33
Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab. School of Information and Communication Eng. Sungkyunkwan University Tel: +82-31-299-4581 Fax: +82-31-299-4612 http://seml.skku.ac.kr EML: [email protected] -삼상 풀브리지 인버터 (II)-

Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

  • Upload
    others

  • View
    22

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab. School of Information and Communication Eng. Sungkyunkwan University Tel: +82-31-299-4581 Fax: +82-31-299-4612 http://seml.skku.ac.kr EML: [email protected]

-삼상 풀브리지 인버터 (II)-

Page 2: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

2 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Basic Concept of SVPWM (I)

목적

• 출력에 포함된 기본파 크기 제어

• 고조파 성분 저감

단점

• 이용 가능한 출력 감소

• 스위칭 손실증가

종류

• Continuous PWM

• Discontinuous PWM

성능

• DC-Link 전압이용률, 고조파 함유량, 손실(스위칭)

PWM(Pulse Width Modulation)

Page 3: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

3 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Basic Concept of SVPWM (II)

공간벡터 PWM vs. 3상 정현파 PWM

3상 정현파 PWM 공간벡터 PWM

3상의 각 폴을 단상하프브리지 인버터처럼 독립적으로 정현파 PWM 하는 방식

한 상의 스위칭 상태를 결정하는데 다른 상의 스위칭 상태를 고려하지 않음

3상의 6개 스위치를 한꺼번에 고려하여 인버터의 스위칭 상태를 이미 계산된 순서와 지속시간에 따라 전환해줌

SVPWM

Page 4: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

4 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Basic Concept of SVPWM (III)

Fig. Three phase inverter system

스위칭 함수 • <Sa, Sb, Sc>

• Sx= 0 or 1 (x=a, b, c)

• ON = 1, OFF = 0

• 부하 출력선 기준 상단 스위치

a b c

1/2Vdc

1/2Vdc

o

n

S a2

S b2

S c2

S a1

S b1

S c1

Concept of the voltage vector and its rotatation

Page 5: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

5 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Basic Concept of SVPWM (IV)

Fig. Eight possible phase leg switch combinations for a VSI

4/28

a b c a b c a b c a b c

a b c a b c a b c a b c

<0 0 0> <1 0 0> <1 1 0> <0 1 0>

<0 1 1> <0 0 1> <1 0 1> <1 1 1>

Switching Function & Switching State

Page 6: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

6 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Basic Concept of SVPWM (V)

Fig. (a) Binary states of the switching elements represented in three dimensional space

(a) (b)

그림3. (b) A hexagon derived from this presentation by viewing along the red line connecting

<0 0 0> and <1 1 1> in (a)

a

b

c

<1 0 0>

<1 1 0>

<0 1 0>

<0 1 1>

<0 0 1>

<1 0 1>

<0 0 0>

<1 1 1>

a

b

c

a

c

b

<1 0 0>

<1 1 0><0 1 0>

<0 1 1>

<0 0 1> <1 0 1>

<0 0 0><1 1 1>

d

q

Hexagon Diagram

Page 7: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

7 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Analysis Method (I)

고정좌표 d-q 변환: 3상의 양을 직교하는 2상의 양으로 변환

(단, 3상은 평형 가정, 즉 )

2 2

3 32

3

j j

d q a b cF F jF F F e F e

0a b cF F F

1 11

2 2 2

3 3 30

2 2

a

d

b

q

c

F

FF

F

F

1 0

1 3

2 2

1 3

2 2

a

d

b

q

c

FF

FF

F

Fa

Fb

Fc

Fq

Fd

a

c

b

d

q

F

120

120

120

Park’s Transformation

Page 8: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

8 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Analysis Method (II)

3상의 정현파와 회전하는 벡터의 대응관계

Fa

FbFc

0

t = 0 t = t1 t = t2

A

q

d

A

t = 0

t = t1

t = t2

60

F

Park’s Transformation

Page 9: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

9 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Analysis Method (III)

공간벡터: 3상 인버터에서 부하상전압을 d-q 변환하여 얻은 벡터

( 1)

32

1, 2, , 63

0 0, 7

kj

DCk

V e k

k

V

V1

V2V3

V4

V5 V6

V7V0

q

d2

3_

VDC VDC1

3VDC

2

3

1

3_

VDC

33

_VDC

VDC33

0

Park’s Transformation

Page 10: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

10 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Analysis Method (IV)

3상 인버터의 부하상전압과 공간벡터

인버터 상태

스위치 상태

부하상전압 공간벡터

anv cnvbnvk 1 2 3[ ]S S S

kV

( )k d qv jv V

dv qv

0

1

2

3

4

5

6

7

[ 0 0 0 ]

[ 1 0 0 ]

[ 1 1 0 ]

[ 0 1 0 ]

[ 0 1 1 ]

[ 0 0 1 ]

[ 1 0 1 ]

[ 1 1 1 ]

0

1

3DCV

2

3DCV

1

3DCV

2

3DCV

1

3DCV

1

3DCV

0

0

3

3DCV

0

3

3DCV

0

3

3DCV

3

3DCV

0

0

2

3DCV

1

3DCV

1

3DCV

2

3DCV

1

3DCV

1

3DCV

0

0

1

3DCV

1

3DCV

2

3DCV

1

3DCV

1

3DCV

2

3DCV

0

0

1

3DCV

2

3DCV

1

3DCV

1

3DCV

2

3DCV

1

3DCV

0

Park’s Transformation

Page 11: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

11 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (I)

Fig. Comparison of voltage vector logic

1/2

2/3

2/

1/ 3

<1 0 0>

<1 1 0><0 1 0>

<0 1 1>

<0 0 1> <1 0 1>

Six-step

SVPWM

SPWM

<0 0 0><1 1 1>

I

II

III

IV

V

VI

V*

Space Vector Diagram

Page 12: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

12 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (II)

Fig. (a) Reference and carrier wave

(b) Space Vector diagram

(c) Triangle comparison method

(a)

(b)

(c)

0

V

θ

a b cVdc/2

-Vdc/2

Sa1Sb1Sc1

000

00 0 0 0 0

1 11

111

111

11

11 0

0

V0 V0V1 V2 V7 V2 V1

Ts Ts

V1 <1 0 0>

V2 <1 1 0>

V1 <1 1 1>V0 <0 0 0>

V*

d

q

T1 T2 T0

Page 13: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

13 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (III)

SPWM의 선형 변조 영역과 hexagon에 내접하는 원 사이의 영역까지 변조 영역을 확대하기 위해서는 삼각파 비교방식이 아닌 다른 방식이 필요

)(*002 7021 TVTVTVTVTV or

ss

TTTT s 021

21 21* VTVTVT s

예) 영역 I에 기준 전압 벡터가 위치한 경우

-기준 전압을 벡터 성분으로 환산

V1 <1 0 0>

V2 <1 1 0>

V7 <1 1 1>V0 <0 0 0>

V*

d

q

T1 T2 T0

Page 14: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

14 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (IV)

-T1, T2, T0 시간 계산

3sin

)3(sin

3

2

*

1

V

VTT

dc

s)3(sin

*

3

V

VT

dc

s

3sin

sin

3

2

*

2

V

VTT

dc

ssin

*

3V

VT

dc

s

)(210 TTTT s

sin

cos*

VT s

3sin

3cos

3

2

0

1

3

221

VTVT dcdc

30

V1 <1 0 0>

V2 <1 1 0>

V7 <1 1 1>V0 <0 0 0>

V*

d

q

T1 T2 T0

Page 15: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

15 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (V)

실제적인 스위칭 시간 계산을 위한 영 전압 벡터 배치

000

00 0

1 11

111

V0 V1 V2V7

Sa1Sb1Sc1

Effective voltage vector

Zero voltage vector

V1 <1 0 0>

V2 <1 1 0>

V7 <1 1 1>V0 <0 0 0>

V*

d

q

T1 T2 T0

Sa1Sb1Sc1

000

00 0 0 0 0

1 11

111

111

11

11 0

0

V0 V0V1 V2 V7 V2 V1

Ts Ts

Page 16: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

16 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (VI)

영 전압 벡터 배치시 고려 할 사항 • 스위칭 손실

• 고조파

영 전압 벡터 배치의 자유도

000

00 0

1 11

111

V0 V1 V2 V7

00 0

1 11

V1 V2

000

000

111

V0 V1V2

T

dts

VV aa0

*

harmonic flux

Sa1

Sb1

Sc1

Ts Ts

Va & Va

*

Sa1

Sb1

Sc1

Va & Va

*

Page 17: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

17 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (VII)

실제적인 스위칭 시간 계산

20T

T ga

TT

T gb 1

0

2

TTT

T gc 21

0

2

TTT

T ga 21

0

2

TT

T gb 2

0

2

2

0TT gc

V1 <1 0 0>

V2 <1 1 0>

V7 <1 1 1>V0 <0 0 0>

V*

d

q

T1 T2 T0

000

00 0

1 11

111

V0 V1 V2V7

Sa1Sb1Sc1

Effective voltage vector

Zero voltage vector

T2

T02 T1 T1T2

T02

T02

T02

Tga Tga

Tgb Tgb

Tgc Tgc

Ts Ts

On gating sequence Off gating sequence

Page 18: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

18 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (VIII)

ex) 영역 II에 기준 전압 벡터가 위치한 경우

VTVTVT s 3221

*

})3

(3

sin{

*

31

V

VTT

dc

sT 1)3(sin

*

3

V

VT

dc

s

T 2sin

*

3V

VT

dc

s

)(210 TTTT s

)3

(sin

*

32

V

VTT

dc

s

21 21* VTVTVT s

)(210 TTTT s

V1 <1 0 0>

V2 <1 1 0>

V7 <1 1 1>V0 <0 0 0>

V*

d

q

T1 T2 T0

V1 <1 0 0>

V2 <1 1 0>

V1 <1 1 1>V0 <0 0 0>

V*

d

q

T1

T2

T0

V3 <0 1 0>

Page 19: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

19 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (IX)

T1, T2 일반식

영역

I

II

III

IV

V

VI

3

1

3

2

3

4

3

5

number sectorn ,n

3

1

)sin3

coscos3

sin(

*

31

nn

V

VTT

dc

s

)sin3

sincos3

1cossin(

*

32

nn

V

VTT

dc

s

Page 20: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

20 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (X)

및 영역(sector) 판별

VVV qdj

***

)(*

*

1

tanV

V

d

q

*>0

qV 이면 I, II, III 중 하나 i)

영역 I

영역 II

영역 III 나머지

3

1tan300tan

*

*

V

V

d

q

tan033

2tan

*

*

V

V

d

q

이면 IV, V, VI 중 하나

ii) *<0

dV

영역 IV

영역 V

영역 VI 나머지

3

4tan30tan

*

*

V

V

d

q

2tan033

5tan

*

*

V

V

d

q

- 기준 전압 벡터로부터 와 값도 계산 가능

V

V q

*

sin

*

V

V d

*

cos

*

sin cos

)3

cos3

sin(3 **

1

nnVV

VT

T qd

dc

s

Page 21: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

21 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (XI)

기준 전압 벡터로부터 와 값도 계산 가능

V

V q

*

sin

*

V

V d

*

cos

*

sin cos

)3

cos3

sin(3 **

1

nnVV

VT

T qd

dc

s

)3

1cos

3

1sin(

3 **

2

nnVV

VT

T qd

dc

s

)sin3

coscos3

sin(

*

31

nn

V

VTT

dc

s

)sin3

sincos3

1cossin(

*

32

nn

V

VTT

dc

s

Page 22: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

22 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (XII)

영역 II, IV, VI 의 경우 한 주기에 3번 스위칭 동작을 하므로 두 전압 벡터의 인가 순서를 바꾸어 영역 I, III, V 처럼 한 주기에 한 번씩 만 스위칭이 이루어 지도록 한다.

영역 II의 실제 스위칭

On gating sequence Off gating sequence

TT

T ga 2

0

2

20T

T gb

TTT

T gc 12

0

2

TT

T ga 1

0

2

TTT

T gb 21

0

2

20T

T gc

T2

T02 T1 T1T2

T02

T02

T02

Ts Ts

On gating sequence Off gating sequence

0

0

0

0

0 0 0 0

0 0

0

01 1 1 1 1 1

1 1 1 1

1 1

V0

V1

V2

V7

V7

V2

V1

V0

Sector I

Sector II

0

0

0

0 0 0

00 0 0

0

0

V0

V0

V7

V7

1

1 1 1 1 1 1

1 1 1

1 1

V2

V2

V3

V3

Page 23: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

23 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Space Vector Approach (XIII)

Step1>

Sector Identification

벡터 공간상에서 기준 전압 벡터가 위치해 있는 섹터를 알아내야 한다.

기준 벡터의 d축 성분과 q축 성분으로 부터 선정.

섹터를 선정함으로써 인가 되어질 유효벡터(V1~V6)를 알 수 있다.

Step2>

Calculating the Effective Times

기준 전압 벡터의 d-q 성분을 이용하여 유효벡터가 인가 되는 시간을 계산.

Step3>

Determining the Switching Times

섹터의 번호를 다시 한번 이용하여 각 섹터별 T1, T2, T0를 조합하여 실제 스위칭 시간 Tga, Tgb, Tgc 를 결정.

Summary

Page 24: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

24 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Effect of SVPWM

(1),max

1 3

32PN DCV V

공간벡터 PWM에서 부하상전압의 기본파 성분은 기준 부하상전압과 같다.

기준벡터의 최대 크기는 기준벡터 궤적이 6각형에 내접하는 원이 될 때이다.

공간벡터 PWM 제어되는 인버터에서 부하상전압의 기본파의 최대 실효값:

공간벡터 PWM 제어할 때 기본파의 최대 실효값은 6-스텝 제어될 때의

90.7%에 해당하며, 이는 정현파 PWM 시 부하상전압의 기본파 성분이

6-스텝 제어될 때의 78.6%에 지나지 않았던 것에 비추어볼 때, 12.1%

증가한 값이다.

기본파의 크기

Page 25: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

25 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Another Approach of SVPWM (I)

이전의 SVPWM은 전압을 벡터로 취급

=> 벡터 공간상에서 해석을 시도

그러나 시간축 상의 해석이 오히려 계산상의 복잡성을 덜어 줄 수 있음.

VVV qdj

***

abcdq

V

V

VVV

qc

b

a

d*

*

*

*

*

2

3

2

12

3

2

1

01

)3

cos3

sin(3 **

1

nnVV

VT

T qd

dc

s

)3

1cos

3

1sin(

3 **

2

nnVV

VT

T qd

dc

s

Page 26: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

26 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Another Approach of SVPWM (II)

Ex) Sector I

* *1

* *

* * *

* *

* *

3 3 1

2 2

3 3

2 2

1 3( )

2 2

sd d

dc

sd d

dc

sd d q

dc

s sa b

dc dc

a b

TV VT

V

TV V

V

TV V V

V

T TV V

V V

T T

* *2

* * * *

* *

* *

30 3

1 3 1 3( ) ( )

2 2 2 2

s sq q

dc dc

sd q d q

dc

s sb c

dc dc

b c

T TV VT

V V

TV V V V

V

T TV V

V V

T T

VV

TTdc

a

sa

*

*

VV

TTdc

b

sb

*

*

VV

TTdc

c

sc

*

*

0*** VVV cba

0*** TTT cba

위 식으로 부터 유효벡터 V1, V2가 인가되는 시간 T1, T2가 각 상의 스위칭 상태가 변이하는 구간을 나타내는 시간임을 알 수 있음.

SVPWM에서 유효 전압 벡터가 인가되는 시간이란 선간 전압이 인가되는 시간을 정의 한것과 같음.

Page 27: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

27 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Another Approach of SVPWM (III)

Ex) Sector I

한 주기 내에서 각 레그 전압이 모두 Vdc에서 0으로 전압이 전이 한다고 가정하고, 기준 전압이 섹터 I에 있는 경우 아래 그림과 같은 전압이 부하측에 인가된다고 볼 수 있음.

이전 SVPWM에서 복잡하게 계산 되어진 유효시간 T1, T2는 각 상의 스위칭 상태가 전이되는 시점들 간의 시간차이에 불과함을 알 수 있음.

T1T2

Ta

Ts

*

Tb*

Tc*

0

Teff TmaxTmin

T02

T02

Tga

Tgb

Tgc

Ts Ts

On gating sequence Off gating sequence

Teff

Off gating sequence

Page 28: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

28 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Another Approach of SVPWM (IV)

유효 시간의 개념에서 SVPWM을 해석하면 섹터의 구별을 할 필요 없이 인버터 각 상에 인가되는 스위칭 시간들이 쉽게 결정.

그러면 실제 스위칭 시간을 얻기 위해서는 가상 스위칭 시간에 offset 값을 더해 주어야 함.

단 유효 시간이 한 주기 내의 중심부에 위치하도록 해야 한다.(SVPWM의 조건)

VV

TTdc

a

sa

*

*

VV

TTdc

b

sb

*

*

VV

TTdc

c

sc

*

*

그러나 계산된 시간은 음의 값을 적어도 하나 이상 갖음.

가상 스위칭 시간이라 정의함

TTT offsetaga

*

TTT offsetbgb

*

TTT offsetcgc

*

Page 29: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

29 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Another Approach of SVPWM (V)

-유효시간의 폭을 알아야한다.

-지금 한 것은 스위칭 신호가 off 되는 경우에 관한 것이므로 on 되는 경우를 따로

고려 해야함

=> 간단히 해결됨

TTT eff min

*

max

TTT effszero

*

2min

TTT zero

offset

TT

Tzero

offset min2 T

TT effs

min2

T

TTT s

min

minmax

2

2

)(minmax TTT s

)()( OFFON TTT gasga

)()( OFFON TTT gbsgb

)()( OFFON TTT gcsgc

Page 30: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

30 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Another Approach of SVPWM (VI)

새로운 SVPWM 에서는 섹터를 판별할 필요가 없고 , 인가되는

유효벡터를 선정할 필요도 없으며 유효시간을 계산하고 다시 합성할

필요도 없다.

단지 최대값과 최소값을 찾기 위한 알고리즘을 이용하여 계산된 가상

시점을 시간적으로 이동 시킴으로써 SVPWM을 구현 할 수 있다.

Page 31: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

31 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Carrierwave-Based SVPWM (I)

캐리어 비교 방식 SVPWM 방법은 전압-시간 평균 이론에 바탕을 둔 SVPWM 방법의 특성을 그대로 가지면서 그 구현이 매우 간편하고 게이트에 실제로 인가되는 시간을 얻기 위한 계산 속도를 향상시키는 장점을 갖는다.

정지 좌표계의 기준 전압( )은 다음 식으로 주어지는 dq/abc 축 변환식에 의해서 가상 상 전압 , , 로 변환된다.

VVV qdj

*

V a

*

V b

*

V c

*

영 전압 벡터 성분을 한 샘플링 주기동안 균등하게 양분하기 위해 가상 상전압에

offset 전압을 더하게 되며 여기서 얻어지는 전압을 유효 상전압으로 정의한다.

),,(*

cbaxVVV offsetxx

Basic Concept

Page 32: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

32 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Carrierwave-Based SVPWM (I)

Vdc – ( max – min ) = zero

Min + offset – ( -Vdc/2 ) = zero/2

Offset = - ( max + min ) / 2

Ts TsVdc/2

-Vdc/2

max

min

Page 33: Prof. Byoung-Kuk Lee, Ph.D. Energy Mechatronics Lab ...contents.kocw.net/KOCW/document/2015/sungkyunkwan/leebyeongguk/12.pdf · 변조 영역을 확대하기 위해서는 삼각파

전력전자공학

33 / 33

Sungkyunkwan Univ., Energy Mechatronics Lab.

Simulation

Modulation Index 1.0 Modulation Index 1.1

• Modulation

Index의 상승으로

고주파는 큰차이

없이 기본파의

크기 향상으로

전압 이용률 증가.