26
Prof. Dr. Rafig Azzam RWTH Aachen University, Chair for Engineering Geology and Hydrogeology, Lochnerstr. 4-20,52064 Aachen, Germany.

Prof. Dr. Rafig Azzam - SBGIMR-BVIGRMsbgimr-bvigrm.be › wp-content › uploads › 2017 › 03 › 9_AZZAM_Databas… · Prof. Dr. Rafig Azzam RWTH Aachen University, Chair for

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Prof. Dr. Rafig AzzamRWTH Aachen University, Chair for Engineering Geology and Hydrogeology, Lochnerstr. 4-20,52064 Aachen, Germany.

  • 2

    DatabasesDatabases

    • Analogue Data– Maps, reports, borehole logs/files etc.

    • Digital Data– Digital equivalents of analogue data image files (tif, jpg etc.)– Borehole data in different formats Access, Excel, dbf etc. – Spatial referenced data GIS

    o Shapefiles, Coverages, Grids, Personal Geodatabase etc.o Relational database management systems (RDBMS)

    distributed and heterogeneous databases

  • 3

    DatabasesDatabases

    • Analogue Data– Maps, reports, borehole logs/files etc.

  • 4

    Digital Data– Digital equivalents of analogue data image files (tif, jpg etc.)– Borehole data in different formats Access, Excel, dbf etc. – Spatial referenced data GIS

    o Shapefiles, Coverages, Grids, Personal Geodatabase etc.o Relational database management systems (RDBMS)

    distributed and heterogeneous databases

  • 5

    • (Hydro-)geological Information System

    • Data mining for knowledge discovery

    • Pattern recognition using neuronal networks

    Application and NeedsApplication and Needs

    • DEM and derived information (slope, aspect, etc)landslide hazard mapping

  • ProblemProblem

    6

    • Distributed Data– Base data from several mapping agencies,

    environmental protection agencies, distributed databases, etc.

    • Heterogeneous Data– Vector data Grid data

    How to generate homogeneous information out of distributed, heterogeneous data?

  • 7

    • Utilization of distributive geodata

    • Compilation of information from heterogeneous data

    • Development of service orientated system architecture

    • Rule-based derivation of geoinformation

    • Integration of potential users

    FrameworkFramework

  • 8

    SolutionSolution

    • Setting up a Spatial Data Infrastructure (SDI)– OGC web service technology accesses distributed

    geodata inventories– Integration of geoprocessing capabilities (e.g.

    groundwater vulnerability assessment and mapping)

    – Integration of expert‘s knowledge through XML-based business-rules

    – Web based user interface allows data and information retrieval

    – Extensive use of standard internet technologies (XML, SOAP, WSDL, HTTP, etc.)

  • 9

    • OpenGeospatial Consortium (OGC)- Conformity– Web Map Service– Web Feature Service– Web Coverage Service– Catalog Service

    • World Wide Web Consortium (W3C)- Conformity– XML– SOAP

    • International Standardization Organization (ISO)-Conformity– ISO / TC 211 Geographic information / Geomatics

    • ISO 19115• ISO 19119

    StandardsStandards

  • 10

    HTTP

    HTTP / SOAPBusiness Logic Tier

    Presentation Tier

    WebApplication

    GISApplication

    Geo-Services

    WebCatalogService

    Visualisation-Services

    RuleComponent

    System-Services

    Controller

    DBMS A (Vectordata)

    Server 1

    WebFeatureService

    DBMS B(Vectordata)

    Server 2

    DBMS C(Vectordata)

    Server N

    WebFeatureService

    Server N+1

    Web CoverageService

    Grid data

    WebFeatureService

    Data Tier

    Distributed, heterogeneous data

    Generation of Information

    Integration of expert‘s knowledge(based on XML rules)

    Visualization on various devices

    Architecture of Information System

  • WebserviceWebservice• Communication beyond system

    boundaries and independent from computing languages

    • Protocols:– Hyper Text Transfer Protocol (HTTP)– Simple Object Access Protocol

    (SOAP)

    • Advantages of web services: – accessibility due to programmable

    interfaces– self-describing due to metadata– self-contained (enclosure)– loosely linked– independent from place and protocol

    User

    Application

    Webservice

  • PublishPublish –– Find Find -- BindBind

    12

  • From From GeodataGeodata to to GeoinformationGeoinformation

    13

    • Basic services– Scale variation: rule-based derivation of input parameters– Groundwater: vulnerability mapping according HÖLTING et

    al. 1995– Allocation of vector data– Allocation of raster data

    • Controlling services– Authentication and Authorization– Session-management– etc.

    • Integrated geo-service „Schutzfunktion derGrundwasserüberdeckung [Vulnerability mapping]“

  • ExampleExample: : GroundwaterGroundwater VulnerabilityVulnerability

    14

    geology and thickness

    percolation water

    perched aquifers

    artesian pressure

    soil

  • 15

  • 16

    DQWMgBSn

    iii ++⋅⎥⎦

    ⎤⎢⎣

    ⎡+= ∑

    =1

    After Hölting et al. 1995:

    Mean Input Parameters

    Global Supplements

    Point Value Soil (B)

    Point Value Rock Type of the

    Individual Strata and Depth to Groundwater Table (gM)

    Suspended Groundwater Layers

    (Q)

    Artesian Pressure Situations (D)

    +

    +

    +

    *

    Point Value of the Groundwater Vulnerability Function (S)

    Factor Leachate Rale

    (W)

    ExampleExample: : GroundwaterGroundwater VulnerabilityVulnerability

  • ExampleExample: : GroundwaterGroundwater VulnerabilityVulnerability

    17

  • Präsentation

  • 20

  • 21

  • 22

  • 23

  • Further ApplicationsFurther Applications

    24

    Geological Survey

    Environmental state office NRW

    Regional authorities

    Local authorities

    Water supplier

    Vulnerability mapping, e.g. preemptivegroundwater protection, EU-WFD

    Evaluation of measures for the reduction of diffuse contamination and their effectivity in time and space

    Claim (e.g. accidental spill of contaminants): support by evaluating the consequences and measures

    ......

    Providing information on vulnerability in conjunction with the delineation of planned activities (e.g. infrastructural development)

  • 25

    OutlookOutlook

    • Sensor Networks– recently research on the integration of real time sensors using e.g.

    SensorML or SOS for early warning systems

    • Borehole and geotechnical Data– In GB initiative to establish an XML based standard for borehole

    data integrating also geotechnical data

    • Cross Border Water Management Iniative (CWMI)– Using thesaurus and semantic web to identify and match geological

    strata from different data bases using different stratigrafic records or names

  • Contact:

    Prof. Dr. Rafig AzzamRWTH Aachen UniversityDepartment of Engineering Geology and HydrogeologyLochnerstr. 4-2052064 AachenGermany

    [email protected]