33
Proportional Navigation Modern Investigation Ziv Meri, EEE M.Sc. Program prof. Grigory Agranovich, Supervisor Ariel University of Samaria Department of Electrical and Electronic Engineering May 2017

Proportional Navigation - iaac.technion.ac.il

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Proportional Navigation - iaac.technion.ac.il

Proportional Navigation Modern Investigation

Ziv Meri, EEE M.Sc. Program

prof. Grigory Agranovich, Supervisor

Ariel University of Samaria

Department of Electrical and

Electronic Engineering

May 2017

Page 2: Proportional Navigation - iaac.technion.ac.il

2/3

3

Methodology

• Proportional Navigation

• Mechanization Effect

• Generalized Lyapunov Investigation

• Results

• Summary

Page 3: Proportional Navigation - iaac.technion.ac.il

3/3

3

Proportional Navigation

Guidance Command 𝒂𝒄 𝒕 = 𝒗𝒄 𝑵 𝜽 𝒕

𝑣𝑡

𝑣𝑚𝑖𝑠𝑠𝑖𝑙𝑒

𝑎𝑐

𝑎𝑇

𝑅

𝜃

𝑹𝜽 + 𝟐𝑹 𝜽 = −𝒂𝒎 + 𝒂𝑻

Page 4: Proportional Navigation - iaac.technion.ac.il

4/3

3

Linearization

𝑣𝑡

𝑣𝑚𝑖𝑠𝑠𝑖𝑙𝑒

𝑦(𝑡)

𝑎𝑐

𝑎𝑇

𝑅 = 𝑣𝑐 𝑡𝑔𝑜

𝜃 =𝑦

𝑅

𝑎𝑐 = 𝑁𝑦 + 𝑦 𝑡𝑔𝑜

𝑡𝑔𝑜2

𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡

Page 5: Proportional Navigation - iaac.technion.ac.il

5/3

3

Flyby

missile

target

𝜃1 𝜃2

𝑡𝑔𝑜 = 0

Page 6: Proportional Navigation - iaac.technion.ac.il

6/3

3

Guidance Loop

Geometry Seeker

Tracking Filters Guidance Law Autopilot

Page 7: Proportional Navigation - iaac.technion.ac.il

7/3

3

Guidance Loop

𝑥 1 =2

𝑡𝑔𝑜 𝑥1 −

𝑐

𝑡𝑔𝑜 𝑥𝑎𝑝

𝑥 𝑎𝑝 = 𝑏 𝑁 𝑥1 + 𝐴 𝑥𝑎𝑝

Guidance Law Autopilot

State Space model

𝑥1

Page 8: Proportional Navigation - iaac.technion.ac.il

8/3

3

Command Shapes

Page 9: Proportional Navigation - iaac.technion.ac.il

9/3

3

Final Divergence

𝑎𝑐 = 𝑁𝑦 + 𝑦 𝑡𝑔𝑜

𝑡𝑔𝑜2

Page 10: Proportional Navigation - iaac.technion.ac.il

10/3

3

Analysis Method

• Stability Conditions??

– LTI theory

– Absolute Stability

– Lyapunov Generalization

𝑥 1 =2

𝑡𝑓 − 𝑡 𝑥1 −

𝑐

𝑡𝑓 − 𝑡 𝑥𝑎𝑝

𝑥 𝑎𝑝 = 𝑏 𝑁 𝑥1 + 𝐴 𝑥𝑎𝑝

Page 11: Proportional Navigation - iaac.technion.ac.il

11/3

3

Definitions

• Uniformly bounded stability

𝑥(𝑡) ≤ 𝛼 𝑥0 0 ≤ 𝑡 ≤ 𝑡𝑓 − 𝜏1

Page 12: Proportional Navigation - iaac.technion.ac.il

12/3

3

Definitions

• Asymptotic stability

𝑥(𝑡) → 0 𝑓𝑜𝑟 𝑡𝑓 → ∞

𝜏1 ≤ 𝑡𝑔𝑜 ≤ 𝜏2

singular point tf

2

Page 13: Proportional Navigation - iaac.technion.ac.il

13/3

3

Lyapunov Function

• Define the Lyapunov Function

𝑣 𝑧 𝑡 = 𝑥12 + 𝑧𝑎𝑝

𝑇 𝐻 𝑧𝑎𝑝𝑇

• Seek for d

𝑑𝑡𝑣 𝑧 𝑡 ≤ −

𝛼1𝑡𝑔𝑜

+𝛼2

𝑡𝑔𝑜2 ⋅ 𝑣 𝑧 𝑡

• With the solution

𝑣 𝑧 𝑡 ≤ 𝑣 𝑧0 ⋅tgo

𝑡𝑓

𝛼1

⋅ 𝑒𝛼2⋅

1𝑡𝑔𝑜

−1𝑡𝑓

Page 14: Proportional Navigation - iaac.technion.ac.il

14/3

3

Inequalities Manipulations

𝑣 𝑧 𝑡 ≤ 𝑣 𝑧0 ⋅tgo

𝑡𝑓

𝛼1

⋅ 𝑒𝛼2⋅

1𝑡𝑔𝑜

−1𝑡𝑓

𝜏1 ≤ 𝑡𝑔𝑜 → 𝑣 𝑧 𝑡 ≤ 𝑣 𝑧0 ⋅ 𝑒𝛼2⋅

1𝜏1−1𝑡𝑓

BOUNDED STABILITY

Page 15: Proportional Navigation - iaac.technion.ac.il

15/3

3

Inequalities Manipulations

𝑣 𝑧 𝑡 ≤ 𝑣 𝑧0 ⋅tgo

𝑡𝑓

𝛼1

⋅ 𝑒𝛼2⋅

1𝑡𝑔𝑜

−1𝑡𝑓

𝑡𝑔𝑜 ≤ 𝜏2 < 𝑡𝑓 → 𝑣 𝑧 𝑡 ≤ 𝑣 𝑧0 ⋅𝜏2𝑡𝑓

𝛼1

⋅ 𝑒𝛼2⋅

1𝜏1−1𝑡𝑓

ASYMPTOTIC STABILITY

Page 16: Proportional Navigation - iaac.technion.ac.il

16/3

3

Results

• 𝛼1, 𝛼2 ~ System Parameters

• Sufficient Conditions to Asymptotic

Stability

𝑁 > 2

Hurwitz Autopilot

Page 17: Proportional Navigation - iaac.technion.ac.il

17/3

3

Examples – 1st order

• Autopilot 1

0.5 𝑠+1

• 𝝀 = −𝟐 → A Hurwitz

• Let 𝑁 = 4 > 2

Page 18: Proportional Navigation - iaac.technion.ac.il

18/3

3

1

0.5 𝑠 + 1

Page 19: Proportional Navigation - iaac.technion.ac.il

19/3

3

Example – 2nd order

• Autopilot 152

𝑠2+0.8⋅5⋅𝑠+152

• 𝝀𝟏,𝟐 = −𝟏𝟐 ± 𝟗 ⋅ 𝒊 → A Hurwitz

• Let 𝑁 = 4 > 2

Page 20: Proportional Navigation - iaac.technion.ac.il

20/3

3

152

𝑠2 + 0.8 ⋅ 5 ⋅ 𝑠 + 152

Page 21: Proportional Navigation - iaac.technion.ac.il

21/3

3

Example – 2nd order

• Autopilot 22

𝑠2−0.8⋅2⋅𝑠+22

• 𝝀𝟏,𝟐 = 𝟏. 𝟔 ± 𝟎. 𝟐 ⋅ 𝒊 → A not Hurwitz

• Let 𝑁 = 4 > 2

Page 22: Proportional Navigation - iaac.technion.ac.il

22/3

3

22

𝑠2 − 0.8 ⋅ 2 ⋅ 𝑠 + 22

Unstable

Page 23: Proportional Navigation - iaac.technion.ac.il

23/3

3

Example – 2nd order

• Autopilot 1

𝑠2+0.7⋅𝑠+1

• 𝝀𝟏,𝟐 = −𝟎. 𝟕 ± 𝟎. 𝟕 ⋅ 𝒊 → A Hurwitz

• Let 𝑁 = 4 > 2

Page 24: Proportional Navigation - iaac.technion.ac.il

24/3

3 stable?

1

𝑠2 + 0.7 ⋅ 𝑠 + 1

Page 25: Proportional Navigation - iaac.technion.ac.il

25/3

3

Example – 2nd order

• Autopilot 52

𝑠2+0.7⋅52⋅𝑠+52

• 𝝀𝟏,𝟐 = −𝟑. 𝟓 ± 𝟑. 𝟓 ⋅ 𝒊 → A Hurwitz

• Let 𝑁 = 4 > 2

Page 26: Proportional Navigation - iaac.technion.ac.il

26/3

3

• 𝜔𝑛 → 5𝑟

𝑠 ~ tf = 25sec

• 𝑥 𝑡; 𝑡𝑓22< 𝑥 𝑡; 𝑡𝑓1

2 - asymptotic stability

• Stability independence of time, performances not

Page 27: Proportional Navigation - iaac.technion.ac.il

27/3

3

Missile’s Parameters Adjustment

𝑣 𝑧 𝑡 ≤ 𝑣 𝑧0 ⋅𝜏2𝑡𝑓

𝛼1

⋅ 𝑒𝛼2⋅

1𝜏1−1𝑡𝑓

→ 𝜎 =𝛼2𝜏1

+ 𝛼1 ln𝜏2𝑡𝑓

Page 28: Proportional Navigation - iaac.technion.ac.il

28/3

3

Example – Delay Divergence

𝑡~4.8𝑠𝑒𝑐

Page 29: Proportional Navigation - iaac.technion.ac.il

29/3

3

Example – Delay Divergence

𝑳𝒆𝒕 𝝉𝒎 = 𝟎. 𝟒

𝜎 =𝛼2𝜏1

+ 𝛼1 ln𝜏2𝑡𝑓

Page 30: Proportional Navigation - iaac.technion.ac.il

30/3

3

Example – Delay Divergence

𝜏𝑚 = 0.5 𝜏𝑚 = 0.4

Page 31: Proportional Navigation - iaac.technion.ac.il

31/3

3

Example – Delay Divergence

Parameters’ design to improve miss distance!

Page 32: Proportional Navigation - iaac.technion.ac.il

32/3

3

Conclusions

• Sufficient conditions to stability

– N>2

– Hurwitz autopilot

• Stability + Interception performances!

• Parameters’ adjustment to delay divergence

Page 33: Proportional Navigation - iaac.technion.ac.il

33/3

3

Summary

• Investigation of PNG system

• Complicated tgo problem solution

• Conditions to asymptotic stability

• Complete tool for a designer