagnostic

Microbiology Springer US, p. 387.

Tansuphasiri, U., Subpaiboon, S., Rienthong, S., 2001. Comparison of the resistance

ratio and proportion methods for antimicrobial susceptibility testing of

Mycobacterium tuberculosis. J. Med. Assoc. Thai. 84, 1467-1476.

Tanveer, M., Hasan, Z., Siddiqui, A.R., Ali, A., Kanji, A., Ghebremicheal, S., Hasan,

R., 2008. Genotyping and drug resistance patterns of M. tuberculosis strains in

Pakistan. BMC Infect. Dis. 8, 171.

Telenti, A., Honore, N., Bernasconi, C., March, J., Ortega, A., Heym, B., Takiff, H.E.,

Cole, S.T., 1997. Genotypic assessment of isoniazid and rifampin resistance in

Mycobacterium tuberculosis: a blind study at reference laboratory level. J. Clin.

Microbiol. 35, 719-723.

Telenti, A., Imboden, P., Marchesi, F., Lowrie, D., Cole, S., Colston, M.J., Matter, L.,

Schopfer, K., Bodmer, T., 1993. Detection of rifampicin-resistance mutations in

Mycobacterium tuberculosis. Lancet 341, 647-650.

Telenti, A., Persing, D.H., 1996. Novel strategies for the detection of drug resistance

in Mycobacterium tuberculosis. Res. Microbiol. 147, 73-79.

Tessema, B., Beer, J., Merker, M., Emmrich, F., Sack, U., Rodloff, A.C., Niemann,

S., 2013. Molecular epidemiology and transmission dynamics of Mycobacterium

tuberculosis in Northwest Ethiopia: new phylogenetic lineages found in Northwest

Ethiopia. BMC Infect. Dis. 13, 131.

Page 323: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

303

Thierry, D., Brisson-Noel, A., Vincent-Levy-Frebault, V., Nguyen, S., Guesdon, J.L.,

Gicquel, B., 1990a. Characterization of a Mycobacterium tuberculosis insertion

sequence, IS6110, and its application in diagnosis. J. Clin. Microbiol. 28, 2668-2673.

Thierry, D., Cave, M.D., Eisenach, K.D., Crawford, J.T., Bates, J.H., Gicquel, B.,

Guesdon, J.L., 1990b. IS6110, an IS-like element of Mycobacterium tuberculosis

complex. Nucleic. Acids. Res. 18, 188.

Todar, K., 2009. Mycobacterium tuberculosis and Tuberculosis. In Todar’s Online

Textbook of Bacteriology.

Tracevska, T., Jansone, I., Nodieva, A., Marga, O., Skenders, G., Baumanis, V., 2004.

Characterisation of rpsL, rrs and embB mutations associated with streptomycin and

ethambutol resistance in Mycobacterium tuberculosis. Res. Microbiol. 155, 830-834.

Tubulekas, I., Hughes, D., 1993. Suppression of rpsL phenotypes by tuf mutations

reveals a unique relationship between translation elongation and growth rate. Mol.

Microbiol. 7, 275-284.

Tudo, G., Rey, E., Borrell, S., Alcaide, F., Codina, G., Coll, P., Martin-Casabona, N.,

Montemayor, M., Moure, R., Orcau, A., Salvado, M., Vicente, E., Gonzalez-Martin,

J., 2010. Characterization of mutations in streptomycin-resistant Mycobacterium

tuberculosis clinical isolates in the area of Barcelona. J. Antimicrob. Chemother. 65,

2341-2346.

Valcheva, V., Mokrousov, I., Narvskaya, O., Rastogi, N., Markova, N., 2008. Utility

of new 24-locus variable-number tandem-repeat typing for discriminating

Mycobacterium tuberculosis clinical isolates collected in Bulgaria. J. Clin. Microbiol.

46, 3005-3011.

Vall-Spinosa, A., Lester, W., Moulding, T., Davidson, P.T., McClatchy, J.K., 1970.

Rifampin in the treatment of drug-resistant Mycobacterium tuberculosis infections. N

Engl. J. Med. 283, 616-621.

Page 324: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

304

van der Zanden, A.G., Kremer, K., Schouls, L.M., Caimi, K., Cataldi, A., Hulleman,

A., Nagelkerke, N.J., van Soolingen, D., 2002. Improvement of differentiation and

interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by

introduction of new spacer oligonucleotides. J. Clin. Microbiol. 40, 4628-4639.

van Embden, J.D., Cave, M.D., Crawford, J.T., Dale, J.W., Eisenach, K.D., Gicquel,

B., Hermans, P., Martin, C., McAdam, R., Shinnick, T.M., et al., 1993. Strain

identification of Mycobacterium tuberculosis by DNA fingerprinting:

recommendations for a standardized methodology. J. Clin. Microbiol. 31, 406-409.

van Embden, J.D., van Gorkom, T., Kremer, K., Jansen, R., van Der Zeijst, B.A.,

Schouls, L.M., 2000. Genetic variation and evolutionary origin of the direct repeat

locus of Mycobacterium tuberculosis complex bacteria. J. Bacteriol. 182, 2393-2401.

van Soolingen, D., de Haas, P.E., Hermans, P.W., Groenen, P.M., van Embden, J.D.,

1993. Comparison of various repetitive DNA elements as genetic markers for strain

differentiation and epidemiology of Mycobacterium tuberculosis. J. Clin. Microbiol.

31, 1987-1995.

van Soolingen, D., Qian, L., de Haas, P.E., Douglas, J.T., Traore, H., Portaels, F.,

Qing, H.Z., Enkhsaikan, D., Nymadawa, P., van Embden, J.D., 1995. Predominance

of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J. Clin.

Microbiol. 33, 3234-3238.

Varma-Basil, M., Kumar, S., Arora, J., Angrup, A., Zozio, T., Banavaliker, J.N.,

Singh, U.B., Rastogi, N., Bose, M., 2011. Comparison of spoligotyping,

mycobacterial interspersed repetitive units typing and IS6110-RFLP in a study of

genotypic diversity of Mycobacterium tuberculosis in Delhi, North India. Mem. Inst.

Oswaldo. Cruz. 106, 524-535.

Verma, J.S., Rawat, D., Hasan, A., Capoor, M.R., Gupta, K., Deb, M., Aggarwal, P.,

Nair, D., 2010. The use of E-test for the drug susceptibility testing of Mycobacterium

tuberculosis - a solution or an illusion? Indian. J. Med. Microbiol. 28, 30-33.

Page 325: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

305

Vilcheze, C., Jacobs, W.R., Jr., 2007. The mechanism of isoniazid killing: clarity

through the scope of genetics. Annu. Rev. Microbiol. 61, 35-50.

Viveiros, M., Leandro, C., Rodrigues, L., Almeida, J., Bettencourt, R., Couto, I.,

Carrilho, L., Diogo, J., Fonseca, A., Lito, L., Lopes, J., Pacheco, T., Pessanha, M.,

Quirim, J., Sancho, L., Salfinger, M., Amaral, L., 2005. Direct application of the

INNO-LiPA Rif.TB line-probe assay for rapid identification of Mycobacterium

tuberculosis complex strains and detection of rifampin resistance in 360 smear-

positive respiratory specimens from an area of high incidence of multidrug-resistant

tuberculosis. J. Clin. Microbiol. 43, 4880-4884.

Watterson, S.A., Wilson, S.M., Yates, M.D., Drobniewski, F.A., 1998. Comparison of

three molecular assays for rapid detection of rifampin resistance in Mycobacterium

tuberculosis. J. Clin. Microbiol. 36, 1969-1973.

Wengenack, N.L., Rusnak, F., 2001. Evidence for isoniazid-dependent free radical

generation catalyzed by Mycobacterium tuberculosis KatG and the isoniazid-resistant

mutant KatG(S315T). Biochemistry. 40, 8990-8996.

WHO, 2010. Treatment of tuberculosis, Guidlines. World Health Organization,

Geneva, Switzerland.

WHO, 2012. Global tuberculosis report 2012. World Health Organization, Avenue

Appia, 1211 Geneva 27, Switzerland.

WHO, 2013a. Global tuberculosis report 2013. World Health Organization, Avenue

Appia, 1211 Geneva 27, Switzerland.

WHO, 2013b. Global tuberculosis Report, 2013, Avenue Appia, 1211 Geneva 27,

Switzerland.

WHO, 2013c. Multidrug-resistant tuberculosis (MDR-TB) 2013 update. World Health

Organization, Geneva, Switzerland.

Page 326: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

306

Wolucka, B.A., McNeil, M.R., de Hoffmann, E., Chojnacki, T., Brennan, P.J., 1994.

Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis

and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem.

269, 23328-23335.

Wong, K.W., D'Amico, D.J., Oum, B.S., Baker, P.A., Kenyon, K.R., 1990.

Intraocular penetration of rifampin after oral administration. Graefes. Arch. Clin. Exp.

Ophthalmol. 228, 40-43.

Yagupsky, P.V., Kaminski, D.A., Palmer, K.M., Nolte, F.S., 1990. Cord formation in

BACTEC 7H12 medium for rapid, presumptive identification of Mycobacterium

tuberculosis complex. J. Clin. Microbiol. 28, 1451-1453.

Yajko, D.M., Madej, J.J., Lancaster, M.V., Sanders, C.A., Cawthon, V.L., Gee, B.,

Babst, A., Hadley, W.K., 1995. Colorimetric method for determining MICs of

antimicrobial agents for Mycobacterium tuberculosis. J. Clin. Microbiol. 33, 2324-

2327.

Yang, Z.H., Ijaz, K., Bates, J.H., Eisenach, K.D., Cave, M.D., 2000. Spoligotyping

and polymorphic GC-rich repetitive sequence fingerprinting of Mycobacterium

tuberculosis strains having few copies of IS6110. J. Clin. Microbiol. 38, 3572-3576.

Yew, W.W., 1999. Directly observed therapy, short-course: the best way to prevent

multidrug-resistant tuberculosis. Chemotherapy. 45 Suppl 2, 26-33.

Yew, W.W., Leung, C.C., 2008. Management of multidrug-resistant tuberculosis:

Update 2007. Respirology 13, 21-46.

Yuan, X., Zhang, T., Kawakami, K., Zhu, J., Li, H., Lei, J., Tu, S., 2012. Molecular

characterization of multidrug- and extensively drug-resistant Mycobacterium

tuberculosis strains in Jiangxi, China. J. Clin. Microbiol. 50, 2404-2413.

Page 327: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

307

Yuen, L.K., Leslie, D., Coloe, P.J., 1999. Bacteriological and molecular analysis of

rifampin-resistant Mycobacterium tuberculosis strains isolated in Australia. J. Clin.

Microbiol. 37, 3844-3850.

Zabaleta-Vanegas, A.P., Llerena-Polo, C., Orjuela-Gamboa, D.L., Valbuena-Arias,

Y.A., Garcia-Gonzalez, L.M., Mejia-Restrepo, G., Bueno, J., Garzon-Torres, M.C.,

2013. Evaluation of BACTEC MGIT 960 and the nitrate reductase assay in the

National Laboratory Network of Colombia. Int. J. Tuberc. Lung. Dis. 17, 125-128.

Zainuddin, Z.F., Dale, J.W., 1989. Polymorphic repetitive DNA sequences in

Mycobacterium tuberculosis detected with a gene probe from a Mycobacterium

fortuitum plasmid. J. Gen. Microbiol. 135, 2347-2355.

Zhang, D., An, J., Wang, J., Hu, C., Wang, Z., Zhang, R., Wang, Y., Pang, Y., 2013.

Molecular typing and drug susceptibility of Mycobacterium tuberculosis isolates from

Chongqing Municipality, China. Infect. Genet. Evol. 13, 310-316.

Zhang, J., Abadia, E., Refregier, G., Tafaj, S., Boschiroli, M.L., Guillard, B.,

Andremont, A., Ruimy, R., Sola, C., 2010. Mycobacterium tuberculosis complex

CRISPR genotyping: improving efficiency, throughput and discriminative power of

'spoligotyping' with new spacers and a microbead-based hybridization assay. J. Med.

Microbiol. 59, 285-294.

Zhang, M., Yue, J., Yang, Y.P., Zhang, H.M., Lei, J.Q., Jin, R.L., Zhang, X.L., Wang,

H.H., 2005. Detection of mutations associated with isoniazid resistance in

Mycobacterium tuberculosis isolates from China. J. Clin. Microbiol. 43, 5477-5482.

Zhang, Y., Garbe, T., Young, D., 1993. Transformation with katG restores isoniazid-

sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug

concentrations. Mol. Microbiol. 8, 521-524.

Zhang, Y., Heym, B., Allen, B., Young, D., Cole, S., 1992. The catalase-peroxidase

gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 591-593.

Page 328: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

308

Zhang, Y., Young, D., 1994. Molecular genetics of drug resistance in Mycobacterium

tuberculosis. J. Antimicrob. Chemother. 34, 313-319.

Zimhony, O., Vilcheze, C., Jacobs, W.R., Jr., 2004. Characterization of

Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid

synthase I (fas1) gene. J. Bacteriol. 186, 4051-4055.

Page 329: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

309

APPENDIX I

All chemicals used in this study were of analytical or molecular biology grade.

Acrylamide/bis-acrylamide stock (30:0.4)

Acrylamide 30g

Bis-acrylamide 0.4g

Double distilled water up to 100 mL

Both constituents were dissolved in 70 mL of water using magnetic stirring and the

volume was adjusted up to 100 mL with double distilled water.

10% Ammonium per sulphate

Ammonium per sulphate 0.1 g

Double distilled water up to 1mL

Ampicillin

Ampicillin 100 mg

Double distilled water 1 mL

Ampicillin was mixed insterile double distilled water and stored at -20°C in small

aliquots.

10X Blocking / Washing buffer (Fermantas Cat # K0662)

10X Blocking / Washing buffer 10 mL

Distilled water 90 mL

Once prepared it was stored at 4ºC for no longer than one week.

Blocking Solution (Fermantas Cat # K0662)

Blocking reagent 0.25 g

1X Blocking / washing buffer 25 mL

Blocking reagent was dissolved in the blocking/washing buffer. The suspension was

stirred on magnetic stirrer at 50-60°C until the blocking reagent got completely

dissolved. Once prepared, the blocking solution was stored at -20°C.

Page 330: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

310

5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (Xgal)

Xgal 20 mg

DMSO 1 mL

Xgal was mixed thoroughly in DMSO, wrapped with foil and stored at -20°C in small

aliquots.

10X Buffer Q

950 mM Tris-HCl (pH 8.75) 2.1 mL

3M KCl 0.3 mL

2M (NH4)2SO4 0.5 mL

1M MgSO4 0.2 mL

1M MgCl2 0.15 mL

100X Triton 0.1 mL

Milli Q water up to 10 mL

All the reagents were mixed thoroughly and then final volume was adjusted to 10 mL

with MilliQ water.

Coupling of oligonucleotides

0.1mM Oligonucleotide 3 µL each

Microspheres 3.0 µL each

0.1M CaCl2

CaCl2 2.92 g

Double distilled water up to 200 mL

2.92 g of CaCl2 was dissolved in 180 mL of double distilled water. The volume was

adjusted to 200 mLwith double distilled water and autoclaved. CaCl2 solution was

always prepared fresh.

24:1 Chloroform/isoamyl alcohol

Chloroform 24 mL

Isoamyl alcohol 1.0 mL

Page 331: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

311

24 mL of chloroform was mixed with 1 mL of isoamyl alcohol to prepare 24:1

chloroform/isoamyl alcohol.

CTAB/NaCl solution

Sodium chloride (NaCl) 4.1 g

CTAB

(N-cetyl-N,N,N,-trimethylammonium bromide) 10.0 g

4.1 g NaCl was dissolved in 80 mL of double distilled water. While stirring at 65°C,

10 g of CTAB was added. Volume was adjusted to 100 mL with distilled water and

then stored at room temperature for no longer than 6 months.

Deionized formamide

Formamide 50 mL

Mixed bed ion exchange resin (Amberlite® MB-1) 5 g

Whatman No.1 filter paper as required

Method

Amberlite® MB-1 was added in formamide and the mix was stirred using magnetic

stirrer for 30 min. After 30 minutes. formamide was filtered twice with Whatman No.

1 filter paper and was stored at -20oC in small aliquots till further use for no longer

than 6 months.

Detection buffer

10X Detection buffer 2.5 mL

Double distilled water 22.5 mL

This was 10 times dilution of 10Xdetection buffer in double distilled water. Once

prepared, it was stored at 4°C for no longer than one week.

50X Denhardt’s solution

Ficoll 400 10 g

Polyvinylpyrolidone 10 g

Bovine serum albumin (BSA) 10 g

Page 332: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

312

All the constituents were mixed in 900 mL of double distilled water and the volume

was made up to 1000 mL. The solution was filtered through 0.2µm pore size filter and

stored at -20oC in aliquots.

Denaturing dye

Deionized formamide 48µL

Bromophenol Blue 0.025%

Deionized water 147µL

All these constituents were thoroughly mixed to form denaturation dye. It was always

prepared fresh.

Digestion buffer (for DNA extraction from blood)

Tris 6.05 g

0.5 M EDTA 400 µL

5 M NaCl l20 µL

10% SDS 1.0 mL

Water up to 10 mL

All the constituents were mixed and pH was adjusted to 9.0 with concentrated HCl.

Double distilled water was added to make a final volume of 10 mL. Digestion buffer

was always prepared fresh before use.

10X Digestion buffer (for liquefication of sputum)

Proteinase K (10 mg/mL) 100 µL

Tween 20 50 µL

Tris HCl (200 mM, pH 8.3) 850 mL

All the constituents were mixed thoroughly. Digestion buffer was always prepared

fresh.

Digestion solution (NaOH/N-acetyl-L-cysteine solution)

4% NaOH 50 mL

0.1 M Trisodium citrate 50 mL

N-acetyl-L-cysteine 1 g

Page 333: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

313

All the above constituents were mixed and the solution was stored at room

temperature.

DNA Tracking Dye

Method 1

Bromophenol blue 0.025 %

Sucrose 40.0 %

Double distilled water up to 10 mL

All the ingredients were mixed in approximately 8 mL of water and then the final

volume was adjusted to 10 mLwith water.

Method 2

Bromophenol blue 0.009 g

Glycerol 6 mL

60 mM EDTA 1800 µL

Double distilled water up to 10 mL

All the ingredients were mixed in approximately 8 mL of water and then the final

volume was adjusted to 10 mL with water.

Drawing ink working solution

Drawing ink 10 µL

2X SSPE 990 µL

The solution was stored at room temperature for no longer than one year

0.5M Ethylenediaminetetraacetic acid (EDTA)

EDTA.2H2O 186.1 g

10 M NaOH ~50mL

Double distilled water up to 1000 mL

EDTA was dissolved in approximately 700 mL of double distilled water and pH was

adjusted to 8.0 with 10 M NaOH (~50mL). The final volume was made up to 1000

mL.

Page 334: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

314

Equilibrated buffered phenol

1M Tris-HCl

Tris base 121 g

Conc. HCl 43 mL

Double distilled water up to 1000 mL

Tris-base was dissolved in 800 mL of double distilled water and the pH was adjusted

to 8.0 by adding ~43 mL of concentrated HCl. The final volume of the solution was

made up to 1000 mL and the solution was autoclaved.

8-hydroxy-quinoline 250 g

Phenol 250 mL

Method

Redistilled phenol was melted at 65-68oC in water bath. 250 mg of 8-

hydroxyquinoline was added in 250 mL of 1M Tris and stirred well. This solution was

added to phenol and mixed thoroughly for 2-3 hours. Phenol-Tris solution was

allowed to stand for half an hour. Upper aqueous phase was decanted and the pH was

checked. Equal volume (250 mL) of 1M Tris (pH 8.0) was added to the phenol, shook

thoroughly and allowed to stand for half an hour. The upper phase was decanted and

the pH was checked. 250 mL of 0.1M Tris was added to the solution and mixed

thoroughly and allowed to stand for 30-60 minutes. The pH was checked and the

upper phase was discarded and this step was repeated. 250 mL of 0.1 M Tris (pH 8.0)

with 0.2% β-mercaptoethanol was added and the solution was mixed and allowed to

stand for 1 hour. Final pH of the buffer should be 7.9. The buffered phenol was stored

at 4oC in dark brown bottle.

70% Ethanol

Absolute ethanol 70 mL

Double distilled water 30 mL

Page 335: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

315

7 volumes of ethanol were mixed with 3 volumes of distilled water and stored at room

temperature.

Ethidium Bromide (10%w/v)

Ethidium bromide 0.2 g

Double distilled water up to 20 mL

Ethidium bromide was mixed in approximately 18 mL of double distilled water and

final volume was adjusted to 20 mL. Ethidium bromide is a carcinogen and should be

handled with care.

10% HCl

HCl 27 mL

Double distilled water up to 100 mL

81.9 mL HCl was mixed in water and volume was adjusted up to 100 mL to make

10% HCl solution.

1M Isopropyl Thio-beta-D-Galactoside (IPTG)

IPTG 0.23 g

Double distilled water up to 10 mL

IPTG was thoroughly mixed in 7 ml of water and final volume was made up to 10mL

with sterile double distilled water. Solution wasfilteredwith a 0.22micron syringe

filter and stored at -20°C in small aliquots.

Lowenstein Jenson medium

Lowenstein Jenson media 6.2 g

Glycerol 2 mL

Eggs 2

Double distilled water 100 mL

Method

6.2 g of LJ media was dissolved in 100 mL of water and 2 mL of glycerol was also

added in the solution. To homogenize the eggs, crystal beads were taken in another

glass flask. LJ medium flask, crystal beads flask and the McCartney vials were

Page 336: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

316

autoclaved at 121°C for one hour and cooled to room temperature. Two eggs that

were not more than 7 days old were taken and cleaned by scrubbing thoroughly with a

hand brush in warm water and wiped with 70% ethanol. Eggs were cracked carefully

in the flask that contained crystal beads preventing the egg shells to drop in the flask.

Complete homogenization of the eggs was performed by stirring. Homogenized eggs

were added in the LJ medium slowly and mixed well. The slurry like medium was

poured in the McCartney vials and the vials were placed in the slanted position in pre-

warmed incubator at 80°C for 45 minutes. After coagulation, all the LJ slants were

incubated at 37°C for 14 hours to check the sterility of the media. The media vials

were labelled with date and stored in refrigerator.

Luria Bertani (LB) agar media

Bacto-tryptone 10 g

Yeast extract 5 g

NaCl 10 g

Agar 15 g

The above constituents were mixed in 800 mL of double distilled water and the pH

was adjusted to 7.5. 15g agar was added to it and the volume of the solution was made

up to 1000 mL. the solution was autoclaved and stored at room temperature.

Luria Bertani (LB) Broth

Bacto-tryptone 10 g

Yeast extract 5 g

NaCl 10 g

The above constituents were mixed in 800 mL of double distilled water and the pH

was adjusted to 7.5. Volume of the solution was made up to 1000 mLwith double

distilled water and autoclaved.

Lysis solution

NaOH 0.8 g

SDS 1.0 %

Page 337: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

317

Both constituents were dissolved in 80 mL of double distilled water and the final

volume was adjusted to 100 mL. Solution was stored at room temperature.

Lysozyme solution

Lysozyme 100 mg

Double distilled water 10 mL

Lysozyme was added in double distilled water and mixed. Prepared solution was

stored in small aliquots at -20°C for no longer than one year.

0.1M MgCl2

MgCl2 1.90 g

Double distilled water up to 200 mL

1.90 g of MgCl2 was dissolved in 180 mL of double distilled water.Volume was

adjusted to 200 mL with double distilled water and autoclaved. MgCl2 solution was

always prepared fresh.

0.1M (MES)(2-(N-morpholinoethanesulfonic acid))(pH 4.5)

2.12 g of MES buffer was dissolved in 90 mL of water, pH was adjusted to 4.5 with

NaOH and final volume was made up to 100 mL with milliQ water.

N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide EDC (10mg/mL) 5.0 µL

0.02% Tween 20 1.0 mL

0.1% SDS 1.0 mL

TE (pH 8.0) 100 µL

Neutralization solution

Potassium acetate 147 g

Glacial acetic acid to adjust pH

Double distilled water up to 500 mL

Page 338: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

318

147 g of potassium acetate was dissolved in 450 mL of double distilled water and the

pH was adjusted to 5. The volume of the solution was made up to 500 mL with sterile

double distilled water.

Phenol dye

Phenol dye 0.05 g

Double distilled water up to 100 mL

Phenol dye was dissolved in 80 mL of water and the volume of the solution was

adjusted to 100 mL with double distilled water.

Pre-hybridization solution

20X SSC 30 mL

50X Denhardt’s solution 10 mL

10% SDS 1.0 mL

Deionized formamide 50 mL

Distilled water up to 100 mL

All the ingredients were mixed and the final volume of the solution was adjusted up to

100 mL. The solution was stored at -20ºC in aliquots.

Resuspension solution

25 mM Tris HCl (pH 8.0) 2.5 mL

10 mM EDTA (pH 8.0) 2.0 mL

Glucose 0.98 g

Double distilled water up to 100 mL

Tris HCl and EDTA were mixed in 90 mL of double distilled water and autoclaved.

To this autoclaved solution was added 0.98 g of glucose and the volume of the

solution was adjusted to 100 mL with sterile double distilled water.

Salmon sperm DNA

Salmon sperm DNA (10 mg/mL) 50 µL

Page 339: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

319

50 µL of Salmon sperm DNA was denatured at 100°C for 5 minutes and then chilled

on ice. Denatured DNA was added to 10 mL of pre-hybridization solution to get the

final concentration of 50µg/mL.

10% SDS

SDS 10 g

Double distilled water up to 100 mL

SDS was dissolved in 80 mL of double distilled water at 65°C. The volume was made

up to 100 mL with double distilled water and the solution was stored at room

temperature.

SDS/Proteinase K mix

Proteinase K (15 mg/mL) 3.0 µL

10% SDS 72.0 µL

3.0 µL of proteinase K (15 mg/mL) was added in 72 µL of 10 % SDS. 75 µL of this

solution was needed for each sample. This mixture was always prepared fresh before

use.

3 M sodium acetate (CH3COONa)

CH3COONa 246.03 g

Double distilled water up to 1000 mL

CH3COONa was dissolved in double distilled water and stored at room temperature.

5 M NaCl

NaCl 29.2 g

Double distilled water up to 100 mL

29.2 g NaCl was dissolved in 60 mL of water and the final volume was made up to

100 mL by double distilled water. The solution was autoclaved and stored at room

temperature.

20X SSC

NaCl 175.3 g

Tri-sodium citrate-dihydrate 88.2 g

Page 340: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

320

NaCl and tri-sodium citrate were dissolved in 800 mL of distilled water and the pH

was adjusted to 7.0. Volume of the solution was adjusted to 1000 mL with distilled

water and autoclaved.

2X SSC

20X SSC 5.0 mL

Distilled water 45 mL

5.0 mL of 20XSSC was diluted in 45 mL of double distilled water to get 2XSSC.

2X SSC/0.1% SDS

20X SSC 100 mL

10% SDS 10 mL

Both constituents were mixed and volume was adjusted to 1000 mL by double

distilled water.

0.1X SSC/0.1% SDS

2X SSC 50 mL

10% SDS 10 mL

Both constituents were mixed and the volume was adjusted up to 1000 mL by double

distilled water

20X SSPE

Na2HPO4.2H2O 35.6 g

NaCl 210.24 g

EDTA 7.4 g

Double distilled water up to 1000 mL

All the ingredients were mixed in 800 mL of water. The pH was adjusted to 7.4 and

volume was made up to 1000 mL with double distilled water. The solution was

autoclaved and stored at room temperature for no longer than one year.

2X SSPE

20X SSPE 10 mL

Distilled water 90 mL

Page 341: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

321

20XSSPE was diluted 10 times in double distilled water to get 2XSSPE.

Streptavidin-AP conjugate (Dilution)

Streptavidin-AP conjugate 2 µL

Blocking solution 10 mL

This solution was always prepared prior to use.

Substrate solution

50X BCIP/NBT 200 µL

1X detection buffer 9.8 mL

This was 50 times dilution of the 50XBCIP/NBT in 1X detection buffer. The

detection solution was always prepared fresh and used in dark.

1X TE

1M Tris-HCl (pH 8.0) 5.0 mL

0.5 M EDTA 1.0 mL

Double distilled water up to 500 mL

1.5X TMAC

5 M TMAC (Cat # Sigma T3411) 22.5 mL

20% Sarkosyl

(Sodium lauroyl sarcosinate) 188 µL

1M TrisHCl (pH 8.0) 1.875 mL

0.5M EDTA (pH 8.0) 300 µL

Milli Q water 137 µL

All the ingredients were mixed, the solution was filtered and stored at room

temperature till further use.

10X Tris borate EDTA Buffer (TBE)

Tris base 108 g

Boric acid 55 g

0.5M EDTA (pH 8.0) 40 mL

Double distilled water up to 1000 mL

Page 342: prr.hec.gov.pkprr.hec.gov.pk/jspui/bitstream/123456789/2752/1/2909S.pdf · National Institute for Biotechnology and Genetic Engineering P. O. BOX 577, JHANG ROAD, FAISALABAD. (Affiliated

322

All the ingredients were mixed in approximately 800 mL of water and then final

volume was adjusted to 1000 mL.

Triton-Tris lysis buffer (TT lysis buffer)

Triton X-100 1 mL

Tris HCl (pH 8.3) 2 mL

The volume was adjusted up to 100 mL with double distilled water and autoclaved.