12
Copyright Plaxis bv 2016 1 Properties and a constitutive model for frozen and unfrozen soil Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve, Adrien Haxaire Content Introduction Characteristics of frozen soils Starting from particle size distribution… Soil-Freezing Characteristic Curve Hydraulic conductivity Validations Constitutive model for frozen / unfrozen soil Model parameters Applications Conclusions 2/24 Lezingenavond TUDelft, 22 November 2016

Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 1

Properties and a constitutive model for frozen and unfrozen soil

Ronald Brinkgreve, Delft University of Technology / Plaxis

Authors: Manuel Aukenthaler, Ronald Brinkgreve, Adrien Haxaire

Content• Introduction

• Characteristics of frozen soils

• Starting from particle size distribution…

• Soil-Freezing Characteristic Curve

• Hydraulic conductivity

• Validations

• Constitutive model for frozen / unfrozen soil

• Model parameters

• Applications

• Conclusions

2/24Lezingenavond TUDelft, 22 November 2016

Page 2: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 2

IntroductionFrozen/unfrozen soils:

• Cold regions

• Climate change

• Artificial ground freezing

3/24Lezingenavond TUDelft, 22 November 2016

IntroductionResearch on modelling of frozen/unfrozen soils i.c.w. NTNU

• Constitutive model (NTNU)

• Parameters and Validation

(Plaxis / TUDelft)

4/24Lezingenavond TUDelft, 22 November 2016

Page 3: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 3

Characteristics of frozen soilsTransition pore water > pore ice (and vice versa):

• Gradual process (in t and T)

• Transition zone: Frozen fringe

• Unfrozen water content θuw(T)(Soil Freezing Characteristic Curve, SFCC)

• Pressure melting θuw(p)• Change of hydraulic conductivity k(T,p)

• Change of stiffness and strength

• Expansion / compression

5/24Lezingenavond TUDelft, 22 November 2016

Characteristics of frozen soilsProblem:

• Temperature-related parameters are uncommon for geotechnical engineers

Solution:

• Derive them from common soil data

(Particle Size Distribution)

6/24Lezingenavond TUDelft, 22 November 2016

Page 4: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 4

Starting from particle size distribution…Selection of soil type > PSD > SSA

7/24Lezingenavond TUDelft, 22 November 2016

Soil-Freezing Characteristic CurveSSA > Unfrozen water content θuw: (after Anderson & Tice, 1972)

ρw = bulk density of water

ρb = bulk density of unfrozen soil

T = temperature

Tf = freezing temperature of water

8/24Lezingenavond TUDelft, 22 November 2016

Page 5: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 5

Soil-Freezing Characteristic CurvePressure-dependence of the freezing temperature:

(Clausius-Clapeyron equation)

Cryogenic suction sc:pice = pore ice pressure

pw = pore water pressure

ρice = bulk density of ice

L = latent heat

(1)

9/24Lezingenavond TUDelft, 22 November 2016

Soil-Freezing Characteristic CurveMelting pressure for ice pmelt: (after Wagner et al., 2011)

(T = Tf)

(vapour-liquid-solid triple point)

(2)

10/24Lezingenavond TUDelft, 22 November 2016

Page 6: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 6

Soil-Freezing Characteristic CurvePressure melting:

• For a given pw and T:

sc, pice and Tf can be calculated by solving eq. (1) and (2) iteratively

(pressure in MPa)

11/24Lezingenavond TUDelft, 22 November 2016

Soil-Freezing Characteristic CurveFinal result: SFCC for different soils at different pressures

Increasing pressure

Fine grained

Coarse grained

12/24Lezingenavond TUDelft, 22 November 2016

Page 7: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 7

Hydraulic conductivityPSD > ksat > k(θuw): (after Tarnawski & Wagner, 1996)

Permeability of partially frozen soil:mi = mass fractions of clay, silt, sand

di = particle size limits

θuw = unfrozen water content

θsat = saturated water content

13/24Lezingenavond TUDelft, 22 November 2016

Validations(soil mass fractions after Smith & Tice, 1983)

SFCC based on SSA

14/24Lezingenavond TUDelft, 22 November 2016

Page 8: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 8

ValidationsPressure-dependence: (after Zhang et al., 1998)

Lanzhou Loess:

mcl = 0.12

msi = 0.80

msa = 0.08

e0 = 0.7

15/24Lezingenavond TUDelft, 22 November 2016

ValidationsHydraulic conductivity: (after Burt & Williams, 1976)

16/24Lezingenavond TUDelft, 22 November 2016

Page 9: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 9

Constitutive model for frozen/unfrozen soil

Solid state (grains + ice) stress σ*:

Similarities with BBM

In unfrozen state: MCC

σ = net stress

Suw = unfrozen water saturation

pw = pore water pressure

εm = solid phase strain component

εs = cryogenic suction strain component

17/24Lezingenavond TUDelft, 22 November 2016

Constitutive model for frozen/unfrozen soil

Elastic strains:

Frozen soil properties:

νf = frozen Poisson’s ratio

Temperature-dependent (but stress-independent) Young’s modulus of frozen soil

ice saturation

sc = cryogenic suction

18/24Lezingenavond TUDelft, 22 November 2016

Page 10: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 10

Constitutive model for frozen/unfrozen soil

Plastic strains: Segragation

Loadin

g-c

ollapse

M

19/24Lezingenavond TUDelft, 22 November 2016

Model parameters

Elastic parameters

Strength

Primary loading

- isotropic stress

- freezing

20/24Lezingenavond TUDelft, 22 November 2016

Page 11: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 11

Model parametersParameter determination:

• From oedometer test (frozen/unfrozen):

(py0*)in, pc

*, β, κ0, λ0, r

• From simple shear test:

G0, M

• From axial compression test:

Ef,ref, Ef,inc, νf, kt

• From frost heave test:

(sc,seg)in, κs, λs

21/24Lezingenavond TUDelft, 22 November 2016

Applications – Frost heaveChilled pipeline

Temperaturedistributiona. 40 days b. Long time

Frost heaveafter long time

253 K

22/24Lezingenavond TUDelft, 22 November 2016

Page 12: Properties and a constitutive model for frozen and unfrozen soil · 2016-11-24 · Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve,

Copyright Plaxis bv 2016 12

Applications – Thaw settlementFooting on frozen soil

Ice saturationa. Initial b. After warming

Settlementa. Initial b. After warming

500 kPa

∆T = 2 K

23/24Lezingenavond TUDelft, 22 November 2016

Conclusions• Practical approach for θuw(T,p) and k(T,p) of frozen soils

• Validated against data from literature

• PSD seems to enable a good estimate of properties of frozen soils

• Constitutive model for frozen / unfrozen soil

• Typical phenomena of frozen soil

• Successful applications:

• Frost heave

• Thaw settlement

24/24Lezingenavond TUDelft, 22 November 2016