31
PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY- RECOVERY-LINAC Matthias Liepe Assistant Professor of Physics Cornell University Matthias Liepe, PAC 2011, New York, NY Slide 1 SRF for the Cornell ERL

PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

  • Upload
    letuyen

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-

RECOVERY-LINAC Matthias Liepe

Assistant Professor of Physics

Cornell University

Matthias Liepe, PAC 2011, New York, NY Slide 1

SRF for the Cornell ERL

Page 2: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

The Cornell Energy Recovery Linac

CESR

Beam Stop

• Cornell is developing the technology for an Energy Recover Linac (ERL) based x-ray light source.

• An ERL injector prototype has been developed, fabricated, and is currently under commissioning.

• Design work on the main linac cryomodule has started.

5 GeV, 100 mA, hard X-ray light source

Slide 2

The Cornell ERL

Matthias Liepe, PAC 2011, New York, NY

ERL main linac: 5 GeV, 100 mA with energy recovery, 5 kW RF power per 7-cell cavity

ERL injector: 10 MeV, 100 mA without energy recovery, >100 kW RF power per cavity

Page 3: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

• Superconducting RF for the ERL injector – Challenges and solutions

• Superconducting RF for the ERL main linac – Challenges and solutions

• Summary and outlook

Slide 3

Outline O

utline

Matthias Liepe, PAC 2011, New York, NY

Page 4: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 4

Superconducting RF for the ERL Injector

Superconducting RF for the ERL Injector

Matthias Liepe, PAC 2011, New York, NY

Page 5: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 5

The High Current Cornell ERL Injector Superconducting RF for the ERL Injector

photocathode DC gun

buncher

cryomodule

beam dump

experimental beam lines

deflector

design parameters Nominal bunch charge 77 pC Bunch repetition rate 1.3 GHz Beam power up to 550 kW Nominal gun voltage 500 kV SC linac beam energy gain 5 to 15 MeV Beam current 100 mA at 5 MeV 33 mA at 15 MeV Bunch length 0.6 mm (rms) Transverse emittance < 1 mm-mrad

Achieved so far 77 pC 50 MHz and 1.3 GHz 125 kW 350 kV 5 to 15 MeV 25 mA

World record for CW injector current!

Matthias Liepe, PAC 2011, New York, NY

Page 6: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 6

ERL Injector: Technical Components Superconducting RF for the ERL Injector

DC Gun

Beam Diagnostics

SRF Injector Cryomodule 135 kW cw

Klystrons (e2v)

Gun Laser Cold Box

Matthias Liepe, PAC 2011, New York, NY

Page 7: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 7

The Cornell ERL Cryomodule Superconducting RF for the ERL Injector

1.3 GHz RF cavity

HOM beamline absorber at 80K between cavities

Frequency tuner

Twin Input Coupler

HGRP system with 3 sections

Number of 2-cell cavities 5 Acceleration per cavity 1 – 3 MeV Accelerating gradient 4.3 – 13.0 MV/m R/Q (linac definition) 222 Ohm Qext 4.6104 – 4.1105

Total 2K / 5K / 80K loads: 30W / 60W / 700W

Number of HOM loads 6 HOM power per cavity 40 W Couplers per cavity 2 RF power per cavity 120 kW Amplitude/phase stability 10-4 / 0.1 (rms) ICM length 5 m

Matthias Liepe, PAC 2011, New York, NY

Page 8: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 8

ERL Injector Module Assembly at Cornell

Matthias Liepe, TTC Meeting, February 28-March 3 2011, Milano, Italy

Superconducting RF for the ERL Injector

Superconducting RF Workshop 2009, September 21–25, 2009 Berlin, Germany

Slide 8 Cleanroom assembly fixturing

Gate valve internal to cryomodule

Vacuum vessel interface flange Cleanroom assembly fixturing

Gate valve internal to cryomodule

Vacuum vessel interface flange

Superconducting RF Workshop 2009, September 21–25, 2009 Berlin, Germany

Slide 8

Cold mass assembly 1100 aluminum 80K shield

2K 2 - phase pipe

Magnetic shield II

5K manifold

Cold mass assembly 1100 aluminum 80K shield

2K 2 - phase pipe

Magnetic shield II

5K manifold

1100 aluminum 80K shield

Beam entrance gate valve

RF coupler ports

Instrumentation ports

80K shield 1100 aluminum 80K shield

Beam entrance gate valve

RF coupler ports

Instrumentation ports

80K shield

Beamline in clean room

Page 9: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

1. Limit emittance growth of the very low emittance beam in the injector module (essential for ERL x-ray performance)

2. Support high beam current operation up to 100 mA with short (2 ps) bunches

3. Transfer up to 100 kW of CW RF power per cavity to the beam

4. Provide excellent RF field / energy stability

Slide 9

ERL Injector SRF: Key Challenges

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Injector

Page 10: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

• Avoid transverse kick fields: – Symmetrized beam line in injector module

– Excellent cavity alignment (0.5mm required, 0.2mm achieved)

Slide 10

Emittance Preservation and Cavity Alignment

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Injector

RF Absorbing

Tiles

Cooling Channel

(GHe)

Twin high power input coupler

Axial symmetric HOM beamline absorber

Page 11: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 11

Fixed High Precision Cavity Support and Alignment

Matthias Liepe, PAC 2011, New York, NY

ERL Injector Cooldown WPM Horizontal

-1.00

-0.50

0.00

0.50

1.00

4/29/08 0:00 4/30/08 0:00 5/1/08 0:00 5/2/08 0:00 Date-Time

X po

sitio

n [m

m]

X1 [mm]

X3 [mm]

X4 [mm]

X5 [mm]

• High precision supports on cavities, HOM loads, and  HGRP  for  “self”  alignment  of  beam  line

• Only very rough initial alignment is needed when beamline is assembled in clean room

• Cavity string is aligned to 0.2 mm after cool-down!

Superconducting RF for the ERL Injector

Page 12: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

• HOM damping and HOM spectra measurements confirm excellent damping with typical Qs of a few 1000

• Total HOM power measurement gives longitudinal loss factor in good agreement with ABCI simulations

• Successfully operated injector SRF module with beam currents of 25 mA – ΔT of HOM absorbers small (<0.5K). Module should easily handle

operation at >100 mA.

Slide 12

High Current Operation and HOMs

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Injector

Frequency [GHz] 1.5 2 2.5 3 3.5 4 -140

-120

-100

-80

-60

S 21 [

dB]

See paper TUP063

Page 13: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

• SRF cavities meet gradient spec and have transferred >25 kW cw each to the beam

• Individual input couplers processed up to 25 kW cw

• Prototypes tested up to 60 kW cw, 80 kW pulsed

Slide 13

SRF Cavities and High RF Input Power

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Injector

Time, hours

Forw

ard

Po

wer

, kW

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

Cavity #1 Cavity #2 Cavity #3 Cavity #4 Cavity #5

2K 5K 80K 300K Coax - waveguide transition

2K 5K 80K 300K Coax - waveguide transition

RF Input coupler

Page 14: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 14

LLRF Field Control and Field Stability

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Injector

*10-5

Excellent field stability achieved: amplitude: A/A< 2·10-5

(in loop measurements) phase: P < 0.01 deg

Cornell digital LLRF control system

Page 15: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 15

Superconducting RF for the ERL Main Linac

Superconducting RF for the ERL Main Linac

Matthias Liepe, PAC 2011, New York, NY

Page 16: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 16

Cornell ERL Main Linac Superconducting RF for the ERL Main Linac

Cavities per cryomodule 6

Cryomodules per linac 35 / 29

# linacs 2

# cavities 384

# cryomodules 64

Cryomodule length [m] 9.82

Linac length [m] 344 / 285

Total active length [m] ~310

Module Filling factor 0.49

Final energy [GeV] 5.0

Gradient [MV/m] 16

Linac A = 35 Modules

Linac B = 29 Modules

= 0.25m Cold-warm transition

• 5 GeV total, 384 cavities • 13 MV per cavity (~16 MV/m) • 64 identical cryomodules, each

with 6 cavities and a single quadrupole magnet

• Two continuous linac sections:

Matthias Liepe, PAC 2011, New York, NY

Page 17: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 17

Cornell ERL Main Linac Cryomodule Superconducting RF for the ERL Main Linac

HGRP support post

Beamline HOM absorber 7-cell cavity

HGRP ~40K thermal shield

Gate valve

Superconducting magnet & BPM

Number of 7-cell cavities 6 Acceleration gradient 16.2 MV/m R/Q (linac definition) 774 Ohm Qext 6.5107 Total 2K / 5K / 80K loads: 76W / 70W / 1500W

Number of HOM loads 7 HOM power per cavity 200 W Couplers per cavity 1 RF power per cavity 5 kW Amplitude/phase stability 10-4 / 0.05 (rms) Module length 9.8 m

Matthias Liepe, PAC 2011, New York, NY

Page 18: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

1. Support efficient CW cavity operation with high dynamic cryogenic loads

2. Support high beam current ERL operation up to 2x100 mA with short (2 ps) bunches

3. Efficiently operate the SRF cavities at a high loaded quality factor QL ≥  6.5  × 107 while still achieving excellent RF field stability.

Slide 18

Main Linac SRF: Key Challenges

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Main Linac

Page 19: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

• Fixed, high precision supports for the cavities and the HOM loads

• One thermal shield at ~40K • Cryogenic manifolds sized for

high dynamic heat loads • Three layers of magnetic

shielding

Slide 19

Main Linac Cryomodule Design

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Main Linac

HGRP

Fixed, high precision support

SRF cavity

HGRP Support post

Beam axis

40K shield

Vacuum vessel

Support post

HGRP

Page 20: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 20

Magnetic Shielding at Residual Resistance

Matthias Liepe, PAC 2011, New York, NY

Axial magnetic field on axis, Bz

-157

-226

-283 4.8 7.4 -3 0 -2

-250

-200

-150

-100

-50

0

50

-35 -30 -25 -20 -15 -10 -5 0

Distance from Iris [inch]

Bz

[mG

]

z

B < 3 mG -> contribution to Rres< 1 n

Superconducting RF for the ERL Main Linac

Page 21: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 21

ERL Main Linac Cavity: RF Design (I)

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Main Linac Re

lativ

e co

uple

r kic

k |

p |

/ |p

|||

Frequency – 1300 MHz [Hz]

Coupler kick compensation

Cell shape optimization for high R/Q of fundamental mode and strong HOM damping

Kick vs. frequency

Dipole mode damping calculated up to 10 GHz with realistic RF absorbers

Page 22: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Matthias Liepe, PAC 2011, New York, NY 0 2 4 6 8 10 120

2

4

6

8

10

Z [cm]

R [c

m]

Slide 22

ERL Main Linac Cavity: RF Design (II) Superconducting RF for the ERL Main Linac

Threshold current through linac from expected cavity variation

Threshold current in linac implementing

multiple cavity shapes

3109.3 ff

Relative frequency spread between modes

• Relaxed cavity shape tolerances: • increase the HOM frequ. spread • increase the risk of trapped HOMs

• Solution: • use several classes of cavities,

which are small, controlled variations of the baseline 7- cell cavity design

• yields threshold current >4 times above design value

See paper TUP064 Cell Shapes

Dispersion curves

BBU current

Page 23: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 23

ERL Main Linac Cavity: Mechanical Design and Prototyping

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Main Linac

ANAYS model

Precision of cell shape (0.2 mm)

Sensitivity to pressure changes

• Cavity was optimized for low microphonics

• Stiffening rings between the cells – reduce sensitivity of the fundamental mode

frequency to changes in the LHe bath pressure (main source of cavity microphonics)

• Prototype cavities under fabrication – will be tested without and with beam in

test/prototype cryomodules.

Page 24: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Two reliable RF absorbing materials meeting all specifications have been identified:

– graphite loaded SiC, – carbon-nanotube loaded ceramics

Slide 24

HOM Beamline Loads and RF Absorbing Materials

Matthias Liepe, PAC 2011, New York, NY

-7

-6

-5

-4

-3

-2

-1

0

0 5 10

Imag

inar

y Per

mitt

ivity

'

'/o

Frequency [GHz]

0.0

0.2

0.4

0 5 10

Loss

Tang

ent

Frequency [GHz]

0

5

10

15

20

25

30

35

0 5 10

Real

Per

mitt

ivity

'/

o

Frequency [GHz]

0.001

0.01

0.1

1

50 150 250 350

Cond

uctiv

ity

m]

Temperature [K]

2.5% MWCNT

1% MWCNT

SiC Absorber Ring

Carbon-Nanotube Absorber

Superconducting RF for the ERL Main Linac

HOM Damper

Page 25: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

• Simplified 5 kW CW input coupler • Superconducting magnet package • Cold tuner (slow and fast piezo driven)

Slide 25

ERL Main Linac: Other Components

Matthias Liepe, PAC 2011, New York, NY

5 kW Input Coupler Cold Magnet Frequency Tuner

Superconducting RF for the ERL Main Linac

Page 26: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 26

LLRF Field Control and Operation at Very High Loaded Q

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Main Linac

• Demonstrated highly efficient operation of a full 9-cell cavity at very high loaded quality factors up to 2108 (Test  of  Cornell’s  LLRF  system  at HoBiCaT at HZB)

– Exceptional field

stability: σA/A <110-4, σ ~ 0.01°

– Fast RF field ramp up in 0.5 s to high fields with piezo tuner

Half bandwidth = 3.35 Hz Peak microphonics: ~ 30 Hz!

Page 27: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 27

Active Microphonics Compensation

Matthias Liepe, PAC 2011, New York, NY

Superconducting RF for the ERL Main Linac

Piezo feedback on cavity frequency (ERL injector cavity): Reduced rms microphonics by up to 70%! Important for ERL main linac, where QL>5107 and PRFf!

Page 28: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

Slide 28

Summary and outlook

Summ

ary and outlook

Matthias Liepe, PAC 2011, New York, NY

Page 29: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

• ERL injector cryomodule: – Designed, constructed, and

successfully tested – Cryogenics, cavity

alignment, cavity voltage, input couplers, LLRF field control, and HOM damping all meet or exceed specs

– 25 mA cw beam accelerated to 5 MeV; should easily support 100 mA operation

Slide 29

Summary and Outlook Sum

mary and outlook

Matthias Liepe, PAC 2011, New York, NY

Page 30: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

• ERL main linac cryomodule: – Module design well underway – Cavity design optimized for high currents and efficient

cavity operation; cavity fabrication has started – Plan:

• One cavity test module: starting 2012, including beam test

• Full prototype main linac module in in ~4 years

Slide 30

Summary and Outlook Sum

mary and outlook

Matthias Liepe, PAC 2011, New York, NY

Page 31: PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL …liepe/webpage/docs/PAC11_talk.pdf · PROGRESS ON SUPERCONDUCTING RF FOR THE CORNELL ENERGY-RECOVERY-LINAC Matthias Liepe ... test/prototype

End Thanks for you attention!

Slide 31 Matthias Liepe, PAC 2011, New York, NY