16
www.insightcore.com Journal of Buildings and Sustainability 39 2018 Vol. 1 No. 1 Projection of Temperature and Precipitation Related Climatic Design Data Using CMIP5 Multi-Model Ensemble: A case study for Ontario, Canada under RCP 6.0 Ziwang Deng a , Jinliang Liu b , Xin Qiu c ,Xiaolan Zhou a , Hamed Babazadeh a , Huaiping Zhu 1a a Lamps, Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada b Department of Earth and Space Science and Engineering, York University, Toronto, ON M3J 1P3, Canada c NOVUS Environmental, Guelph, ON N1G 4T2, Canada ABSTRACT The urban environment and its infrastructure are vulnerable to climate change and the impacts of climate change are mostly local and, thus, adaptation should be highly location specific. Sub-daily climate projections of temperature and precipitation are necessary to estimate the impacts. However, the highest temporal resolution of climate change projection data is at daily time scale. In this study, a novel method that combines the K-means clustering and the logistical regression is developed to generate hourly temperature, and a method that combines a stochastic weather generator and conditional cumulative distribution function is proposed to disaggregate precipitation. Using these methods, a 12-member ensemble of hourly temperature and rainfall is produced at 228 locations in Ontario for the period from 1981-2100. Based on the daily (the bias correction constructed analogs RCP6.0 data of CMIP5 GCMs) and the sub-daily data, eight temperature and precipitation related extreme climate indices are projected for the 2050s and 2080s. The results show that the three design temperature indices (Degree Days Below 18°C, 2.5% and 1% January temperatures) will increase significantly in the 2050s and 2080s relative to the 1990s; annual total precipitation and annual rainfall will also increase significantly in the 2050s and 2080s relative to the 1990s; though relative to 2050s, total rainfall could decrease in the 2080s at some locations. 50-year return period value of one-day maximum precipitation and 10-year return period value of maximum 15-minute rainfall will increase at most locations with large uncertainty at some locations. These projected changes in climatic design data may have substantial implications for the design and operation of infrastructures in Ontario, Canada. Keywords: downscaling, temporal disaggregation, temperature, precipitation, climatic design data, extreme climate indices 1. Introduction The IPCC's Fifth Assessment Report (AR5) estimates that global mean surface temperature is likely to be in the range of 2.6 to 4.8°C for 20812100 relative to 19862005 based on the worst scenario RCP8.5 (Field et al., 2014). In this scenario, annual minimum of minimum temperature (TNn), maximum of maximum temperature (TXx) and the maximum 5-day precipitation (RX5day) are projected to increase by 6.7°C, 5.4°C and 20%, respectively, over global land by the end of the 21st century (Sillmann, Kharin, Zwiers, Zhang, & Bronaugh, 2013). The urban environment and its infrastructure will be significantly impacted by climate change and are identified as one of the specific sectors needing “priority planning” for adaptation (Auld et al., 2008). As a northern region, the province of Ontario in Ca nada could experience more significant changes in both mean and extreme climatic conditions than the global average. Recently, some projections have been generated for several variables to indicate the change in mean climate and moderate extreme climatic conditions (Deng et al., 2016). These projections have provided useful information to the public. 1 [email protected]. This research was funded by Ontario Ministry of the Environment and Climate Change, Canada.

Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

www.insightcore.com

Journal of Buildings and Sustainability

39

2018 Vol. 1 No. 1

Projection of Temperature and Precipitation Related Climatic

Design Data Using CMIP5 Multi-Model Ensemble: A case study

for Ontario, Canada under RCP 6.0

Ziwang Denga, Jinliang Liub, Xin Qiuc,Xiaolan Zhoua, Hamed Babazadeha, Huaiping Zhu1a

a Lamps, Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada

b Department of Earth and Space Science and Engineering, York University, Toronto, ON M3J 1P3, Canada

c NOVUS Environmental, Guelph, ON N1G 4T2, Canada

A B S T R A C T

The urban environment and its infrastructure are vulnerable to climate change and the impacts of climate change are mostly

local and, thus, adaptation should be highly location specific. Sub-daily climate projections of temperature and precipitation are

necessary to estimate the impacts. However, the highest temporal resolution of climate change projection data is at daily time scale.

In this study, a novel method that combines the K-means clustering and the logistical regression is developed to generate hourly

temperature, and a method that combines a stochastic weather generator and conditional cumulative distribution function is

proposed to disaggregate precipitation. Using these methods, a 12-member ensemble of hourly temperature and rainfall is produced

at 228 locations in Ontario for the period from 1981-2100. Based on the daily (the bias correction constructed analogs RCP6.0 data

of CMIP5 GCMs) and the sub-daily data, eight temperature and precipitation related extreme climate indices are projected for the

2050s and 2080s. The results show that the three design temperature indices (Degree Days Below 18°C, 2.5% and 1% January

temperatures) will increase significantly in the 2050s and 2080s relative to the 1990s; annual total precipitation and annual rainfall

will also increase significantly in the 2050s and 2080s relative to the 1990s; though relative to 2050s, total rainfall could decrease

in the 2080s at some locations. 50-year return period value of one-day maximum precipitation and 10-year return period value of

maximum 15-minute rainfall will increase at most locations with large uncertainty at some locations. These projected changes in

climatic design data may have substantial implications for the design and operation of infrastructures in Ontario, Canada.

Keywords: downscaling, temporal disaggregation, temperature, precipitation, climatic design data, extreme climate indices

1. Introduction

The IPCC's Fifth Assessment Report (AR5) estimates that global mean surface temperature is likely to be in the

range of 2.6 to 4.8°C for 2081–2100 relative to 1986–2005 based on the worst scenario RCP8.5 (Field et al., 2014).

In this scenario, annual minimum of minimum temperature (TNn), maximum of maximum temperature (TXx) and the

maximum 5-day precipitation (RX5day) are projected to increase by 6.7°C, 5.4°C and 20%, respectively, over global

land by the end of the 21st century (Sillmann, Kharin, Zwiers, Zhang, & Bronaugh, 2013). The urban environment

and its infrastructure will be significantly impacted by climate change and are identified as one of the specific sectors

needing “priority planning” for adaptation (Auld et al., 2008). As a northern region, the province of Ontario in Canada

could experience more significant changes in both mean and extreme climatic conditions than the global average.

Recently, some projections have been generated for several variables to indicate the change in mean climate and

moderate extreme climatic conditions (Deng et al., 2016). These projections have provided useful information to the

public.

1 [email protected]. This research was funded by Ontario Ministry of the Environment and Climate Change, Canada.

Page 2: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

40

There is a need for more comprehensive research on potential impacts of climate change on infrastructure design.

Typically, climatic design data are developed using historical climate data, assuming that the past climate conditions

will still be representative over the future lifespan of the structure (Auld et al., 2008). While this assumption has

worked in the past, it will become less valid as the climate changes. The recently updated climatic design values for

228 locations in Ontario (MMAH, 2015) were generated using observations from stations for a 25-year period up to

2006. These design values might be already altered in the past decade as well as the near future given the projected

climate changes. However, very few studies have examined the potential effects of climate change on these design

values. Several challenges need to be addressed in such a study. Unlike the above-mentioned IPCC AR5 average

variables and indices defined with daily data, some design values demand hourly or sub-hourly data. However, global

climate models (GCMs) don’t provide hourly data. Projection of the design values needs not only to spatially

downscale daily GCM data to local points, but also to temporally downscale daily data to hourly or even minute

resolution. This combined temporal-spatial downscaling is extremely challenging. Furthermore, the climatic design

values are usually thresholds of longer return period precipitation events (for example 5-year, 10-year or 50-year

extreme events) or 1 and 2.5 percentiles of monthly temperatures. Some recent studies have provided a framework to

deal with these issues. For example, the general extreme value theory (GEV, Castillo, 2012; De Haan & Ferreira,

2007; Hong & Ye, 2014) provided a framework for the threshold issue and some recently proposed temporal

downscaling methodologies have been used to generate hourly rainfall, wind speed, and temperature (Ephrath,

Goudriaan, & Marani, 1996; Hosmer, Lemeshow, & Sturdivant, 2013;Vrac et al., 2012; Maraun, 2013; Shrestha et

al., 2015).

To address the need of the built environment and infrastructure sector in Ontario to adapt to the changing climate,

this study explores a method to produce probabilistic projections for the 2050s and 2080s of the eight climatic design

values associated with temperature and rainfall data. The projected eight climatic design values will be estimated at

the 228 sites (see figure 1) listed in table 1 of the MMAH Supplementary Standard SB-1 Climatic and Seismic Data.

They can provide valuable guidance to fill in the knowledge gaps in the climatic design data development to leverage

the safety and confidence with respect to the uncertainty factors considered in the design of the current and future

infrastructure. To achieve this goal, different temporal downscaling models are developed to generate hourly data

from a spatially downscaled CMIP5 RCP6.0 GCM ensemble.

The paper continues in section 2 with brief descriptions of the downscaled daily data, reanalysis data, observations

and the recently updated Ontario climatic design data which will be used in this study. In section 3, several methods

of temporal downscaling and extreme value analysis are provided, followed by the results in section 4. The paper ends

with the summary and conclusions in section 5.

2. Data

2.1 Model data

In this study, a 12-member ensemble of CMIP5 GCMs (IPCC, Field et al., 2014) under RCP6.0 (Moss et al., 2010)

are used. The RCP 6.0 is chosen because it represents an intermediate emissions scenario, which is consistent with the

application of a range of technologies and strategies for reducing greenhouse gas emissions. The downscaled data

include daily precipitation (Pr), minimum temperature (Tn) and maximum temperature (Tx) from 1981 to 2100 at a

spatial resolution of 0.125 degrees (ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/cmip5/bcca/). It was generated using the

Bias Correction and Constructed Analogs (BCCA) method. This procedure was introduced in Hidalgo, Dettinger, &

Cayan (2008) and Maurer & Hidalgo (2008; 2014). The procedure of BCCA involves two-steps: Bias-Correction

using a quantile mapping and Constructed Analogs. Both steps are based on daily GCM and observed values. Different

than the BCSD approach that corrects the bias at each grid cell independently, the BCCA method is based on the linear

regression of a collection of historically observed weather patterns that closely resemble the GCM weather pattern for

each specific day, and therefore, is more dynamics-based (Hidalgo et al., 2008; Maurer & Hidalgo, 2014; Brekke,

Thrasher, Maurer, & Pruitt, 2013). Therefore, this data is suitable to assess projected changes in variability of daily to

multi-day precipitation events which could be relevant to flood control or other systems that are sensitive to daily

Page 3: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

41

precipitation variability. It also suits the assessment of projected changes in diurnal temperature range and multiday

temperature extremes (Brekke et al., 2013; Gyawali, Garbrecht, & Zhang, 2016).

Figure 1. Locations of various stations. The 228 sites are the target sites for climatic design data projection. The 133 IDF stations are the

locations where historical IDF data available in Ontario. The 12 USA stations closest to Ontario have at least 10-year of historical hourly

precipitation. Of the 133 stations in Ontario, 27 stations provide at least 25-year hourly temperature.

2.2 Station data

The raw data used in this study include the historical observations of daily and hourly temperature data at 27

stations, climate normal, and climate extremes (Environment Canada, 2012) at 151 stations as well as the engineering

climate data (ftp://ftp.tor.ec.gc.ca/Pub/Engineering_Climate_Dataset/IDF/) at 133 stations. The IDF (Intensity-

Duration-Frequency) data includes annual maximum for 15-minute to 24-hour and the return values. Hourly rainfall

during May to November at these 133 IDF stations are provided by Environment and Climate Change Canada (ECCC).

The observation periods at most of the 133 stations are short (less than 10 years). To increase the sample size of

storms, hourly rainfall data at 12 stations in USA closest to Ontario (see figure 1), which have at least 10-year of

complete data, are also used for developing the temporal disaggregation model to downscale daily rainfall to hourly

rainfall on the storm days. Figure 1 shows the locations of these stations. It is observed that the 27 stations are among

the 133 IDF stations and the 228 climatic design data sites.

2.3 Reanalysis datasets

Reanalysis data is the best alternative to observed data sets (Dee at al., 2011). There are several high resolution

reanalysis datasets available. These include gridded fields dataset (CRU TS3.10, Harris, Jones, Osborn, & Lister,

2014), ECMWF ERA-interim reanalysis climate data (Dee et al., 2015), NCEP North America Regional Reanalysis

Page 4: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

42

(NARR, Mesinger et al., 2004), and the NCEP climate forecast system reanalysis (CFSR, Saha et al., 2010, 2014).

Compared with the station observation data in Ontario, it is found that the CFSR data is suitable for the sub-daily data

analysis. Therefore, the CFSR data is used in this study (Deng, Liu and Qiu et al., 2018). The CFSR system assimilates

many hydrological quantities from a parallel land surface model forced by NOAA’s Climate Prediction Center (CPC)

pentad merged analysis of precipitation and the CPC unified daily gauge analysis (Saha et al., 2014). The daily CFSR

data has been widely used for verification of deterministic forecasts and validation of downscaling methods (Stefanova

et al., 2011; Deng et al., 2016).

2.4 Current climatic design data

Recently updated climatic design data at 228 sites in Ontario is used as the reference data for model development

and validation (MMAH, 2015). In this study, the following eight values are examined: Degree Days Below 18°C (also

known as heating degree days, HDD), Annual Total Rainfall (RTot), Annual Total Precipitation(PrTot), 50-year return

period values of One-day rainfall (RX1D), 2.5% (2.5%JanT) and 1% (1%JanT) January temperatures, 2.5% July

temperature (2.5%JulT) and 10-year return period values of 15 min rainfall (R15min). These values are calculated

based on historical observations before 2007 (MMAH, 2015).

3. Methodology

3.1 Temporal disaggregation

Sub-daily (hourly and sub-hourly) data are required for projections of several design values, such as 2.5%JanT,

1%JanT, 2.5%JulT and R15min. In the following sub-sections, we will describe the techniques for the temporal

disaggregation of temperature and rainfall.

3.1.1 Hourly temperature in January and July

A general location-independent algorithm for synthesis of correlated solar radiation and ambient temperature,

which requires a few commonly well-known input parameters, has not been developed yet (Heinemann, Langer, &

Schumacher, 1996). The diurnal air temperature curve was often described by the sine-exponential model or by a

modification of this method (Ephrath et al., 1996) with minimum air temperature (Tn(j)), maximum air temperature

(Tx(j)), the minimum air temperature of the next day (Tx(j+1)), and day length (DL). While this method is easy to

implement, one of its obvious disadvantages is that it always generates similar daily cycles for all days at different

stations. In this study, we developed a new method that combined the k-means clustering (Hartigan & Wong, 1979;

Jiang, Qian, & Leung, 2016) and Logistic regression (Hosmer et al., 2013; Shrestha et al., 2015) to generate hourly

temperature for January and July. The k-means clustering is applied to historical hourly temperature to obtain typical

temporal varying patterns at each station for different months; and the Logistic regression model is used to predict the

most possible pattern for a specific day at the corresponding station. Following is a detailed description of this

procedure:

(1) Before performing the k-means clustering, the historical hourly temperatures at the selected 27 stations in

Ontario are normalized with

𝑻𝒉 =𝑻𝒐−𝑻𝒏

𝑻𝒙−𝑻𝒏 (1)

where 𝑇𝑜is hourly observation in January or July and has a length of 24 hours for a day. Tx and Tn are the

corresponding daily maximum and minimum temperatures, respectively. Thus, the normalized values are always

between 0 and 1.

(2) For each of the 27 stations, there is an optimal number of clusters (K) which is determined by means of the

following algorithm based on the Calinski-Harabasz criterion (Maulik & Bandyopadhyay, 2002; Jain, 2010):

Let 𝑻 = {𝑇𝑖}, 𝑖 = 1, … , 𝑛(= 24 ℎ𝑜𝑢𝑟𝑠) be 24-dimensional arrays (i.e., days) to be clustered into a set of K

clusters, 𝐶 = {𝐶𝑘 , 𝑘 = 1, … , 𝐾}. Then the goal is to minimize the sum of the squared error over all K clusters:

𝑱(𝑪) = ∑ ∑ ‖𝑻𝒊 − 𝝁𝒌‖𝟐𝑻𝒊∈𝑪𝒌

𝑲𝒌=𝟏 (2)

where 𝜇𝑘 is the mean of cluster 𝑐𝑘.

Page 5: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

43

After conducting the clustering analysis, each day only belongs to one of the K clusters. A typical 24-hour

temperature variation pattern for each of the K clusters could be obtained based on the corresponding sub-set of the

data using the composite analysis method (Wilks, D.S, 1995; Welhouse, Lazzara, Keller, Tripoli, & Hitchman, 2016).

For simplicity, we let K=2 for all the stations, let Y denotes a binary variable, which can take values of Y =0

corresponding to a cluster (cluster 1), or Y= 1 corresponding to another cluster (cluster 2). Figure 2 show two typical

temporal variation patterns, cluster 1 (red), cluster 2 (blue) and the mean daily cycle (black) of the normalized hourly

temperature (Left) in January at Pearson International Airport station. Using the same procedure, two typical patterns

for each of the other 201 sites for January and July could be generated based on the hourly and daily temperatures

interpolated from CFSR with the inverse distance weighting (Bartier & Keller, 1996). Afterwards, a binomial logistic

regression model is constructed to forecast the cluster type of each day (Hosmer et al., 2013). The candidate

predictors 𝑥 include the five variables as follows: maximum and minimum temperatures of the day, maximum

temperature of previous day, minimum temperature for the next day, and the cluster category of previous day:

𝑙𝑜𝑔𝑖𝑡{𝑝𝑟𝑜𝑏(𝑌|𝑥; 𝛽)} = log {𝑃𝑟𝑜𝑏(𝑌 = 1|𝑥; 𝛽)

𝑃𝑟𝑜𝑏(𝑌 = 0|𝑥; 𝛽)} = 𝛽0 + 𝑥𝑇𝛽1 (3)

where β (𝛽0,𝛽1) is a vector denotes the estimator of the six coefficients of the model.

(3) Generate hourly temperature data by rescaling the pattern thus its minimum (maximum) value equals the daily

minimum (maximum) temperature.

(4) Figure 2. The two typical temporal variation patterns, cluster 1 (red), cluster 2 (blue) and the mean daily cycle (black) of the normalized

hourly temperature (Left) in January and the scatterplot of Euclidean distances of days to cluster 1 (Dist1) and cluster 2 (Dist2) at Pearson

International Airport station. There are 60.7% cluster-1 days and 39.3% cluster-2 days in the 30 years reference period (1981-2010).

3.1.2 Hourly rainfall during May-November

Sub-daily rainfall data is necessary for calculating the design values of 10-year return values of R15min. Because

storms rarely happen in the cold seasons in Ontario, only daily rainfall amounts during May-November are temporally

disaggregated to hourly data. A threshold of 10mm/day is used for identifying the storm days. When a daily rainfall

Page 6: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

44

is equal to or greater than 10mm, it is considered as a storm day and the daily rainfall is disaggregated to hourly

rainfall. The modelling of rainfall amount is a complicated task because it combines a Bernoulli random variable

corresponding to dry or wet events with a positive random variable corresponding to the rainfall intensity, therefore

leading to a strong departure from the classical Gaussian framework (Ailliot, Allard, Monbet, & Naveau, 2015). The

statistical rainfall disaggregation models can be classified broadly into the following four groups: two-part models,

transition probability matrix models, re-sampling models, and time series models of the autoregressive moving

average type (Srikanthan & McMahon, 2001). Because we are only interested in the maximum values of hourly

precipitation, we do not consider the temporal auto-correlation of precipitation amount. Therefore, the two-part model

method is used. This method is chosen because it is easy to implement and also meets the requirement of this study.

The two-part model is a stochastic weather generator that aims at quickly simulating realistic random sequences of

atmospheric variables (Wilks & Wilby, 1999; Ailliot et al., 2015; Kim, Rajagopalan, & Lee, 2016). This approach

consists of two parts/models: a model for the occurrence of wet and dry hours and a model for the generation of rainfall

amount at wet hours. To consider the seasonal variation in rainfall, a model is constructed for each of the months

during the warm season. Following is a brief description of the procedure:

The model to identify wet and dry hours is constructed in the following steps:

(1) After a threshold (𝑅0) and the hourly rainfall (R) are given, the state of each hour is specified as “wet” (𝑅 ≥

𝑅0) or “dry” (𝑅 < 𝑅0);

(2) The fractions of wet hours in a day can be estimated (𝑃1);

(3) A relationship between the state of the current hour and the state of the preceding hours can be developed.

Here, we denote 𝑃01(or 𝑃11) as the probability of a wet hour conditioned on a preceding dry (or wet) hour,

and 𝑃00(or 𝑃10) as the probability of a dry hour conditioned on a preceding dry (or wet) hour, respectively.

Based on the historical CFSR data, these frequencies can be easily estimated. In this study, we set 𝑅0 =

0.1𝑚𝑚/ℎ𝑜𝑢𝑟. For example, the result for the hourly August precipitation in the storm days at Pearson

International Airport for the historical period (1981-2010) is as follows: 𝑃1 = 0.6684, 𝑃00 = 0.8663, 𝑃01 =

0.1377, 𝑃10 = 0.0651, 𝑃11 = 0.9349.

Similar to the daily precipitation simulation procedure (Wilks & Wilby, 1999), a uniform random number u within

the range of [0, 1] is generated for each simulated hour; whether the next hour in the sequence is wet or dry, it is

determined by comparing the value of u and the conditional probabilities. If the previous hour (t-1) was dry, then hour

t is simulated to be wet when u≤𝑃01, otherwise it remains dry. If the previous hour was wet, then the current hour is

simulated to be wet when u≤𝑃11, and is dry otherwise. For the first hour, if u≤𝑃1, it is simulated to be wet, and is dry

otherwise.

The models used to generate daily rainfall amounts include the two-parameter Gamma distribution (Woolhiser &

Roldan, 1982, Liu et al., 2011), combined with Exponential distribution (Woolhiser & Roldan, 1986), a skewed

Normal distribution and a truncated power of Normal distribution (Hutchinson, Richardson, & Dykes, 1993). We

examined more than twenty theoretical distributions to identify the best distribution, which can best simulate hourly

rainfall in Ontario. The result shows that the Birnbaunsaunders and exponential probability density functions are the

top two candidates. However, when using them to generate hourly rainfall, it is found that they couldn’t produce

suitable maximum values. Therefore, we used hourly rainfall at 133 IDF station in Ontario combined with hourly

rainfall data of the 12 stations in USA, which are closest to Ontario, to construct the conditional cumulative distribution

functions (CDFs). Using these CDFs, downscaled daily rainfall data and the quantile mapping method, wet hour

rainfall in the future period could be generated. Since maximum hourly precipitations are generally greater than 10mm,

we only focus on the days when daily rainfall amounts are greater than 10mm/day. Ideally, it is preferred to generate

a cumulative distribution function (CDF) at each continuous value of daily rainfall for each station. However, this is

impractical because we have no sufficient hourly data of storm days to construct robust conditional CDFs. At first, we

categorized storm days (R>10mm/day) into nine categories according to the daily rainfall amounts. For each category,

a conditional CDF is constructed (Figure 3). For example, the conditional CDF (F(x)/20mm<=Pr<25) is generated

based on the rainfalls during wet hours on the days when daily rainfalls are between 20mm and 25mm (Figure 3c).

Page 7: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

45

Figure 3. Conditional empirical cumulative distribution functions of wet hour precipitation for the nine different daily rainfall intervals. The results

are based on 19,716 (day-stations) hourly precipitation (162,204) before 2010 at 133 IDF stations within Ontario and 2,277 (day-stations) hourly

rainfall (99,998) at 11 stations in USA neighboring to Ontario for the period 1981-2010. For comparison, the empirical CDF based on all

precipitation data of wet hours (hourly Pr >0.1mm) on storm days (Pr>=10mm) is also plotted as a blue curve.

3.2 Extreme values analysis

There are several theoretical extreme value distribution functions (De Haan & Ferreira, 2007). The Gumbel

distribution is used by Environment and Climate Change Canada (ECCC) to calculate the return period values listed

in the MMAH Supplementary Standard SB-1 Climatic Data, including 10-year return period values of 15 min rainfall

and 50-year return period value of one-day maximum precipitation. To be consistent with the industry standard in

estimating these values, we used the Gumbel distribution to fit the projected data. The Gumbel distribution is (Castillo,

2012; Hong & Ye, 2014),

𝐹(𝑥) = 𝑒(−𝑒(−

𝑥−𝑢𝑎 )

) (4)

where F(x) denotes the CDF, 𝑥 denotes the value of variable 𝑋 and 𝑎 and 𝑢 are the scale and location parameters,

respectively. The mean of 𝑋 is

µ = 𝑢 + 0.5772𝑎 (5)

and the standard deviation of 𝑋 is

σ = aπ√6 (6)

Page 8: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

46

The return period value, 𝑋𝑇, is given by

𝑋𝑇 = 𝑢 − 𝑎𝑙𝑛 (− ln (1 −1

𝑇)) = 𝜇 +

√6

𝜋{0.5772 + ln (ln (

𝑇

𝑇−1))}𝜎 (7)

Return period values can be directly estimated using this method except for 10-year return period values of 15 min

rainfall, which are estimated using an indirect method. To verify this algorithm, it was applied to ECCC extreme

rainfall data, and obtained the identical return period values as in the ECCC intensity, duration and frequency (IDF-

EC) curves. The IDF curves can be constructed based on hourly data. Thus, the sub-hourly (e.g. 15-minute) extremes

can be extrapolated using the IDF function. The IDF model proposed by Bernard (1932) is

𝐼 = 𝑘𝑇𝛼

𝐷𝛽 (8)

where I is intensity (in mm/hour or mm/minute), 𝑘, 𝛼, and 𝛽 are regression coefficients. D is duration (hours or

minutes) and T is return period (years). The regression method will also be used for validation. The regression method

uses the following equation to fit data

𝐼𝐷𝑇

𝐼1𝑇 =

𝑎1

(𝑡+𝑏1)𝐶1 (9)

where a1, b1 and c1 are the parameters estimated by the available return period values such as 10-year return period

values of 1-h, 2-h, 6-h, 12-h and 24-h maximum rainfall.

3.3 Projection

Based on the GCM projections from the 12-member ensemble and the methods mentioned above, the projections

of these design values (defined in MMAH, 2015) for three 30-year period (1981-2010, 2041-2070 and 2071-2100)

are developed. Following we will elaborate the procedure for each of the eight design values.

3.3.1 2.5% and 1% temperatures

The 1% and 2.5% January temperatures are the values used in the design of heating systems and the 2.5% percentile

of July temperature is used in the design of cooling systems (MMAH, 2015). These temperature indicators are based

on hourly temperatures generated by the methods described in 3.1. At each of the 228 locations, there are 22,320

hourly data (24-hours × 31-days × 30-years). The 2.5% and 1% of January temperatures are estimated using the 2.5th

and 1st percentiles of the corresponding hourly temperatures. Similarly, the 2.5% July temperature is estimated using

the 97.5th percentiles of the hourly temperatures.

3.3.2 Heating degree days(HDD)

HDD could be deemed as an indicator of building energy use in heating seasons. The calculation of HDD is

straightforward. First, the downscaled high-resolution daily Tx and Tn (0.125° X 0.125°) are linearly interpolated on

the 228 locations; Second, HDD is calculated with the approach provided in the handbook of the American Society

of Heating, Refrigerating, and Air-conditioning Engineers (Handbook, 2009):

𝐻𝐷𝐷 = ∑ (𝑇18 − 𝑇𝑖)+ 𝑁𝑖=1 (10)

where N is the number of days in the year, 𝑇18 = 18°C, is the reference temperature to which the degree-days are

calculated, and 𝑇𝑖 = (𝑇𝑛 + 𝑇𝑥)/2, is the mean daily temperature for the day. The superscript + indicates that only

positive values of the bracketed quantity are taken into account in the HDD. Third, 30-year means of these values are

calculated for each of the 12 models.

3.3.3 Annual Total Precipitation and Rainfall

Annual total precipitation and total rainfall of a year are calculated by adding all daily precipitations and rainfall in

the year, respectively. Then, the annual values are spatially linearly interpolated on the 228 locations. Next, 30-year

Page 9: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

47

means of these values are calculated for each of the 12 ensemble members. Finally, the ensemble of PrTot and RTot

are estimated.

3.3.4 Return Period Values

We calculated the return period values of RX1D and R15min and used the median of the ensemble as the results.

4. Results

4.1 January and July temperature change projection

Minimum temperature in January, maximum temperature in July, annual heating degree days (HDD) and cooling

degree days (CDD) affect the design of heating system of buildings. Before analyzing these variables in details, we

investigated their long term trend. The result shows that annual, January minimum and July maximum temperature

steadily increased since 1980. As winter temperature continue increased, heating degree days significantly decreased

since 1980 (not shown). Under RCP 6.0, temperatures and total precipitation are projected to significantly increase

in Ontario (Zhu et al., 2017).

4.2 Indicators derived from daily data

As mentioned in section 3, Degree-days below 18°C (HDD), annual total precipitation (PrTot) and annual total

rainfall (RTot) are directly estimated from the downscaled daily data. HDD is used as an indicator to measure the rate

of consumption of fuel or energy to provide and maintain the thermal comfort for occupants of built environments. A

difference of 1°C in the mean annual temperature will accumulate a difference of 250 to 350 °C day in HDD. PrTot

is frequently used as a general indication of the wetness of a climate (MMAH, 2015). The three indicators (HDD,

PrTot and RTot) are estimated in this study by comparing them with those in the updated climatic design data (MMAH,

2015). The result shows that the absolute error in HDD is less than 100°C (2.5% of averaged HDD) at most locations;

errors in PrTot are less than 50mm (5-8%), and errors in RTot are less than 100mm (10-15%). These errors are within

the reasonable ranges relative to the statistical properties (e.g. standard deviation, distribution, etc.) of these indicators.

A further bias correction is conducted to the projections of future by subtracting the biases from the projected values

in the individual models.

After the bias correction, the values in the base period (1990s) are the same as those in the recently updated codes

(MMAH 2015). The values in the 2050s and 2080s are the projected data. Figure 4 shows the ensemble mean of HDD,

PrTot and RTot for the three periods. It is observed that HDD may significantly decrease in the 2050s and 2080s

relative to the values in the 1990s across all the 228 locations; PrTot and RTot may significantly increase in the 2050s

and 2080s; relative to the 2050s, RTot may decrease in the 2080s at some locations.

Page 10: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

48

Figure 4. Degree Days Below 18°C (left, unit: °C), Annual Total Precipitation (middle, unit: mm) and Annual Total Rainfall (right, unit: mm) for

1981-2010 (1990s, top panel), 2041-2070 (2050s, middle panel) and 2071-2100 (2080s, bottom panel). The results are the ensemble mean of the

12 models under the RCP6.0 scenario.

Averaging over the 228 locations, HDD may decrease by 13.5% and 20.8% in the 2050s and 2080s, respectively;

the decreasing amplitude varies across the province with a range of 450-800°Cday in the 2050s and 700-1300°C day

in the 2080s. HDD could decrease more significantly in the northern regions.

PrTot may increase by 5.1% and 8.2%, and RTot may increase by 10.4% and 16.8% in the 2050s and 2080s,

respectively. PrTot may increase more dramatically in the north than in the southern regions with a range of 30-60mm

in the 2050s and 60-100mm in the 2080s. RTot may increase 50-100mm in the 2050s and 100-140mm in the 2080s,

with larger increase in the southern Ontario.

4.3 Indicators derived from hourly temperature

The 1% and 2.5% January temperatures are the values used in the design of heating systems and the 2.5% percentile

of July temperature is used in the design of cooling systems (MMAH, 2015). These three indicators are derived from

the hourly temperatures which are generated using the equations (1--3). As an example, figure 2 shows two typical

patterns of hourly temperature variation at the Pearson Airport weather station in January. It is observed that the

average daily cycle of temperature (black) follows approximately a sine function. There are 61% of days, which are

categorized as cluster-1, have a pattern similar to a sine function (red). The rest of the days are categorized as cluster-

2 and follow a pattern (blue) significantly different from the sine function. Similarly, the two patterns are obtained for

each of the 228 sites using the historical hourly data interpolated from the hourly CFSR temperature. The patterns

vary with months (January and July) and locations (228 sites) in Ontario. Based on the patterns, the downscaled daily

Page 11: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

49

temperatures and the binomial logistic regression model (equation 3), hourly temperatures in January and July are

generated at each of the 228 stations for each member of the ensemble for the period 1981-2100. Figure 5 shows the

current (1990s) and projected (2050s and 2080s) values of 2.5% and 1% January temperatures, and 2.5% July

temperature obtained using the method described in section 3.3.1. It is observed that these three design values will

significantly increase in the future over all the locations. The 1% and 2.5% January temperatures may increase by 2-

4°C and 4-7°C, and 2.5% July temperature may increase by 2-3°C and 4-5°C, in the 2050s and 2080s, respectively.

Generally, the increases in the northern Ontario are more significant than in the southern parts of the province.

Figure 5. 1% January Design Temperature (left), 2.5% January Design Temperature (middle) and 2.5% July Design Temperature (right) for the

1990s (top panel), 2050s (middle panel) and 2080s (bottom panel). The results are the ensemble mean of the 12 models under the RCP6.0 scenario.

Unit in the figures is °C. The values in 1990s is same as that in the SB-1 table (MMAH, 2015).

4.4 Indicators of extreme rainfall events

The 50-year return period values of rainfall for the 1990s, 2050s and 2080s are calculated by fitting the annual

maximum one-day rainfall to the Gumbel extreme value distribution using the standard method described in section

3.2 (MMAH, 2015; Lowely & Nash, 1970). As well, the 15-minute values are estimated using the methods proposed

in section 3.1.2, 3.2 and 3.3.4. The hourly rainfall data at the 12 USA stations are chosen to estimate the conditional

CDFs, which are then used for the generation of rainfall amounts at wet hours. Although the hourly rainfall amounts

of CFSR are not used to generate rainfall amount because they vary very smoothly and always underestimate extreme

hourly rainfall, they are used to construct weather generators. As the observations at most of the 228 sites do not

include complete datasets, the daily and hourly rainfall amounts from CFSR are used to construct the weather

generators (WGs) at each site to predict the occurrence of wet and dry hours. Figure 3 shows that the conditional CDFs

of hourly rainfall for the nine daily rainfall intervals. It is observed that the conditional CDFs of hourly rainfall amount

(blue curves) are significantly different from the general CDF constructed based on all the hourly rainfall data (red

Page 12: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

50

line) of storm days; the differences are more significant for a heavier daily rainfall as it correlates with a higher

probability of more intensive hourly rainfall. For example, the probability of >20mm/hour events is less than 0.5% on

days when daily rainfall is between 20 and 25mm. However, this probability increases to 6% when daily rainfall is

greater than 50mm. Combining the stochastic WGs for wet hour predictions and the conditional CDFs, hourly rainfall

amounts on storm days during 1981-2100 are produced for each ensemble member.

Figure 6. 50-year return period values of One-Day-Rainfall (RX1D, left) and 10-year return period values of 15-minute rainfall (R15min, right)

for 1990s (top panel), 2050s (middle panel) and 2080s (bottom panel). The 1990s values are from the MMAH SB1, and the 2050s and 2080s values

are calculated from the 12-member ensemble median.

Based on the IDF model proposed by Bernard (1932), the 10-year return period values of 15-minute rainfall could

be indirectly estimated based on hourly rainfall. As an example, at Pearson International Airport station the model fits

the return values of hourly rainfall very well with R2=0.96. There is a strong linear correlation between duration and

rainfall intensity in the plot using a log-scaled vertical axis. Linear regression model fits the relation between durations

for the 10-year return period values very well (not shown). Generally, there are stronger linear correlations among

Page 13: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

51

longer duration values. The correlation coefficients decrease with the length of durations. In Ontario, the correlation

coefficient between the 10-year return period values of hourly and 15-minitue rainfall is 0.75, which represents a

strong linear correlation. Using the 10-year return period values of 1-h, 2-h, 6-h, 12-h and 24-h maximum rainfall and

equation (9), the 10-year return period values of 15-minitue rainfall are estimated at the 228 sites in this study. Figure

6 shows that the 50-year return period values of maximum daily rainfall and 10-year return period value of R15min

may increase in the future at many locations. The intensity of RX1D may increase by about 5-15mm/day and 10-

20mm/day at most locations in the 2050s and 2080s, respectively; and the intensity of R15min may increase by 1-

5mm (or decrease by 1-2mm at some locations) in the 2050s and 2080s, respectively.

5. Summary and discussion

In this study, eight temperature and precipitation related climate indices are projected across the province of Ontario

in Canada in the 2050s and 2080s based on an ensemble of downscaled CMIP5 data under the IPCC AR5 RCP6.0

scenario. These indices are often used as climate indicators in design of infrastructures. Four of them are based on

daily data, and the other four indicators are based on sub-daily data.

To generate sub-daily data, a number of novel models are developed for temporally downscaling temperature and

precipitation from daily to hourly scales, including clustering-logistic regression models to generate hourly

temperature in January and July and weather generators to produce hourly rainfall on storm days from May to October.

The hourly temperature data from all the members of the ensemble are then used to generate probabilistic distribution

function and the percentiles (1% and 2.5%). Appling the extreme value theory to annual maximum of daily and hourly

rainfall data, the return period values of rainfall events are calculated for the 2050s and 2080s.

The results show that as global warming continues, heating degree-days (HDD) may significantly decrease in the

future; annual total precipitation amount may significantly increase in the 2050s, then remain stable or decrease at

some locations in the 2080s. The three temperature percentile indicators may significantly increase in the future.

January temperature percentiles (1% and 2.5%) may increase with a larger rate than July temperature (2.5%). The 50-

year return period values of One-Day-Rainfall events may significantly increase across the province; while the 10-

year return period values of 15-minutes rainfall may increase at most locations, they may remain stable after the 2050s

only at some locations.

The projections of HDD provided in this study could set the stage for future research on building energy use

projections in Ontario, as HDD could be deemed as an indicator of building energy use in heating seasons. However,

drawing practical conclusions for building energy use would require us to pose more specific questions in conjunction

with other energy/thermal performance indicators. For example, of many building properties, the type of building

could play a significant role on how climate change might impact building energy use, demanding different climate

change adaption strategy (Shen 2017). Among other energy/thermal performance indices, overheating hours should

be also considered (Gupta & Gregg 2012) in tandem with HDD from not only energy use perspective but also thermal

performance of building, which could adversely affect thermal comfort of occupants.

Despite the fact that climate models are helpful to estimate some climate extreme variables, quantifying the impact

of climate change on the climatic design values is still an extremely challenging task. It is more challenging to estimate

the precipitation related variables than temperature related variables. The uncertainty in projections of the extreme

climatic values for climatic design data calculation may come from many different sources, such as the imperfection

of GCM models, spatial-temporal downscaling models, approximation in extreme value theory, and the lack of long-

term reliable high-resolution observation. Although great effort has been put in the development of the projections in

this study using best available information to the authors, there is still plenty of room for further improvement. The

results from this study should be used with caution and under guidance from climatic design data development

professionals.

Page 14: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

52

References

Ailliot, P., Allard, D., Monbet, V. and Naveau, P., 2015. Stochastic weather generators: an overview of weather

type models. Journal de la Société Française de Statistique, 156(1), pp.101-113.

Auld, H., J. Waller, S. Eng, J. Klaassen, R. Morris, S. Fernandez, V. Cheng et D. MacIver, 2008. The changing

climate and national building codes and standards, Environnement.

Bartier, P.M. and Keller, C.P., 1996. Multivariate interpolation to incorporate thematic surface data using inverse

distance weighting (IDW). Computers & Geosciences, 22(7), pp.795-799.

Bernard, M.M., 1932. Formulas for rainfall intensities of long duration. Transactions of the American Society of

Civil Engineers, 96(1), pp.592-606.

Brekke, L., Thrasher, B.L., Maurer, E.P. and Pruitt, T., 2013. Downscaled CMIP3 and CMIP5 climate projections:

release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of

user needs. US Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver,

Colorado, p.116.

Castillo, E., 2012. Extreme value theory in engineering. Elsevier.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A.,

Balsamo, G., Bauer, D.P. and Bechtold, P., 2011. The ERA‐Interim reanalysis: Configuration and

performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656),

pp.553-597.

Dee, Dick & National Center for Atmospheric Research Staff (Eds). Last modified 05 Aug 2015. "The Climate Data

Guide: ERA-Interim." Retrieved from https://climatedataguide.ucar.edu/climate-data/era-interim. - See more

at: https://climatedataguide.ucar.edu/climate-data/era-interim#sthash.47AH4fWr.dpuf

De Haan, L. and Ferreira, A., 2007. Extreme value theory: an introduction. Springer Science & Business Media.

Deng, Z., Qiu, X., Liu, J., Madras, N., Wang, X. and Zhu, H., 2016. Trend in frequency of extreme precipitation

events over Ontario from ensembles of multiple GCMs. Climate dynamics, 46(9-10), pp.2909-2921.

Deng, Z., Liu, J., Qiu, X., Zhou, X. and Zhu, H., 2018. Downscaling RCP8. 5 daily temperatures and precipitation in

Ontario using localized ensemble optimal interpolation (EnOI) and bias correction. Climate Dynamics, 51(1-

2), pp.411-431.

Environment Canada.,2012. Canadian climate normals 1981-2010

Ephrath, J.E., Goudriaan, J. and Marani, A., 1996. Modelling diurnal patterns of air temperature, radiation wind

speed and relative humidity by equations from daily characteristics. Agricultural systems, 51(4), pp.377-393.

Field, C.B. ed., 2014. Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge

University Press.

Gupta, R. and Gregg, M., 2012. Using UK climate change projections to adapt existing English homes for a

warming climate. Building and Environment, 55, pp.20-42.

Gyawali, R., Garbrecht, J. and Zhang, J.X., 2016. Suitability of Global Circulation Model Downscaled BCCA Daily

Precipitation for Local Hydrologic Applications. Journal of Hydrologic Engineering, 21(12), p.06016014.

Handbook, A.F., 2009. American society of heating, refrigerating and air-conditioning engineers. Inc.: Atlanta, GA,

USA.

Harris, I.P.D.J., Jones, P.D., Osborn, T.J. and Lister, D.H., 2014. Updated high‐resolution grids of monthly climatic

observations–the CRU TS3. 10 Dataset. International Journal of Climatology, 34(3), pp.623-642.

Hartigan, J.A. and Wong, M.A., 1979. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal

Page 15: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

53

Statistical Society. Series C (Applied Statistics), 28(1), pp.100-108.

Heinemann, D., Langer, C. and Schumacher, J., 1996. Synthesis of hourly ambient temperature time series

correlated with solar radiation. In Proc. EuroSun’96 Conf (pp. 1518-1523).

Hidalgo, H.G., Dettinger, M.D. and Cayan, D.R., 2008. Downscaling with constructed analogues: Daily

precipitation and temperature fields over the United States. California Energy Commission PIER

Final Project Report CEC-500-2007-123.

Hong, H.P. and Ye, W., 2014. Analysis of extreme ground snow loads for Canada using snow depth

records. Natural hazards, 73(2), pp.355-371.

Hosmer Jr, D.W., Lemeshow, S. and Sturdivant, R.X., 2013. Applied logistic regression (Vol. 398). John Wiley &

Sons.

Hutchinson, M.F., Richardson, C.W. and Dyke, P.T., 1993, July. Normalization of rainfall across

different time steps. In Management of Irrigation and Drainage Systems: Integrated Perspectives

(pp. 432-439). ASCE.

Jain, A.K., 2010. Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), pp.651-

666.

Jiang, N., Qian, W. and Leung, J.C.H., 2016. The global monsoon division combining the k-means

clustering method and low-level cross-equatorial flow. Climate dynamics, 47(7-8), pp.2345-2359.

Kim, Y., Rajagopalan, B. and Lee, G., 2016. Temporal statistical downscaling of precipitation and

temperature forecasts using a stochastic weather generator. Advances in Atmospheric Sciences,

33(2), pp.175-183.

Liu, Y., Zhang, W., Shao, Y. and Zhang, K., 2011. A comparison of four precipitation distribution models

used in daily stochastic models. Advances in Atmospheric Sciences, 28(4), pp.809-820.

Maulik, U. and Bandyopadhyay, S., 2002. Performance evaluation of some clustering algorithms and

validity indices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12), pp.1650-

1654.

Maraun, D., 2013. Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue.

Journal of Climate, 26(6), pp.2137-2143.

Maurer, E.P. and Hidalgo, H.G., 2008. Utility of daily vs. monthly large-scale climate data: an intercomparison of

two statistical downscaling methods.

Mesinger, F., DiMego, G., Kalnay, E., Shafran, P., Ebisuzaki, W., Jovic, D., Woollen, J., Mitchell, K., Rogers, E.,

Ek, M. and Fan, Y., 2004. NCEP North American regional reanalysis. American Meteorological Society.

MMAH Supplementary Standard SB-1: Climatic and Seismic Data, September 2, 2014, Effective Date: Jannuary 1,

2015

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, T.R., Emori, S.,

Kainuma, M., Kram, T. and Meehl, G.A., 2010. The next generation of scenarios for climate change research

and assessment. Nature, 463(7282), p.747.

Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D. and

Liu, H., 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological

Society, 91(8), pp.1015-1058.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.T., Chuang, H.Y., Iredell, M.

and Ek, M., 2014. The NCEP climate forecast system version 2. Journal of Climate, 27(6), pp.2185-2208.

Shen, P., 2017. Impacts of climate change on US building energy use by using downscaled hourly future weather

data. Energy and Buildings, 134, pp.61-70.

Page 16: Projection of Temperature and Precipitation Related Climatic Design Data … · 2018. 7. 29. · this study explores a method to produce probabilistic projections for the 2050s and

Deng et al. / Journal of Buildings and Sustainability, 2018, Vol. 1, No. 1

54

Shrestha, R.M., Shrestha, S.L. and Sthapit, A.B., 2015. Logistic Model as a Statistical Downscaling Approach for

Forecasting a Wet or Dry Day in the Bagmati River Basin. The Open Atmospheric Science Journal, 9(1).

Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X. and Bronaugh, D., 2013. Climate extremes indices in the

CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research:

Atmospheres, 118(6), pp.2473-2493.

Srikanthan, R. and McMahon, T.A., 2001. Stochastic generation of annual, monthly and daily climate data: A

review. Hydrology and Earth System Sciences Discussions, 5(4), pp.653-670.

Stefanova, L., Misra, V., Chan, S., Griffin, M., O’Brien, J.J. and Smith III, T.J., 2012. A proxy for high-resolution

regional reanalysis for the Southeast United States: assessment of precipitation variability in dynamically

downscaled reanalyses. Climate dynamics, 38(11-12), pp.2449-2466.

Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L. and Somot, S., 2012. Dynamical and

statistical downscaling of the French Mediterranean climate: uncertainty assessment. Natural Hazards and

Earth System Sciences, 12(9), pp.2769-2784.

Welhouse, L.J., Lazzara, M.A., Keller, L.M., Tripoli, G.J. and Hitchman, M.H., 2016. Composite analysis of the

effects of ENSO events on Antarctica. Journal of Climate, 29(5), pp.1797-1808.

Wilks, D.S., 1995. Statistical Methods in the Atmosphere. Vol. 59. International Geophysics Series.

Wilks, D.S. and Wilby, R.L., 1999. The weather generation game: a review of stochastic weather models. Progress

in physical geography, 23(3), pp.329-357.

Woolhiser, D.A. and Roldan, J., 1982. Stochastic daily precipitation models: 2. A comparison of distributions of

amounts. Water resources research, 18(5), pp.1461-1468.

Woolhiser, D.A. and Roldán, J., 1986. Seasonal and regional variability of parameters for stochastic daily

precipitation models: South Dakota, USA. Water Resources Research, 22(6), pp.965-978.

Zhu et al. 2017: Ontario Climate Data Portal (http://yorku.ca/ocdp).

© This article is licensed under a Creative Commons Attribution 4.0 International License.