11
1 Prominent role of mesopore surface area and external acid sites for the synthesis of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite Supplementary information Christophe J. Baranowski a , Ali M. Bahmanpour a , Florent Héroguel a , Jeremy S. Luterbacher a , Oli- ver Kröcher * a, b [a] Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lau- sanne, Switzerland [b] Paul Scherrer Institut, Bioenergy and Catalysis Laboratory, 5232 Villigen PSI, Switzerland. * Corresponding author: [email protected]; Fax: +41 (0)56 310 21 99; Tel: +41 (0)56 310 20 66 1. Equilibrium constant calculation Figure S1. Van 't Hoff plot of the experimental values of K * OME. The model is indicated by a dashed line. The OME syn- thesis process was performed with an OME1/TRI ratio of 3.3 and 0.5 wt % of catalyst. Reaction was stopped after 90, 180 and 360 min respectively for the synthesis at 90, 80 and 70 °C. 2.75 2.80 2.85 2.90 -0.21 -0.20 -0.19 -0.18 -0.17 Ln(K * OME ) (/) 1000/T (K -1 ) y = 0.2404x - 0.8728 R 2 = 0.9995 Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

1

Prominent role of mesopore surface area and external acid sites for the synthesis

of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite

Supplementary information

Christophe J. Baranowski a, Ali M. Bahmanpour a, Florent Héroguel a, Jeremy S. Luterbacher a, Oli-

ver Kröcher *a, b

[a] Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lau-

sanne, Switzerland [b] Paul Scherrer Institut, Bioenergy and Catalysis Laboratory, 5232 Villigen PSI, Switzerland.

* Corresponding author: [email protected]; Fax: +41 (0)56 310 21 99; Tel: +41 (0)56 310 20 66

1. Equilibrium constant calculation

Figure S1. Van 't Hoff plot of the experimental values of K*OME. The model is indicated by a dashed line. The OME syn-thesis process was performed with an OME1/TRI ratio of 3.3 and 0.5 wt % of catalyst. Reaction was stopped after 90,

180 and 360 min respectively for the synthesis at 90, 80 and 70 °C.

2.75 2.80 2.85 2.90

-0.21

-0.20

-0.19

-0.18

-0.17

Ln(K* OME)

(/)

1000/T (K-1)

y = 0.2404x - 0.8728R2 = 0.9995

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.This journal is © The Royal Society of Chemistry 2018

Page 2: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

2

2. XRD pattern

Figure S2. XRD diffractogram of H-ZSM-5 zeolites.

3. 27Al NMR of mesoporous and untreated zeolites

Figure S3. 27Al NMR of untreated and mesoporous H-ZSM-5.

5 10 15 20 25 30 35 40 45 50

H-ZSM-5@S-1

H-ZSM-5-AT30

H-ZSM-5

Inte

nsity

(a.u

.)

2q (°)

H-ZSM-5@SiO2

-40-20020406080100

H-ZSM-5 H-ZSM-5-AT30 H-ZSM-5-AT30-AW

Inte

nsity

(a.u

.)

d(27Al) (ppm)

AlVIAlV

AlIV

Page 3: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

3

4. FTIR of the silanol region

Figure S4. DRIFT spectra in the silanol region of untreated and mesoporous H-ZSM-5.

5. ICP-OES Table S1. ICP results of untreated, mesoporous and passivated H-ZSM-5 zeolites.

Sample Si (wt %) Al (wt %) Si/Al (mol/mol)

H-ZSM5 39 3.3 11.3 H-ZSM-5-AT30 39.6 3.5 10.9

H-ZSM-5-AT30-AW 39.5 3.12 12.7 H-ZSM-5@SiO2 39.2 2.6 14.3 H-ZSM-5@S-1 40.3 3.3 11.7

6. Textural properties Table S2. Textural parameters of untreated, mesoporous and passivated H-ZSM-5 zeolites.

Sample SBET (m2.g-1)

Smicroa (m2.g-1)

Smesob (m2.g-1)

Sext (m2.g-1)

Vmicroa (cm3.g-1)

Vmesob (cm3.g-1)

H-ZSM-5 379 294 54 85 0.124 0.052 H-ZSM-5-AT30 388 280 80 108 0.116 0.110

H-ZSM-5-AT300.4M 389 273 94 116 0.118 0.168 H-ZSM-5-AT300.6M 329 177 131 152 0.076 0.512 H-ZSM-5-AT300.8M 376 173 179 203 0.075 0.545 H-ZSM-5-AT301.0M 43 25 14 17 0.011 0.032

H-ZSM-5-AT30-AW 414 287 99 127 0.122 0.127 H-ZSM-5-AT300.4M-AW 445 311 104 134 0.129 0.165 H-ZSM-5-AT300.5M-AW 468 320 111 147 0.136 0.208 H-ZSM-5-AT300.6M-AW 450 294 119 156 0.125 0.237

H-ZSM-5@SiO2 336 272 47 64 0.116 0.050 H-ZSM-5@S1 414 345 43 69 0.144 0.060

a microporous surface and volume are determined by the t-plot method, b Mesoporous volume and surface are deter-mined BJH method on the adsorption branch.

330034003500360037003800

H-ZSM-5-AT30

H-ZSM-5-AT30-AW

Si-OHintAl-OH Si-OH-Al

K-M

(a. u

.)

Wavenumber (cm-1)

Si-OHext

H-ZSM-5

Page 4: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

4

7. 29Si NMR of untreated and passivated zeolites

Figure S5. 29Si ssNMR of untreated and passivated H-ZSM-5. A smoothing of the signal (adjacent-averaging, 20 points)

is displayed for clarity.

8. NH3-TPD

Figure S6. Weak and strong acidity concentrations resulting from the deconvolution of desorption peaks in NH3-TPD

with the H-ZSM-5 zeolites.

Table S3. NH3-TPD of untreated, mesoporous and passivated H-ZSM-5 zeolites.

Sample Total acidity (mmol/g)

Weak (100-200 °C) (mmol/g)

Strong (200-500 °C) (mmol/g)

H-ZSM-5 0.98 0.48 0.50 H-ZSM-5-AT30 1.07 0.53 0.54

H-ZSM-5-AT30-AW 0.94 0.50 0.44 H-ZSM-5-AT300.4M-AW 0.95 0.56 0.39 H-ZSM-5-AT300.6M-AW 0.82 0.41 0.41

H-ZSM-5@SiO2 0.86 0.35 0.50 H-ZSM-5@S-1 0.86 0.51 0.35

-130-120-110-100-90-80

H-ZSM-5@S-1

H-ZSM-5@SiO2

Q3 Q4

Inte

nsity

(a.u

.)

d29Si (ppm)

Q4(1Al)

H-ZSM-5

0.48

0.53

0.5

0.56

0.41

0.35

0.51

0.5

0.54

0.44

0.39

0.41

0.5

0.35

H-ZSM-5

H-ZSM-5-AT30

H-ZSM-5-AT30-AW

H-ZSM-5-AT300.4M-AW

H-ZSM-5-AT300.6M-AW

H-ZSM-5@SiO2

H-ZSM-5@S-1

0.0 0.5 1.0Acidity (mmol/g)

Weak Strong

Page 5: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

5

9. DTBPy-TPD

Figure S7. DTBPy-TPD for untreated, mesoporous and passivated zeolites.

10. MF production for the untreated, mesoporous and passivated H-ZSM-5 zeolites

Figure S8. Production of methyl formate (MF) versus time in the batch reactor (OME1/TRI: 3.3; 0.5 wt % catalyst; 70

°C) obtained with untreated, mesoporous and passivated H-ZSM-5 zeolites.

0 20 40 60

H-ZSM-5@S-1

H-ZSM-5@SiO2

H-ZSM-5-AT30-AW

H-ZSM-5-AT30

Des

orbe

d D

TBPy

(a.u

.)

Time (min)

H-ZSM-5

0 50 100 150 200 250 3000.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

MF

(mol

/l)

Time (min)

H-ZSM-5 H-ZSM-5-AT30 H-ZSM-5-AT30-AW H-ZSM-5@SiO2

H-ZSM-5@S-1

Page 6: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

6

11. Performance of the alkaline-treated and acid-washed samples

Figure S9. Performance comparison of untreated, mesoporous and passivated H-ZSM-5 zeolites with (a) TRI conversion

and (b) S(OME3-5) (OME1/TRI: 3.3; 0.5 wt % catalyst; 70 °C).

Figure S10. Influence of pre-treatment of H-ZSM-5 on the catalytic performance during OME synthesis (OME1/TRI:

3.3; 0.5 wt % catalyst; 70 °C). (a) initial reaction rate, (b) maximum selectivity S(OME3-5, max) reached during the run and (c) growth probability after 250 min.

0 50 100 150 200 2500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 2000.0

0.1

0.2

0.3

0.4

0.5 H-ZSM-5 HZSM5-AT30-AW HZSM5-AT300.4M-AW HZSM5-AT300.5M-AW HZSM5-AT300.6M-AW

X TRI(/

)

Time (min)

S(O

ME 3

-5) (

/)

Time (min)

0.01

0.02

0.03

0.40

0.42

0.44

0.46

0.0 0.2 0.4 0.6

0.48

0.49

0.50

AWAT+AW

initi

al re

actio

n ra

te (m

ol.m

in.-1

g cat-1

)

AT

(a)

(b)

Untreated AT AT + AW

AWAT+AW

S OME3-5,max

(/)

AT

(c)

AWAT+AW

a250 (

/)

NaOH (mol/l)

AT

Page 7: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

7

12. Kinetic study results and model outputs Table S4. Results of the kinetic model for the kinetic study on the various catalysts.

Number Catalyst Temperature (°C) RMSE (/) kOME,f (L.mol-1.min-1) K1 H-ZSM-5 70 0.60 0.0304 K2 H-ZSM-5 80 0.65 0.110 K3 H-ZSM-5 90 0.64 0.292 K4 H-ZSM-5@S-1 70 0.57 0.00695 K5 H-ZSM-5@S-1 80 0.58 0.0148 K6 H-ZSM-5@S-1 90 0.62 0.0318 K7 H-ZSM-5-AT300.4M-AW 70 0.65 0.0659 K8 H-ZSM-5-AT300.4M-AW 80 0.61 0.142 K9 H-ZSM-5-AT300.4M-AW 90 0.51 0.424

Figure S11. Concentration of the various components versus time for experiment K1 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5; 70 °C). The model output is given by the solid lines.

0 50 100 150 200 250Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8

Page 8: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

8

Figure S12. Concentration of the various components versus time for experiment K2 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5; 80 °C). The model output is given by the solid lines.

Figure S13. Concentration of the various components versus time for experiment K3 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5; 90 °C). The model output is given by the solid lines.

0 20 40 60 80 100 120Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8

0 10 20 30 40 50 60 70Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8

Page 9: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

9

Figure S14. Concentration of the various components versus time for experiment K4 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5-AT300.4M-AW; 70 °C). The model output is given by the solid lines.

Figure S15. Concentration of the various components versus time for experiment K5 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5-AT300.4M-AW; 80 °C). The model output is given by the solid lines.

0 50 100 150 200 250Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8

0 20 40 60 80 100 120Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8

Page 10: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

10

Figure S16. Concentration of the various components versus time for experiment K6 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5-AT300.4M-AW; 90 °C). The model output is given by the solid lines.

Figure S17. Concentration of the various components versus time for experiment K7 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5@S-1; 70 °C). The model output is given by the solid lines.

0 10 20 30 40 50 60 70Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8

0 50 100 150 200 250 300Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8

Page 11: Prominent role of mesopore surface area and …OME1 TRI OME2 OME3 OME4 OME5 OME6 OME7 OME8 0 50 100 150 200 250 300 0 Time(min) 2 4 6 8 Concentration(mol/l) OME1 TRI OME2 OME3 OME4

11

Figure S18. Concentration of the various components versus time for experiment K8 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5@S-1; 80 °C). The model output is given by the solid lines.

Figure S19. Concentration of the various components versus time for experiment K9 (OME1/TRI: 3.3; 0.5 wt % H-

ZSM-5@S-1; 90 °C). The model output is given by the solid lines.

0 50 100 150Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8

0 20 40 60 80Time (min)0

2

4

6

8

Concentration (mol/l)

OME1

TRI

OME2

OME3

OME4

OME5

OME6

OME7

OME8