20
Propulsion of 8,000-10,000 teu Container Vessel

Propulsion of 8000-10000 Teu Container Vessel

Tags:

Embed Size (px)

DESCRIPTION

propulsia navelor

Citation preview

Propulsion of 8,000-10,000 teu Container Vessel

Contents

Introduction..................................................................................................5

EEDI.and.Major.Ship.and.Main.Engine.Parameters........................................6

Major.propeller.and.engine.parameters.....................................................7

8,000-10,000.teu.container.vessel...........................................................8

Main.Engine.Operating.Costs.–.25.0.knots....................................................9

Fuel.consumption.and.EEDI.....................................................................9

Operating.costs..................................................................................... 12

Main.Engine.Operating.Costs.–.24.0.knots.................................................. 13

Fuel.consumption.and.EEDI................................................................... 13

Operating.costs..................................................................................... 16

Summary.................................................................................................... 17

Propulsion of 8,000-10,000 teu Container Vessel

Introduction

The. maximum. size. of. recent. 8,000-

10,000. teu. container. vessels,. Fig.. 1,.

is. normally. at. the. scantling. draught.

within.the.deadweight.range.of.95,000-

120,000. dwt. and. the. ship’s. overall.

length. is.about.320-350.m.and.with.a.

breadth.of.about.43-46.m.

Recent.development.steps.have.made.

it.possible. to.offer.solutions.which.will.

enable. significantly. lower. transporta-

tion. costs. for. container. ships. as. out-

lined.in.the.following.

One.of.the.goals.in.the.marine.industry.

today. is. to. reduce. the. impact. of. CO2.

emissions. from. ships. and,. therefore,.

to.reduce.the.fuel.consumption.for.the.

propulsion.of.ships. to. the.widest.pos-

sible.extent.at.any.load.

This. also.means. that. the. inherent. de-

sign.CO2. index.of.a.new.ship,. the.so-

called. Energy. Efficiency. Design. Index.

(EEDI),. will. be. reduced.. Based. on. an.

average. reference. CO2. emission. from.

existing. container. vessels,. the. CO2.

emission. from. new. container. vessels.

in.gram.per.dwt.per.nautical.mile.must.

be.equal.to.or.lower.than.the.reference.

emission. figures. valid. for. the. specific.

container.vessel.

This. drive. may. often. result. in. opera-

tion. at. lower. than. normal. service. ship.

speeds. compared. to. earlier,. resulting.

in.reduced.propulsion.power.utilisation..

The.design.ship.speed.at.Normal.Con-

tinuous. Rating. (NCR),. including. 15%.

sea.margin,.used.to.be.as.high.as.25.0-

26.0.knots..Today,.the.ship.speed.may.

be. expected. to. be. lower,. possibly. 24.

knots,.or.even.lower.

A.more. technically.advanced.develop-

ment. drive. includes. optimising. the. aft.

body.of.the.ship,.making.it.possible.to.

install.propellers.with.a.larger.propeller.

diameter.and,.thereby,.obtaining.higher.

propeller. efficiency,. but. at. a. reduced.

optimum.propeller.speed

In. the. past,. normally. K98MC/ME.with.

nominal.97.r/min.and.K98MC-C/ME-C.

with.nominal.104.r/min.were.used..This.

speed.range.can.now.be.reduced.

Fig. 1: An 8,000 teu container vessel

5Propulsion.of.8,000-10,000.teu.Container.Vessel

As. the. two-stroke. main. engine. is. di-

rectly. coupled. with. the. propeller,. the.

introduction. of. the. super. long. stroke.

S90ME-C9.2.engine.specially.designed.

for.container.ships.with.even.lower.than.

the.above-mentioned.usual.shaft.speed.

will.meet.this..The.main.dimensions.for.

this.engine.type,.and.for.other.existing.

container.vessel.engines,.are.shown.in.

Fig..2.

Based.on.a.case.study.of.an.8,000.teu.

container.vessel,.this.paper.shows.the.

influence. on. fuel. consumption. when.

choosing. the. new. S90ME-C9.2. en-

gine. compared.with. existing. container.

vessel.engines..The.layout.ranges.of.9.

and.10S90ME-C9.2.engines.compared.

with.existing.9.and.10.K98.engines.are.

shown.in.Fig..3.

K98ME-C7.1S90ME-C9.2

12,986

13,35314

,642

1,700

2,950

2,950

4,3704,6205,420

1,700

1,9003,150

K98ME7.1

Fig. 2: Main dimensions for an S90ME-C9.2 engine and for other existing container ship engines

EEDI and Major Ship and Main Engine Parameters

Energy.Efficiency.Design.Index.(EEDI)

The. Energy. Efficiency. Design. Index.

(EEDI).is.conceived.as.a.future.manda-

tory. instrument. to. be. calculated. and.

made.as.available. information. for. new.

ships.. EEDI. represents. the. amount. of.

CO2.in.gram.emitted.when.transporting.

one.deadweight.tonnage.of.cargo.one.

nautical.mile.

For. container. vessels,. the. EEDI. value.

is.essentially.calculated.on.the.basis.of.

65%. of. the. maximum. cargo. capacity.

in. dwt,. propulsion. power,. ship. speed,.

SFOC.and. fuel. type..However,. certain.

correction. factors. are. applicable,. e.g..

for.installed.Waste.Heat.Recovery.sys-

tems.. To. evaluate. the. achieved. EEDI,.

a. reference. value. for. the. specific. ship.

type. and. the. specified. maximum. dwt.

cargo. capacity. is. used. for. compari-

son..The.final.calculation.method.of.the.

EEDI.and.how.to.award.compliance.(or.

penalise. non-compliance). has. not. yet.

been.determined.

The.main.engine’s.75%.SMCR.(Speci-

fied.Maximum.Continuous. Rating). fig-

ure.is.as.standard.applied.in.the.calcu-

lation.of. the.EEDI. figure,. in.which.also.

the.CO2.emission.from.the.auxiliary.en-

gines.of.the.ship.is.included.

According. to. the. rules. under. discus-

sion,.the.EEDI.of.a.new.ship.is.reduced.

to. a. certain. factor. compared. to. a. ref-

erence.value.yet. to.be.decided..Thus,.

a. ship. built. after. 2025. is. proposed. to.

have.a.30%.lower.EEDI.than.the.refer-

ence.figure.

6 Propulsion.of.8,000-10,000.teu.Container.Vessel

Major propeller and engine

parameters

In.general,.the.larger.the.propeller.diame-

ter,.the.higher.the.propeller.efficiency.and.

the. lower. the. optimum.propeller. speed.

referring.to.an.optimum.ratio.of.the.pro-

peller.pitch.and.propeller.diameter.

A.lower.number.of.propeller.blades,.for.

example.when.going.from.6.to.5.blades.

if. possible,.means. approximately. 10%.

higher. optimum. propeller. speed,. and.

the. propeller. efficiency. will. be. slightly.

increased.

When.increasing.the.propeller.pitch.for.

a.given.propeller.diameter.with.optimum.

pitch/diameter. ratio,. the. correspond-

ing. propeller. speed. may. be. reduced.

and. the. efficiency. will. also. be. slightly.

reduced,. of. course. depending. on. the.

degree.of.the.changed.pitch..The.same.

is.valid.for.a.reduced.pitch,.but.here.the.

propeller.speed.may.increase.

The.efficiency.of.a.two-stroke.main.en-

gine.particularly.depends.on.the.ratio.of.

the.maximum. (firing). pressure. and. the.

mean.effective.pressure..The.higher.the.

ratio,. the. higher. the. engine. efficiency,.

i.e..the.lower.the.Specific.Fuel.Oil.Con-

sumption.(SFOC).

Furthermore,.it.is.a.verified.fact.that.the.

higher. the. stroke/bore. ratio. of. a. two-

stroke.engine,.the.higher.the.engine.ef-

ficiency..This.means,.for.example,.that.

the. long. stroke. engine. type,. S90ME-

C9.2,. may. have. a. higher. efficiency.

compared.with.the.short.stroke.engine.

type.K98.

Furthermore,. the. application. of. new.

propeller. design. technologies. moti-

vates. use. of. main. engines. with. lower.

97 r/min84 r/min 104 r/min

M3

12K98ME�C7.1

30,00065 70 75 80 85 90 95 100 105 r/min

Engine/Propeller speed at SMCR

40,000

50,000

60,000

70,000

80,000

PropulsionSMCR powerkW

SMCR power and speed are inclusive of: 15% Sea margin 10% Engine margin 5% Propeller light running margin

5 and 6-bladed FP-propellersConstant ship speed coefficient ∝= 0.21for 6-bladed propellers

Tdes=13.0 m

Increased propeller diameterS90ME-C9.2

M2

M3

M3’ M2’

M1’

M1

M’ = SMCR (24.0 kn)M1’ = 52,150 kW at 104.0 r/min 9K98ME-C7.1M2’ = 52,150 kW at 97.0 r/min 9K98ME7.1M3’ = 50,600 kW at 84.0 r/min 9S90ME-C9.2

M = SMCR (25.0 kn)M1 = 59,880 kW at 104.0 r/min 10K98ME-C7.1M2 = 59,880 kW at 97.0 r/min 10K98ME7.1M3 = 58,100 kW at 84.0 r/min 10S90ME-C9.2

S90ME-C9.2Bore = 900 mmStroke = 3,260 mmVpist = 9.13 m/sS/B = 3.622MEP = 20 barL1 = 5,810 kW/cyl. at 84.0 r/min

Propulsion of 8,000 teu Container Vessel

26.0 kn

25.0 kn

24.0 kn

23.0 kn∝

Dprop=8.8 m ×6(67.7% Tdes)

Dprop=8.8 m ×5

Dprop=9.2 m ×6(70.8% Tdes)

Dprop=9.5 m ×6(73.1% Tdes)

10K98ME7.1

9K98ME7.1

11K98ME�C7.1

10K98ME�C7.1

9K98ME�C7.1

9S90ME�C9.2

10S90ME�C9.2

8S90ME�C9.2

Fig. 3: Different main engine and propeller layouts and SMCR possibilities (M1, M2, M3 for 25.0 knots and M1’, M2’, M3’, for 24.0 knots) for an 8,000 teu con-

tainer vessel operating at 25.0 knots and 24.0 knots, respectively.

7Propulsion.of.8,000-10,000.teu.Container.Vessel

rpm.. Thus,. for. the. same. propeller. di-

ameter,. these. propeller. types. are. cal-

culated.to.have.an.about.6%.improved.

overall. efficiency. gain. at. about. 10%.

lower.propeller.speed.

8,000-10,000 teu container vessel

For. an. 8,000. teu. container. ship. used.

as. an. example,. the. following. case.

study.illustrates.the.potential.for.reduc-

ing.fuel.consumption.by.increasing.the.

propeller.diameter.and. introducing. the.

S90ME-C9.2.as.main.engine..The.ship.

particulars.assumed.are.as.follows:

8,000 teu Container Vessel

Scantling.draught. m. 14.5

Design.draught. m. 13.0

Length.overall. m. 323.0

Length.between.pp. m. 308.0

Breadth. m. 42.8

Sea.margin. %. 15

Engine.margin. %. 10

Design.ship.speed. kn. 25.0.and.24.0

Type.of.propeller. . FPP

No..of.propeller.blades....6.(or.5.if.possible)

Propeller.diameter. m. target

Based. on. the. above-stated. average.

ship. particulars. assumed,. we. have.

made. a. power. prediction. calculation.

(Holtrop. &. Mennen’s. Method). for. dif-

ferent.design.ship.speeds.and.propel-

ler. diameters,. and. the. corresponding.

SMCR. power. and. speed,. point. M,.

for. propulsion. of. the. container. ship. is.

found,. see. Fig.. 3.. The.propeller. diam-

eter. change. for. the. 6-bladed.propeller..

corresponds.approximately.to.the.con-

stant.ship.speed.factor.α=.0.21.[PM2.=.

PM1.x.(n2/n1)α.where.P.=.propulsion.pow-

er.and.n.=.speed]..For.the.same.propel-

ler.diameter.and.when.going.from.6.to.

5.blades,.the.optimum.propeller.speed.

is. increased.and.the.propulsion.power.

needed. is. slightly. increased,. but. here.

assumed.more.or.less.unchanged.

Referring. to. the. two. ship. speeds. of.

25.0. knots. and. 24.0. knots,. respec-

tively,.three.potential.main.engine.types.

and. pertaining. layout. diagrams. and.

SMCR. points. have. been. drawn-in. in.

Fig.. 3,. and. the.main. engine. operating.

costs. have. been. calculated. and. de-

scribed.below.individually.for.each.ship.

speed.case.

It.should.be.noted.that.the.ship.speed.

stated.refers.to.the.design.draught.and.

to. NCR. =. 90%. SMCR. including. 15%.

sea.margin.. If.based.on.calm.weather,.

i.e..without.sea.margin,. the.obtainable.

ship. speed.at.NCR.=.90%.SMCR.will.

be.about.0.9.knots.higher.

If. based. on. 75%. SMCR. and. 65%. of.

maximum.dwt,. as. applied. for. calcula-

tion.of.the.EEDI,.the.ship.speed.will.be.

about. 0.2. knots. higher,. still. based. on.

calm. weather. conditions,. i.e.. without.

any.sea.margin.

8 Propulsion.of.8,000-10,000.teu.Container.Vessel

0

20,000

30,000

10,000

40,000

50,000

60,000

Relative powerreduction

%

Propulsion power demand at N = NCR

kW

0

1

2

3

4

5

6

7

8

9

10

11

12

10K98ME-C7.1N1

8.8 m ×5

10K98ME7.1N2

8.8 m ×6

10S90ME-C9.2N3

9.5 m ×6Dprop:

53,890 kW

Inclusive of sea margin = 15%

53,890 kW52,290 kW

0% 0%

3.0%

Propulsion of 8,000 teu Container Vessel – 25.0 knotsExpected propulsion power demand at N = NCR = 90% SMCR

Fig. 4: Expected propulsion power demand at NCR for 25.0 knots

Main Engine Operating Costs – 25.0 knots

The. calculated. main. engine. examples.

are.as.follows:

25.0.knots

1.. 10K98ME-C7.1.. M1.=.59,880.kW.x.104.0.r/min2.. 10K98ME7.1.. M2.=.59,880.kW.x.97.0.r/min.3.. 10S90ME-C9.2.. M3.=.58,100.kW.x.84.0.r/min.

The.K98.engine.types.have.been.cho-

sen. as. cases. 1. and. 2. as. these. have.

been.often.used.in.the.past.

The. main. engine. fuel. consumption.

and. operating. costs. at. N. =. NCR. =.

90%. SMCR. have. been. calculated. for.

the. above. three.main. engine/propeller.

cases. operating. on. the. relatively. high.

ship.speed.of.25.0.knots,.as.often.used.

earlier..Furthermore,.the.corresponding.

EEDI.has.been.calculated.on.the.basis.

of.the.75%.SMCR-related.figures.(with-

out.sea.margin).

Fuel consumption and EEDI

Fig..4. shows. the. influence.of. the.pro-

peller. diameter. when. going. from.

about. 8.8. to. 9.5.m.. Thus,. N3. for. the.

10S90ME-C9.2. with. a. 9.5. m. x. 6.

(number. of. blades). propeller. diameter.

has. a. propulsion. power. demand. that.

is.about.3.0%.lower.compared.with.N1.

and. N2. valid. for. the. 10K98ME-C7.1.

and. 10K98ME7.1,.with. a. propeller. di-

ameter.of.about.8.8.m.x.5.and.8.8.m.x.

6,.respectively.

9Propulsion.of.8,000-10,000.teu.Container.Vessel

Fig..5.shows.the.influence.on.the.main.

engine.efficiency,.indicated.by.the.Spe-

cific. Fuel. Oil. Consumption,. SFOC,. for.

the.three.cases..N3.=.90%.M3.for.the.

10S90ME-C9.2.has.an.SFOC.of.164.8.

g/kWh..The.164.8.g/kWh.SFOC.of.the.

N3.for.the.10S90ME-C9.2.is.4.0%.low-

er. compared. with. N1. for. the. derated.

10K98ME-C7.1.with.an.SFOC.of.171.7.

g/kWh.. This. is. because. of. the. higher.

stroke/bore.ratio.of.this.S-engine.type.

Engine shaft power

16225 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 % SMCR

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

SFOCg/kWh

178

179

180

181

182

N3

N1

N2

M3 10S90ME-C9.2

M2 10K98ME7.1

M1 10K98ME-C7.1

9.5 m ×6

8.8 m ×6

8.8 m ×5

Dprop

Savingsin SFOC0%

0.6%

4.0%

IMO Tier llISO ambient conditionsLCV = 42,700 kJ/kg

Standard high-loadoptimised engines

M = SMCRN = NCR

Propulsion of 8,000 teu Container Vessel – 25.0 knotsExpected SFOC

8,000 teu

Fig. 5: Expected SFOC for 25.0 knots

10 Propulsion.of.8,000-10,000.teu.Container.Vessel

When.multiplying.the.propulsion.power.

demand. at. N. (Fig.. 4). with. the. SFOC.

(Fig.. 5),. the. daily. fuel. consumption. is.

found. and. is. shown. in. Fig.. 6.. Com-

pared.with.N1.for. the.10K98ME-C7.1,.

the.total.reduction.of.fuel.consumption.

of. the. 10S90ME-C9.2. at. N3. is. about.

6.8%.

The. reference. and. the. actual. EEDI.

figures. have. been. calculated. and. are.

shown.in.Fig..7..As.can.be.seen.for.all.

cases,.the.actual.EEDI.figures.are.lower.

than.the.reference.figure.

0

5

10

15

20

25

0

10

20

30

40

50

60

70

80

90

100

110

120

Reference and actual EEDICO2 emissionsgram per dwt/n mile Actual/Reference EEDI %

EEDI reference EEDI actual

Dprop:

10K98ME-C7.1N1

8.8 m ×5

10K98ME7.1N2

8.8 m ×6

10S90ME-C9.2N3

9.5 m ×6

20.45

16.92

83%

20.45

16.8282%

20.45

15.78

77%

Propulsion of 8,000 teu Container Vessel – 25.0 knotsEnergy Efficiency Design Index (EEDI), Re 65% of maximum dwt75% SMCR: 25.2 kn without sea margin

8,000 teu

Fig. 7: Reference and actual Energy Efficiency Design Index (EEDI) for 25.0 knots

t/24h

0

20

40

60

80

100

120

140

160

180

200

220

240

0

1

2

3

4

5

6

7

8

9

10

11

12

Relative saving of fuel consumption

Fuel consumptionof main engine

%

IMO Tier llISO ambient conditionsLCV = 42,700 kJ/kg

222.0t/24h

10K98ME-C7.1N1

8.8 m ×5

220.7t/24h

10K98ME7.1N2

8.8 m ×6

206.8t/24h

10S90ME-C9.2N3

9.5 m ×6

0% 0.6%

6.8%

Dprop:

Propulsion of 8,000 teu Container Vessel – 25.0 knotsExpected fuel consumption at N = NCR = 90% SMCR

8,000 teu

Fig. 6: Expected fuel consumption at NCR for 25.0 knots

11Propulsion.of.8,000-10,000.teu.Container.Vessel

Fig. 8: Total annual main engine operating costs for 25.0 knots

0

10

20

30

35

5

15

25

10K98ME-C7.1N1

8.8 m×5

MaintenanceLub. oil

Fuel oil

10K98ME7.1N2

8.8 m×6

10S90ME-C9.2N3

9.5 m×6

0

4

8

12

14

2

6

10

1

5

9

13

3

7

11

IMO Tier llISO ambient conditions280 days/yearNCR = 90% SMCRFuel price: 500 USD/tAnnual operating costs

Million USD/Year

Relative saving in operating costs

%

Dprop:

0% 0.6%

6.8%

Propulsion of 8,000 teu Container Vessel – 25.0 knotsTotal annual main engine operating costs

8,000 teu

Operating costs

The. total.main. engine.operating. costs.

per.year,.operating.at.N.=.90%.SMCR.

in.280.days/year,.and.fuel.price.of.500.

USD/t,.are.shown.in.Fig..8..The.lube.oil.

and.maintenance.costs.are.shown.too..

As. can. be. seen,. the. major. operating.

costs.originate.from.the.fuel.costs.and.

are.about.97%.

The.relative.savings. in.operating.costs.

in.Net.Present.Value.(NPV),.see.Fig..9,.

with.the.10K98ME-C7.1.used.as.basis.

with. the. propeller. diameter. of. about.

8.8.m.x.5,.indicates.an.NPV.saving.for.

the.10S90ME-C9.2. engine. after. some.

years. in. service.. After. 25. year. in. op-

eration,.the.saving.is.about.38.0.million.

USD. for. N3. with. 10S90ME-C9.2. with.

the.SMCR.speed.of.84.0.r/min.and.pro-

peller.diameter.of.about.9.5.m.x.6.

Million USD

LifetimeYears

0

20

40

10

30

50

0 5–10

10 15 20 25 30

Saving in operating costs(Net Present Value)

IMO Tier llISO ambient conditionsN = NCR = 90% SMCR280 days/yearFuel price: 500 USD/tRate of interest and discount: 6% p.a.Rate of inflation: 3% p.a.

N2 8.8 m×610K98ME7.1N1 8.8 m×510K98ME-C7.1

N3 9.5 m×6 10S90ME-C9.2

Propulsion of 8,000 teu Container Vessel – 25.0 knotsRelative saving in main engine operating costs (NPV)

8,000 teu

Fig. 9: Relative saving in main engine operating costs (NPV) for 25.0 knots

12 Propulsion.of.8,000-10,000.teu.Container.Vessel

0

20,000

30,000

10,000

40,000

50,000

60,000

Relative powerreduction

%

Propulsion power demand at N’ = NCR

kW

0

1

2

3

4

5

6

7

8

9

10

11

12

9K98ME-C7.1N1’

8.6 m ×5

9K98ME7.1N2’

8.6 m ×6

9S90ME-C9.2N3’

9.2 m ×6Dprop:

Inclusive of sea margin = 15%

46,935 kW 46,935 kW45,540 kW

0% 0%

3.0%

Propulsion of 8,000 teu Container Vessel – 24.0 knotsExpected propulsion power demand at N’ = NCR = 90% SMCR

8,000 teu

Fig. 10: Expected propulsion power demand at NCR for 24.0 knots

Main Engine Operating Costs– 24.0 knots

The. calculated. main. engine. examples.

are.as.follows:

1’.. 9K98ME-C7.1.. M1’.=.52,150.kW.x.104.0.r/min2’.. 9K98ME7.1.. M2’.=.52,150.kW.x.97.0.r/min.3’.. 9S90ME-C9.2.. M3’.=.50,600.kW.x.84.0.r/min.

The.K98.engine.types.have.been.cho-

sen.as.cases.1’.and.2’.as. these.have.

been.most.often.used.in.the.past.

The.main.engine.fuel.consumption.and.

operating. costs. at. N’. =. NCR. =. 90%.

SMCR. have. been. calculated. for. the.

above.three.main.engine/propeller.cas-

es.operating.on.the.relatively.lower.ship.

speed.of.24.0.knots,.which.is.probably.

going.to.be.a.more.normal.choice.in.the.

future,.maybe.even.lower..Furthermore,.

the. EEDI. has. been. calculated. on. the.

basis.of.the.75%.SMCR-related.figures.

(without.sea.margin).

Fuel consumption and EEDI

Fig.. 10. shows. the. influence. of. the.

propeller. diameter. when. going. from.

about.8.6. to.9.2.m..Thus,.N3’. for. the.

9S90ME-C9.2.with.a.9.2.m.x.6.(number.

of.blades).propeller.diameter.has.a.pro-

pulsion. power. demand. that. is. about.

3.0%.lower.compared.with.the.N1’.for.

the.9K98ME-C7.1.with.an.about.8.8.m.

x.5.propeller.diameter.

13Propulsion.of.8,000-10,000.teu.Container.Vessel

Fig..11.shows.the.influence.on.the.main.

engine.efficiency,.indicated.by.the.Spe-

cific. Fuel. Oil. Consumption,. SFOC,. for.

the. three. cases.. N3’. =. 90%.M3’.with.

the. 9S90ME-C9.2. has. a. relatively. low.

SFOC.of.163.8.g/kWh.compared.with.

the. 170.7. g/kWh. for. N1’. =. 90%. M1’.

for.the.9K98ME-C7.1,.i.e..an.SFOC.re-

duction.of.about.4.0%,.mainly.caused.

by. the. higher. stroke/bore. ratio. of. the.

S90ME-C9.2.engine.type.

Engine shaft power25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 % SMCR

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SFOCg/kWh

175

176

177

178

179

180

181

8.6 m×5

Dprop

IMO Tier llISO ambient conditionsLCV = 42,700 kJ/kg

Standard high-loadoptimised engines

N2’

N3’

N1’

M1’ = SMCRN1’ = NCR

M3’

8.6 m×6M2’ 9K98ME7.1

M1’ 9K98ME-C7.1

9S90ME-C9.2 9.2 m×6

Savingsin SFOC0%

0.6%

4.0%

Propulsion of 8,000 teu container vessel – 24.0 knotsExpected SFOC

8,000 teu

Fig. 11: Expected SFOC for 24.0 knots

14 Propulsion.of.8,000-10,000.teu.Container.Vessel

The.daily.fuel.consumption.is.found.by.

multiplying. the. propulsion. power. de-

mand.at.N’.(Fig..10).with.the.SFOC.(Fig..

11),. see. Fig.. 12.. The. total. reduction.

of. fuel. consumption. of. the. 9S90ME-

C9.2.is.about.6.9%.compared.with.the.

9K98ME-C7.1.

The. reference. and. the. actual. EEDI.

figures. have. been. calculated. and. are.

shown. in. Fig.. 13.. As. can. be. seen. for.

all.three.cases,.the.actual.EEDI.figures.

are.all. lower. than. the. reference. figure..

Particularly,.case.3’.with.9S90ME-C9.2.

has. a. low. EEDI. –. about. 70%. of. the.

reference. figure,. i.e..will.meet. the.pro-

posed.EEDI.demand.from.2025.

t/24h

0

20

40

60

80

100

120

140

160

180

200

220

0

1

2

3

4

5

6

7

8

9

10

11

Relative saving of fuel consumption

Fuel consumptionof main engine

%

IMO Tier llISO ambient conditionsLCV = 42,700 kJ/kg

192.3t/24h

9K98ME-C7.1N1’

8.6 m ×5

191.2t/24h

9K98ME7.1N2’

8.6 m ×6

179.1t/24h

9S90ME-C9.2N3’

9.2 m ×6

0% 0.6%

6.9%

Dprop:

Propulsion of 8,000 teu Container Vessel – 24.0 knotsExpected fuel consumption at N’ = NCR = 90% SMCR

8,000 teu

Reference and actual EEDICO2 emissionsgram per dwt/n mile Actual/Reference EEDI %

Dprop:

9K98ME-C7.1N1’

8.6 m ×5

9K98ME7.1N2’

8.6 m ×6

9S90ME-C9.2N3’

9.2 m ×6

Propulsion of 8,000 teu Container Vessel – 24.0 knotsEnergy Efficiency Design Index (EEDI), Re 65% of maximum dwt75% SMCR: 24.2 kn without sea margin

8,000 teu

0

5

10

15

20

25

0

10

20

30

40

50

60

70

80

90

100

110

120EEDI reference EEDI actual

20.45

15.2775%

20.45

15.1874%

20.45

14.2570%

Fig. 13: Reference and actual Energy Efficiency Design Index (EEDI) for 24.0 knots

Fig. 12: Expected fuel consumption at NCR for 24.0 knots

15Propulsion.of.8,000-10,000.teu.Container.Vessel

Operating costs

The. total.main. engine.operating. costs.

per.year,.280.days/year,.and.fuel.price.

of. 500. USD/t,. are. shown. in. Fig.. 14..

Lube. oil. and. maintenance. costs. are.

also.shown.at.the.top.of.each.column..

As. can. be. seen,. the. major. operating.

costs.originate.from.the.fuel.costs.and.

are.about.97%.

The.relative.savings. in.operating.costs.

in.Net.Present.Value,.NPV,.see.Fig..15,.

with.the.9K98ME-C7.1.with.the.propel-

ler. diameter. of. about. 8.6.m. x. 5. used.

as.basis,.indicates.an.NPV.saving.after.

some.years.in.service.for.the.9S90ME-

C9.2. engine.. After. 25. years. in. opera-

tion,.the.saving.is.about.33.million.USD.

for. the. 9S90ME-C9.2. with. the. SMCR.

speed. of. 84.0. r/min. and. propeller. di-

ameter.of.about.9.2.m.x.6.

Annual operating costsMillion USD/Year

0

10

20

30

5

15

25

9K98ME-C7.1N1’

8.6 m ×5

9K98ME7.1N2’

8.6 m ×6

9S90ME-C9.2N3’

9.2 m ×6

IMO Tier llISO ambient conditionsN’ = NCR = 90% SMCR280 days/yearFuel price: 500 USD/t

0

4

8

12

2

6

10

1

5

9

3

7

11

Relative saving in operating costs

%

MaintenanceLub. oil

Fuel oil

Dprop:

6.8%

0% 0.5%

Propulsion of 8,000 teu Container Vessel – 24.0 knotsTotal annual main engine operating costs

Fig. 14: Total annual main engine operating costs for 24.0 knots

16 Propulsion.of.8,000-10,000.teu.Container.Vessel

Summary

Traditionally,.K-type.engines,.with.rela-

tively. high. engine. and. thereby. propel-

ler.speeds,.have.been.applied.as.prime.

movers. in. the. container. vessels. size.

bracket.of.8,000-10,000.teu.capacity.

Following. the. efficiency. optimisation.

trends. in. the. market,. also. with. lower.

ship. speeds. for. container. ships,. the.

possibility.of. using.even. larger.propel-

lers.has.been.thoroughly.evaluated.with.

a.view.to.using.engines.with.even.lower.

speeds.for.propulsion.

Container. ships. are. indeed. compat-

ible.with. propellers.with. larger. propel-

ler.diameters.than.the.current.designs,.

and. thus.high.efficiencies. following.an.

adaptation.of.the.aft.hull.design.to.ac-

commodate. the. larger. propeller.. Even.

in.cases.where.an.increased.size.of.the.

propeller.is.limited,.the.use.of.propellers.

based. on. the. New. Propeller. Technol-

ogy.will.be.an.advantage.

The. new. higher. powered. long. stroke.

S90ME-C9.2. engine. type. meets. this.

trend. in. the. market.. This. paper. indi-

cates,.depending.on.the.propeller.diam-

eter.used,.an.overall.efficiency.increase.

of.about.7%.when.using.S90ME-C9.2,.

compared. with. existing. main. engines.

applied.so.far.

The. Energy. Efficiency. Design. Index.

(EEDI). will. also. be. reduced. when. us-

ing.S90ME-C9.2.. In.order. to.meet. the.

stricter.given.reference.figure.in.the.fu-

ture,. the. design. of. the. ship. itself. and.

the.design.ship.speed.applied.(reduced.

speed). has. to. be. further. evaluated. by.

the. shipyards. to. further. reduce. the.

EEDI..Among.others,.the.installation.of.

WHR.may.reduce.the.EEDI.value.

Million USD

LifetimeYears

0

5

10

15

20

25

30

35

40

45

0 5 30–5

10 15 20 25

Saving in operating costs(Net Present Value)

IMO Tier llISO ambient conditionsN’ = NCR = 90% SMCR280 days/yearFuel price: 500 USD/tRate of interest and discount: 6% p.a.Rate of inflation: 3% p.a.

N3’ 9.2 m ×69S90ME-C9.2

N2’ 8.6 m ×69K98ME7.1N1’ 8.6 m ×59K98ME-C7.1

Propulsion of 8,000 teu Container Vessel – 24.0 knotsRelative saving in main engine operating costs (NPV)

Fig. 15: Relative saving in main engine operating costs (NPV) for 24.0 knots

17Propulsion.of.8,000-10,000.teu.Container.Vessel

18 Propulsion.of.8,000-10,000.teu.Container.Vessel

Copyright.©

.MAN.Diesel.&

.Turbo.·.Subject.to.m

odification.in.the.interest.of.technical.progress..

5510-0109-00ppr.March.2011.P

rinted.in.Denm

ark

MAN Diesel & Turbo

Teglholmsgade.41

2450.Copenhagen.SV.,.Denmark

Phone.+45.33.85.11.00

Fax. +45.33.85.10.30

[email protected]

www.mandieselturbo.com