18
PRODUCCIÓN INDUSTRIAL DE PENICILINA 1. Historia de la penicilina Aunque generalmente se atribuye a Alexander Fleming el descubrimiento de la penicilina, muchas épocas y culturas diferentes llegaron mediante la observación y la experiencia a conocer y emplear las propiedades bactericidas de los mohos. Se han descubierto precedentes en la Grecia e India antiguas , y en los ejércitos de Ceilán del siglo II . Ha estado también presente en las culturas tradicionales de regiones tan distintas y distantes como Serbia , Rusia o China , así como en los nativos de Norteamérica . Se solía aplicar alimentos florecidos o tierra del suelo que contuviera hongos a las heridas de guerra . Desde el siglo VIII por lo menos, los médicos árabes curaban infecciones untando las heridas con una pasta blanca que se formaba en los arneses de cuero con que se ensillaban los burros de carga. A lo largo del siglo XVII algunos farmacólogos y herboristas ingleses , como John Parkington , incluyeron el tratamiento con hongos en los registros de farmacia . A finales del siglo XIX , Henle (uno de los grandes científicos de la llamada "generación intermedia") suscita en su discípulo Robert Koch , en la Universidad de Gotinga , el interés por los trabajos de Agostino Bassi y Casimir Davaine , que le llevaría a investigar a los microorganismos como agentes causales de las enfermedades . Esto le conduciría en 1876 a descubrir que Bacillus anthracis era el agente causal específico del carbunco , en la línea de la teoría microbiana de la enfermedad , y a enunciar sus célebres postulados . Más tarde, Paul Ehrlich , que trabajó con Koch en Berlín , desarrolló el concepto de "Magische

Producción Industrial de Penicilina

Embed Size (px)

DESCRIPTION

Mediante el siguiente documento se informa el proceso básico para la obtención de la penicilina, así mismo se detalla los tipos de bacterias y su respectiva clasificacion.

Citation preview

Page 1: Producción Industrial de Penicilina

PRODUCCIÓN INDUSTRIAL DE PENICILINA

1. Historia de la penicilina

Aunque generalmente se atribuye a Alexander Fleming el descubrimiento de la penicilina, muchas épocas y culturas diferentes llegaron mediante la observación y la experiencia a conocer y emplear las propiedades bactericidas de los mohos. Se han descubierto precedentes en la Grecia e India antiguas, y en los ejércitos de Ceilán del siglo II. Ha estado también presente en las culturas tradicionales de regiones tan distintas y distantes como Serbia, Rusia o China, así como en los nativos de Norteamérica. Se solía aplicar alimentos florecidos o tierra del suelo que contuviera hongos a las heridas de guerra. Desde el siglo VIII por lo menos, los médicos árabes curaban infecciones untando las heridas con una pasta blanca que se formaba en los arneses de cuero con que se ensillaban los burros de carga. A lo largo del siglo XVII algunos farmacólogos y herboristasingleses, como John Parkington, incluyeron el tratamiento con hongos en los registros de farmacia.

A finales del siglo XIX, Henle (uno de los grandes científicos de la llamada "generación intermedia") suscita en su discípulo Robert Koch, en la Universidad de Gotinga, el interés por los trabajos de Agostino Bassi y Casimir Davaine, que le llevaría a investigar a los microorganismos como agentes causales de las enfermedades. Esto le conduciría en 1876 a descubrir que Bacillus anthracis era el agente causal específico del carbunco, en la línea de la teoría microbiana de la enfermedad, y a enunciar sus célebres postulados. Más tarde, Paul Ehrlich, que trabajó con Koch en Berlín, desarrolló el concepto de "Magische Kugel" o bala mágica, denominando así a aquellos componentes químicos que pudieran eliminar selectivamente a los gérmenes.

Al mismo tiempo o poco después, conocido el hecho de que las bacterias podían provocar enfermedades, se sucedieron multitud de observaciones, tanto in vivo como in vitro, de que los mohos ejercían una acción bactericida. Por solo citar algunos nombres, sirvan de ejemplo los trabajos de John Scott Burdon-Sanderson, Joseph Lister, William Roberts, John Tyndall, Louis Pasteur y Jules Francois Joubert, Carl Garré, Vincenzo Tiberio, Ernest Duchesne, Andre Gratia y Sara Dath.

En marzo de 2000, médicos del Hospital San Juan de Dios de San José (Costa Rica) publicaron los escritos del científico y médico costarricense Clodomiro Clorito Picado Twight (1887-1944). En el reporte explican las experiencias que adquirió Picado entre 1915 y 1927 acerca de la acción inhibitoria de los hongos del género Penicillium sobre el crecimiento de estafilococos y estreptococos (bacterias causantes de una serie de infecciones humanas).12 Aparentemente, Clorito Picado reportó su descubrimiento a la Academia de

Page 2: Producción Industrial de Penicilina

Ciencias de París, pero no lo patentó, a pesar de que su investigación había sido iniciada unos pocos años antes que la de Fleming.

2. INTRODUCCIÓN

Son sustancia química producida por un ser vivo o derivado sintético, que mata o impide el crecimiento de ciertas clases de microorganismos sensibles, generalmente son fármacos usados en el tratamiento de infecciones por bacterias, de ahí que se les conozca como antibacterianos. Los antibióticos se utilizan en medicina humana, animal y horticultura para tratar infecciones provocadas por gérmenes. Normalmente los antibióticos presentan toxicidad selectiva, siendo muy superior para los organismos invasores que para los animales o los seres humanos que los hospedan, aunque ocasionalmente puede producirse una reacción adversa medicamentosa, como afectar a la flora bacteriana normal del organismo. Los antibióticos generalmente ayudan a las defensas de un individuo hasta que las respuestas locales sean suficientes para controlar la infección. Un antibiótico esbacteriostático si impide el crecimiento de los gérmenes, y bactericida si los destruye, pudiendo generar también ambos efectos, según los casos.

3. PRODUCCION DE PENICILINAS

3.1. Estructura química:

Las penicilinas pertenecen a una familia de compuestos químicos con una estructura química peculiar que le confiere una actividad característica contra un grupo determinado de bacterias. A pesar de que existen diferentes variantes, la estructura química esencial de la penicilina fue descubierta por Dorothy Crowfoot Hodgkin entre 1942 y 1945. La mayoría de las penicilinas poseen como núcleo químico el anillo 6-aminopenicilánico y difieren entre sí según la cadena lateral anclada a su grupo amino. Este núcleo 6-aminopenicilánico o núcleopenam consta, a su vez, de un anillo tiazolidínico (un anillo aminofenílico de los tiazoles) enlazado a un anillo β-lactámico; este último, aparentemente esencial para la actividad antimicrobiana del compuesto, es hidrolizado mediante penicilinasas (enzimas tipo β-lactamasas) por las bacterias resistentes a penicilinas.

Además del nitrógeno y el azufre del anillo tiazolidínico y β-lactámico, la penicilina tiene las siguientes agrupaciones:

Un grupo carboxilo en la posición 2. Un radical 2-metil en la posición 3.

Page 3: Producción Industrial de Penicilina

Un grupo amino en la posición 6, con distintos derivados del grupo acilo como posibles sustituyentes, que son los responsables de las diversas características de las diferentes penicilinas.

En la molécula hay tres carbonos asimétricos:

El carbono C2, que tiene una configuración absoluta S (sentido contrario a las agujas del reloj).

Los carbonos C5 y C6, que tienen una configuración absoluta R, presentando cada uno de sus hidrógenos isomería cis entre ellos.

Fig. 1 Estructura de la penicilina

3.2. Propiedades:

La penicilina natural o penicilina G es cristalina, totalmente soluble en agua, soluciones salinas y dextrosas isotónicas. El radical R, es el responsable de la sensibilidad a la hidrólisis por parte de las β-lactamasas, del enlace a proteínas transportadoras y del vínculo con las proteínas bacterianas PBP que transportan a la penicilina dentro de la célula. Además, se le asocia a la penicilina un dipéptido cisteína-valina, haciendo que la penicilina tenga la ideal afinidad por la enzima bacteriana transpeptidasa, la cual no se encuentra en el cuerpo humano y que permite la síntesis del peptidoglucano.

Existe una analogía estructural entre la penicilina y el dipéptido D-alanil-D-alanina terminal asociado a las unidades de peptidoglicano que aparecen durante la formación de lapared celular de ciertas bacterias (proceso de transpeptidación).

Page 4: Producción Industrial de Penicilina

El nucleófilo O(-) serina de la transpeptidasa ataca los grupos carbonilos de los ß-lactámicos, como la penicilina, por esa analogía a su sustrato D-Ala-D-Ala, el dipéptido antes mencionado. De esa manera, uniéndose covalentemente a los residuos de serina del sitio activo de la enzima en forma de complejo peniciloil, la penicilina inhibe a la transpeptidasa bacteriana.

3.3. Clasificación

Las penicilinas se clasifican en dos grupos, naturales y semisintéticas, y en cada uno de ellos hay compuestos relativamente resistentes al jugo gástrico y por lo tanto se pueden administrar por vía oral, por ejemplo, la penicilina V, la dicloxacilina y la amoxicilina.El término penicilina se usa a menudo, en sentido genérico, para cualquiera de las variantes que derivan de la penicilina misma, en especial, la benzilpenicilina. Estas tienen la mayor actividad contra organismos Gram positivos, cocos Gram negativos y organismos anaerobios que no producen β-lactamasa. Sin embargo, presentan una baja actividad contra bacilos Gram negativos. Todos son susceptibles a la hidrólisis por β-lactamasas. La penicilamina, un metabolito de la penicilina y análogo del aminoácido cisteína, es efectivo para el alivio de la artritis reumatoide reduciendo la velocidad de aparición de nuevos daños a articulaciones, aunque rara vez es recetado debido a su elevada toxicidad. También existen en el mercado penicilinas sintéticas, como la ticarcilina, la mezlocilina y la piperacilina.

3.3.1. Penicilinas naturales y biosintéticasLas penicilinas naturales son aquellas generadas sin intervención biotecnológica. Entre ellas destacan la bencilpenicilina, como producto final de interés terapéutico, y los intermediarios aislables como la isopenicilina N o la penicilina N. Las biosintéticas, en cambio, se producen mediante adición de determinados compuestos en el medio de cultivo del biorreactor empleado durante su producción, es decir, sin que tenga lugar un aislamiento y una modificación química ex vivo. Entre las biosintéticas destacan: la fenoximetilpenicilina, la alilmercaptometilpenicilina y, de nuevo, la bencilpenicilina (pues es posible inducir su síntesis aplicando ciertos precursores en el fermentador).

Bencilpenicilina o penicilina GLa bencilpenicilina, comúnmente conocida como penicilina G, es el estándar de las penicilinas. Por lo general se administra por vía parenteral (intravenosa, intratecal o intramuscular), porque tiende a perder estabilidad con el jugo gástrico del estómago. Debido a que se administra inyectada, se pueden alcanzar mayores concentraciones del medicamento en los tejidos que con la

Page 5: Producción Industrial de Penicilina

penicilina V ofenoximetilpenicilina. Estas mayores concentraciones se traducen en una mayor eficacia antibacteriana.

Fig. 2 Bencilpenicilina

Bencilpenicilina procaínaLa bencilpenicilina procaína (DCI), conocida también como penicilina G procaína, es una combinación de la penicilina G con un anestésico local, la procaína. Esta combinación tiene como fin reducir el dolor y la incomodidad asociada con la voluminosa inyección intramuscular de penicilina. Tras la administración de una inyección intramuscular, el fármaco se absorbe lentamente en la circulación y se hidroliza a bencilpenicilina.

Bencilpenicilina benzatínicaLa bencilpenicilina benzatínica o penicilina G benzatínica (DCI), es una combinación con benzatina que se absorbe lentamente en la circulación sanguínea después de una inyección intramuscular y luego se hidroliza a bencilpenicilina. Es la primera opción cuando se requiere una concentración baja de bencilpenicilina, permitiendo una acción prolongada del antibiótico por más de 2-4 semanas por cada inyección.

Fenoximetilpenicilina o penicilina VLa fenoximetilpenicilina, comúnmente llamada penicilina V, es la única penicilina activa por vía oral. Tiene una actividad menor que la bencilpenicilina, por lo que se administra cuando no se requiere alcanzar concentraciones elevadas en los tejidos.

Fig. 3 Fenoximetilpenicilina

Page 6: Producción Industrial de Penicilina

3.3.2. Penicilinas semisintéticasLas penicilinas semisintéticas son aquellas generadas mediante el aislamiento de un intermediario estable durante una producción microbiológica industrial (fermentación en biorreactores) continuada por la modificación química o enzimática del compuesto aislado. Se dividen según su acción antibacteriana en cinco grupos: resistentes a β-lactamasas, aminopenicilinas, antipseudomonas, amidinopenicilinas y resistentes a β-lactamasas (Gram negativas)

Resistentes a β-lactamasasSu uso es principalmente en infecciones por estafilococos productores de β-lactamasas, como el Staphylococcus aureus. También presentan actividad, aunque reducida, frente a estreptococos, pero carecen de ella frente a enterococos.

Fig. 4 Meticilina

AminopenicilinasSu espectro de acción es muy grande, pero son sensibles a las β-lactamasas. Se administran en casos de infecciones respiratorias de las vías altas por estreptococos (sobre todo, S. pyogenes y S. pneumoniae) y por cepas de Haemophilus influenzae, infecciones urinarias por ciertas enterobacterias (como Escherichia coli y diversas infecciones generadas por Streptococcus faecalis, Salmonella spp., Shigella spp. y Listeria monocytogenes.

Fig. 5 Ampicilina

Page 7: Producción Industrial de Penicilina

AntipseudomónicasEstas penicilinas son de amplio espectro porque su cobertura de acción comprende Gram positivos, Gram negativos y anaerobios. Dentro de este grupo existen dos subgrupos, las carboxipenicilinas y las ureidopenicilinas, atendiendo a su eficacia frente a pseudomonas.

CarboxipenicilinasFueron desarrolladas para ampliar el espectro de bacterias Gram negativas cubiertas por penicilinas, tales como infecciones nosocomiales causadas por Pseudomonas aeruginosa. Inicialmente se produjo la carbenicilina por sustitución del grupo amino por un grupo carboxilo en la ampicilina y posteriormente algunas sustituciones en la carbenicilina permitieron desarrollar la ticarcilina.

Fig. 5 Tirarcilina Ureidopenicilinas

Se crearon derivadas de la molécula de ampicilina para ampliar aún más el espectro contra las bacterias Gram negativas y las Pseudomonas. Las ureidopenicilinas penetran bien en los tejidos y tiene excelentes concentraciones tisulares, incluyendo el líquido cefalorraquídeo en pacientes con meninges inflamadas, y niveles adecuados en hueso para el tratamiento de osteomielitis. Al igual que las carboxipenicilinas, están asociadas a hipopotasemia, hipernatremia y disfunción plaquetaria. En este grupo de penicilinas están lamezlocilina, azlocilina y la piperacilina.

AmidinopenicilinasPresentan gran eficacia frente a Gram negativos, pero escasa ante cocos Gram positivos, debido a su estructura química, la 6-amidinopenicilina.

TABLA 1: Clasificación de Penicilinas

Page 8: Producción Industrial de Penicilina

NaturalesResistentes

al ácidoAntiestafilocócicas Gram negativas

Penicilina G

(bencil)Penicilina V Meticilina

Isoxazolilopenicilinas:

Cloxacilina

Dicloxacilina

Flucloxacilina

Oxacilina

Temocilina

Penicilina G

ProcaínaFeneticilina Nafcilina

Penicilina G

benzatinaPropicilina

Aminopenicilinas Antipseudomonas Amidinopenicilinas

Amoxicilina

Ampicilina:

Becampicilina

Metampicilina

Pivampicilina

Talampicilina

TicarcilinaCarbenicilina:

Carfecilina

Carindacilina

Mecilinam

Hetacilina Apalcilina Pivmecilinam

Espicilina Ciclacilina Azlocilina Mezlocilina Espicilina

3.4. Producción biotecnológicaLa producción industrial de penicilina emergió y floreció como industria a causa de la Segunda Guerra Mundial, en especial por la cantidad de empleos disponibles en los Estados Unidos. En julio de 1943, se presentó un plan para distribuirla en masa a las tropas en el frente de batalla de Europa y, gracias a ello, se produjeron 425 millones de unidades. Por entonces, el hongo se hacía crecer sobre una capa delgada de cultivo puesto en bandejas o botellas. Para mejorar los requerimientos de espacio y de los materiales se desarrolló un nuevo método comercial de fermentación sumergida en calderos de 20.000 a más de 100.000 litros de capacidad, haciendo que se redujesen los precios de coste y aumentase la producción. Como consecuencia, en 1945, se produjeron más de 646 billones de unidades. Por tanto, lo que era un compuesto caro y difícil de aislar es hoy una «commodity química», es decir, un compuesto químicamente puro que se compra y vende a gran escala en un mercado competitivo.El desarrollo biotecnológico de cepas super productoras ha sido otro campo de investigación de gran interés. El aislado original de Fleming producía alrededor de 2u/mL (unidades internacionales por mL). Los procesos empleados a finales de la década de los 80 generaban 85.000 u/mL. El desarrollo de las cepas se ha basado en:

Page 9: Producción Industrial de Penicilina

El análisis de numerosos aislados de especies y cepas distintas; Su mutagénesis mediante rayos X, metilbiscloroetilamina, 

nitrosoguanidina, radiación UV de onda corta y otros; La recombinación mediante ciclos parasexuales en P. chrysogenum; La fusión de protoplastos; Técnicas moleculares de barajado de ADN, que permiten realizar evolución

dirigida de fragmentos de ADN mediante PCR.

BIOSÍNTESIS Y SEMISÍNTESIS

La estrategia de producción industrial de penicilina está ligada al tipo de penicilina a sintetizar. Básicamente, esta variedad reside en la sustitución del grupo acilo de la posición 6 en el ácido 6-aminopenicilánico. Cuando la fermentación se produce sin añadir ningún precursor se producen las penicilinas naturales. De entre ellas, solo la penicilina G es útil terapéuticamente y por tanto es el compuesto a purificar. Por otra parte, de añadir otros precursores para la cadena lateral, el control de la reacción mejora y es posible producir el compuesto deseado con una alta especificidad. Esta estrategia da lugar a las penicilinas biosintéticas, como la penicilina V o la penicilina O (en pequeñas cantidades). La aproximación al problema más empleada, no obstante, pasa por la modificación química del compuesto obtenido mediante fermentación. De este modo es posible obtener una gran diversidad depenicilinas semisintéticas.

La generación de penicilinas semisintéticas requiere la producción, mediante fermentación, de penicilina G (en algunos casos penicilina V), compuesto que se convierte en ácido 6-aminopenicilánico mediante una transformación química, o, más frecuentemente, enzimática. Este compuesto es luego modificado mediante la enzima penicilina acilasa de modo que se añada la cadena lateral deseada a la posición 6, lo que da lugar a la penicilina semisintética final. De hecho, el 38 % de las penicilinas producidas comercialmente se emplean en medicina humana, el 12 % en veterinaria y el 43 % como precursores para el diseño de penicilinas semisintéticas.

Page 10: Producción Industrial de Penicilina

Fig. 6 Ruta de biosíntesis de los antibióticos β-lactámicos: penicilina G, cefalosporina C y cefamicina C

Page 11: Producción Industrial de Penicilina

REGULACIÓN DE LA SÍNTESISEl anillo tiazolidínico de la β-lactama se genera mediante la unión de los aminoácidos L-cisteína, L-valina y ácido α-aminoadípico. Este último, aminoácido no proteico, se une al residuo de cisteína mediante una síntesis de péptidos no ribosomal, a cuyo producto se fusiona una valina mediante una epimerización, reacción que da lugar a un tripéptido. Este tripéptido se cicla mediante un proceso aún no descrito dando lugar al primer producto aislable, laisopenicilina N. La acción de la penicilina transacetilasa, que sustituye la cadena de α-aminoadípico en el C6 por una molécula de ácido fenilacético activada, produce la bencilpenicilina. La producción de penicilina es un área que requiere la colaboración de científicos e ingenieros para la efectiva producción de cantidades industriales del antibiótico. La penicilina es un metabolito secundario del hongo Penicillium, es decir, el hongo no produce el antibiótico cuando crece bajo condiciones normales, solo cuando su crecimiento se encuentra inhibido por verse sometido a condiciones de estrés. Otros factores inhiben la producción de penicilina, incluyendo su misma ruta de producción. Por ejemplo, la lisina inhibe su síntesis debido a que inhibe a la homocitrato sintasa, enzima implicada en la síntesis de ácido α-aminoadípico. No obstante, la retroinhibición por lisina no parece ser un factor limitante en la producción industrial del compuesto. Otros elementos reguladores son: la concentración de fosfato, de glucosa y de ion amonio. Las células de Penicillium son crecidas usando una técnica conocida como «fed-batch» (cultivo de lote nutrido), en el que se ven continuamente sujetas a condiciones de estrés y, por ende, producen penicilina en abundancia. Las fuentes de carbono disponibles son también importantes porque la glucosa inhibe a la penicilina mientras que la lactosa no. El valor del pH, los niveles de nitrógeno, fosfato y oxígeno son también críticos en los lotes de producción y deben controlarse automáticamente.

PRODUCCION DE PENICILINA

La extracción de penicilina se puede realizar en una o más etapas sucesivas, con una acidificación del caldo filtrado con H 2SO 4 o H 3PO 4 al 10% P/V y con el agregado de un agente surfactante (0,003 - 0,1% P/P, en el solvente), realizándose la extracción y concentración en extractores centrífugos.

Dependiendo de las especificaciones de uso final, el solvente conteniendo penicilina se puede tratar con carbón para separar pigmentos y otras impurezas. Esta etapa actualmente no se realiza debido a las bajas impurezas de los caldos y a los altos rendimientos obtenidos.

Page 12: Producción Industrial de Penicilina

El medio de un cultivo típico alimentado puede variar dependiendo de la cepa, y generalmente consiste en: Líquido de maceración de maiz (4-5% peso seco). Una fuente de Nitrógeno adicional, harina de soja, extracto de levadura o suero. Una fuente de carbono, lactosa. Varios tampones El pH se mantiene constante a 6,5. El ácido fenilacético o el fenoxiacético se alimentan continuamente como

precursores (0,5-0,8% del total).

Los procesos con alimentación de glucosa o melazas también tienen éxito. En estos casos las velocidades de alimentación son de 1.0-2.5 kg*m-3*h-1, con una concentración de glucosa de 500 kg*m-3. Aproximadamente el 65% de la fuente de carbono metabolizada se utiliza para el mantenimiento energético, el 25% para el crecimiento y sólo el 10% para la producción de penicilina.

Fig. 7 Proceso de Obtención de Penicilina

Page 13: Producción Industrial de Penicilina