21
Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren ,T.Wright The University of Manchester A. Pollitt ILL Grenoble I. Tsekhanovich, J. Marrantz CENBG Bordeaux

Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Embed Size (px)

Citation preview

Page 1: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Prospects for STEFF at EAR2

A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren ,T.Wright The University of Manchester

A. PollittILL Grenoble

I. Tsekhanovich, J. MarrantzCENBG Bordeaux

Page 2: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

STEFF Design Objectives

• Binary spectrometer for fission fragments.

• Direct measurement of Energy, Mass, Atomic number and direction.

• Moderate solid angle with segmentation

• Coupled to gamma and neutron detector arrays.

Page 3: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Design

2-Energy, 2-velocity Spectrometer.

Solid angle 60 mstr

Page 4: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Fragment mass measurement

• Time-of-flight -> velocity • Bragg Ionisation chamber->energy

2 2

2A E T

A E T

2

2EA

v

2.2% 1% 1%

Design Objective mass resolution

Page 5: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Characteristics of bragg pulse

Page 6: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Digital Bragg Pulse Processing

• Integration• Low-pass filter: noise reduction• Currently Noise ~0.2 percent

• Digital Pulse Processing:• High-pass filter• Ballistic Def. Correction

Page 7: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

STEFF @ ILL

• Installed at PF1B Institut Laue-Langevin, Grenoble for 2x 25 days• 235U target 100µgcm-2 on a Nickel backing• Thermal neutron flux 1.8x1010 neutrons cm-2s-1

• Measured mass resolution 4 amu

Page 8: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Stopping in the Target

Page 9: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Two methods for mass measurement

E-TOF Arm 2

TOF1/TOF2

10 chans/AMU

Page 10: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Nuclear charge distribution for light mass groupIC measurements, when velocity if fixed:

Where

before any corrections:Sensitivity to Z (FWHM) of about 2 units.

 

b = 2/3

Page 11: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Gamma-ray Energy and Multiplicity

• Response to NEA High Priority Request of more accurate knowledge of heating caused by gamma emission in the next generation of nuclear reactors

• Coincidence with emission of prompt gamma rays as a function of the fragment mass and energy

• 12 NaI detectors around the uranium target provide a 6.8% photo peak detection efficiency

Page 12: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Gamma decay of fission fragment

• As fragment cools, statistical and yrast emissions remove angular momentum and lower excitation energy.

• Overall multiplicity• yrast & statistical

contributions

Page 13: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Monte Carlo simulation (decay)

• Number of yrast gamma rays linked to mean spin ~ B.

• Geometric distributions give statistical gamma rays for each fragment.

• Interaction with array: ,e scattering

 

Probability of spin state is generated based statistical model:

Page 14: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

235U Gamma-ray multiplicities

Measured fold distribution

Use χ2 minimisation to deduce multiplicity distribution

Mean multiplicity ≈ 7 ± 1Jrms = 7.1

Statistical = 1.5

Page 15: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Gamma Energy Spectra

Deconvolved NaI spectra using GEANT4 NaI response functionsCan we combine with multiplicities to obtain Gamma Sum Energy?

Page 16: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Using GEANT4 simulations of response functions of NaI detectors

Page 17: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

STEFF @ EAR2

Page 18: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Beam

MCPMCP

START

Page 19: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Rate Calculation for STEFF@EAR2

• Target 25cm2 235U at• Beam flux per pulse: • Neutron energy range 0.02eV - 10 MeV• protons used • Intrinsic Fragment det. efficiency 0.5-1.0*• Fission Fragment-gamma• Peak fissions ~5.6/pulse in 10ms†; γ Δt~10ns

-2100 cmg6 -27.54 10 n cm

*For both fragments. Limited by efficiency of STOP : to be improved. S.Warren PhD project. charge collection in anodes in ~3us. New system to minimize acquisition deadtime.

183.0 10

62.4 10 61.7 10

Page 20: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Analysis of system dead time effects needed

Rate calculations: J.Ryan/T.Wright

Page 21: Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I

Measurements with STEFF at EAR2

• Replace single MWPCs with multi-layered MWPCs (S.Warren)• Gamma Flash: test with NaI detector (J.Ryan T.Wright) • Include two new arms: SED/MCP/Bragg• Gamma Energies and Multiplicities vs. neutron energy• Angular distributions; Fragment Angular momentum• Ternary fission?