Problem Sheet 3 Solutions

Embed Size (px)

Citation preview

  • 8/9/2019 Problem Sheet 3 Solutions

    1/6

    2010/11

    DEPARTMENT OF PHYSICS & ASTRONOMY

    PHAS3226 QUANTUM MECHANICS

    Problem Paper 3 - solutions

    Solutions to be handed in on Tuesday 16 November 2010

    1. (a) The component of spinSin the direction of the unit vector nisSn = S nand has two normalizedeigenfunctions

    j+ni= cos (=2) ji+ sin (=2) eiji and j

    ni=sin(=2) eiji+ cos (=2) ji

    satisfying Snj+n i = h2 j+n i and Snjn i =h2 jn i, where (; ) are the polar angles of theunit vector n. If ji= 1(r) ji+2(r) ji is a normalized state, show that the probability ofobtaining the value h=2 in a measurement of Sn is [10]

    P(Sn = h=2) =j1(r)j2 cos2 (=2) +j2(r)j2 sin2 (=2) + sin Re12e

    i :Expand the stateji in terms of the eigenstates ofSn as

    ji= aj+ni+ bj

    ni= 1(r) ji+ 2(r) ji: (1)

    The probability of obtaining state with Sn = 1

    2hi.e. to be in statej+

    niis given byjaj2. But

    a = h+

    n ji= 1(r

    ) h+

    n ji+ 2(r

    ) h+

    n ji (2)= 1(r)cos(=2) + 2(r)sin(=2) e

    i: (3)

    Hence

    jaj2 = 1(r)cos(=2) + 2(r)sin(=2) ei 1(r)cos(=2) + 2(r)sin(=2) ei ;= j1(r) j2 cos2 (=2) +j2(r) j2 sin2 (=2)

    +2(r)sin(=2) ei1(r)cos(=2) +

    1(r)cos(=2)2(r)sin(=2) e

    i;

    = j1(r) j2 cos2 (=2) +j2(r) j2 sin2 (=2) + 2Re1(r)2(r)cos(=2)sin(=2) e

    i ;= j1(r) j2 cos2 (=2) +j2(r) j2 sin2 (=2) + Re

    1(r)2(r)sin() e

    i ;= j1(r) j2 cos2 (=2) +j2(r) j2 sin2 (=2) + sin Re

    1(r)2(r)sin() e

    i

    :(b) Obtain, using the raising and/or lowering operators, the six wave functionsjj;mifor thep-states

    of an electron in terms of the spherical harmonics Ym1 ( j1;mi, m=1; 0; 1) and the spinorsji ( j1

    2; 12i) andji ( j1

    2;1

    2i). [10]

    For the p-state electron the orbital quantum number ` = 1, has three z -projections m = 1; 0;1,i.e. statesj1; 1i,j1; 0i,j1;1i ( Ym` = Y11; Y01; Y11 ). The two spin statesji ( j 12 ; 12 i) andji ( j1

    2;1

    2i) have ms = 12 and 12 respectively. The maximum total angular momentum has

    J=` + 12

    , the minimum is J=` 12

    . The highest (top) state has J= 32

    , MJ= 3

    2and is clearly

    given by

    3

    2;3

    2

    =Y11; j

    3

    2;3

    2i=j1; 1ij1

    2;1

    2i (4)

    asMJ =m`+ ms. The state J= 3

    2, MJ=

    3

    2is clearly given by

    3

    2;3

    2

    =Y11 ; j

    3

    2;3

    2i=j1;1ij1

    2;1

    2i: (5)

    The state J = 32

    , MJ = 1

    2 can be obtained from the J = 3

    2, MJ =

    3

    2one by application of the

    lowering operator J. Recall that in general JjJ;Mi =pJ(J+ 1)M(M1)hjJ;M1i,

    thus

    Jj32;3

    2i=

    s3

    2

    3

    2+ 1

    3

    2

    3

    21

    hj3

    2;1

    2i=

    p3hj3

    2;1

    2i: (6)

    In terms of the individual orbital and spin angular momenta, J = L +S so using Lj`;m`i=

    p` (` + 1)m`(m`1)hj`;m` 1iandSjs;msi= ps (s + 1)ms(ms1)hjs;ms 1i, with

    1

  • 8/9/2019 Problem Sheet 3 Solutions

    2/6

    `= 1, m` = 1, s = 1

    2, ms=

    1

    2,

    Jj32;3

    2i = L+

    S j1; 1ij1

    2;1

    2i; (7)

    =Lj1; 1i

    j12;1

    2i+j1; 1iSj1

    2;1

    2i;

    p3hj3

    2;1

    2i =

    p2hj1; 0ij1

    2;1

    2i+ hj1; 1ij1

    2;1

    2i

    p2hY01 + hY

    11; (8)

    j32;1

    2i =

    r2

    3hj1; 0ij1

    2;1

    2i+ 1p

    3j1; 1ij1

    2;1

    2i

    r2

    3hY01 +

    1p3

    hY11: (9)

    The state J= 32

    , MJ =12 can be obtained from the J= 32 , MJ = 12 state by application ofJor by applying J+ to the state J=

    3

    2, MJ =32 ,

    J+j32;3

    2i =

    L++ S+

    j1;1ij12;1

    2i; (10)

    =L+j1;1i

    j12;1

    2i+j1;1iS+j1

    2;1

    2i;

    p3hj3

    2;1

    2i =

    p2hj1; 0ij1

    2;1

    2i+ hj1;1ij1

    2;1

    2i

    p2hY01+ hY

    11 ; (11)

    j32;1

    2i =

    r2

    3hj1; 0ij1

    2;1

    2i+ 1p

    3j1;1ij1

    2;1

    2i

    r2

    3hY01+

    1p3

    hY11 : (12)

    The state J = 12

    , MJ = 1

    2 must be a linear combination of Y01 =j1; 0ij12 ; 12 i and Y11 =j1; 1ij1

    2;1

    2isince MJ=m`+ ms, thus

    j12;1

    2i= aj1; 0ij1

    2;1

    2i+ bj1; 1ij1

    2;1

    2i: (13)

    But

    J+j12;1

    2i = 0 =

    L++ S+

    aj1; 0ij1

    2;1

    2i+ bj1; 1ij1

    2;1

    2i

    (14)

    =

    aL+j1; 0i

    j12;1

    2i+ bj1; 1iS+j1

    2;1

    2i

    0 = ap

    2hj1; 1ij12;1

    2i+ bhj1; 1ij1

    2;1

    2i=

    ap

    2 + b

    hj1; 1ij12;1

    2i (15)

    givingap

    2 + b= 0. Normalization requiresjaj2 + jbj2 = 1, sojaj2 + 2jaj2 = 1and a = 1p3

    . Hence

    j1

    2

    ;1

    2 i=

    1

    p3 j1; 0

    ij1

    2

    ;1

    2 i r2

    3 j1; 1

    ij1

    2

    ;

    1

    2 i 1

    p3Y01

    r2

    3

    Y11: (16)

    Applying J gives

    Jj12;1

    2i =

    L+ S

    1p3j1; 0ij1

    2;1

    2i

    r2

    3j1; 1ij1

    2;1

    2i!; (17)

    hj12;1

    2i =

    r2

    3hj1;1ij1

    2;1

    2i+ 1p

    3j1; 0ihj1

    2;1

    2i

    r2

    3

    p2hj1; 0ij1

    2;1

    2i;

    j12;1

    2i =

    r2

    3j1;1ij1

    2;1

    2i 1p

    3j1; 0ij1

    2;1

    2i

    r2

    3Y11

    r1

    3Y01: (18)

    Note the state J = 12

    , MJ

    = 12

    could also be found by requiring it to be orthogonal to the state

    2

  • 8/9/2019 Problem Sheet 3 Solutions

    3/6

    J= 32

    , MJ= 1

    2 i.e.

    h32;1

    2j12;1

    2i = 0;

    0 =r

    23

    hh1; 0jh12;1

    2j+ 1p

    3h1; 1jh1

    2;1

    2j!

    aj1; 0ij12;1

    2i+ bj1; 1ij1

    2;1

    2i;

    0 =

    r2

    3ha +

    1p3b;

    as before.

    2. (a) Show that the operatorL Scan be expressed in terms of the raising and lowering operators L+,L, S+, S, and the componentsLz, Sz by L S= 12

    L+S+LS+

    +LzSz .} [4]

    The operator L S= LxSx +LySy+LzS. But the the raising/lowering operators L = Lx iLygive Lx =

    1

    2 L++ L and Ly = 1

    2i L+ L and similar relations for Sx and Sy. ThusL S = 1

    2

    L++ L

    12

    S++ S

    +

    1

    2i

    L+L

    12i

    S+S

    +LzS (19)

    = 1

    2

    L+S+ LS+

    +LzS: (20)

    (b) If a particle has spin 12

    and is in a state with orbital angular momentum `, there are two ba-sis states,j`;s;`z; szi which can be expressed in terms of the individual states asj`;s;`z; szi =j`; `zijs; szi with total z-component of angular momentummh, namely

    jai j ;m 12; 12i=j ;m 1

    2ij1

    2; 12i

    and

    jb

    i j`; 1

    2;m + 1

    2;

    1

    2

    i=

    j`;m + 1

    2

    ij1

    2;

    1

    2

    i:

    With these two statesjai,jbi as a basis show that the matrix representation of the operator L Sis (Hint: expressLS in terms of the raising and lowering operatorsL+, L, S+, S, and thecomponentsLz, Sz.) [16]

    L S=

    0B@ 12

    m 1

    2

    1

    2

    h` + 1

    2

    2 m2i1=21

    2

    h` + 1

    2

    2 m2i1=2 12

    m + 1

    2

    1CA h2:

    The matrix representation ofL S with the basis states,jai,jbi is

    L S=hajL Sjai hajL Sjbi

    hb

    jL

    S

    ja

    i hb

    jL

    S

    jb

    i : (21)

    In general Lj`;mi =p

    (` + 1)m (m1)hj`;m1i with a similar relation for S. Thusexplicitly

    L+j`;m 12 i =q

    (` + 1) m 12

    m + 1

    2

    hj`;m + 1

    2i; (22)

    =

    r`2 + ` +

    1

    4m2hj`;m + 1

    2i;

    =

    q` + 1

    2

    2 m2hj`;m + 12i: (23)

    Similarly for

    Lj`;m + 1

    2 i = q(` + 1) m + 12 m 12hj`;m 12 i; (24)

    =

    q` + 1

    2

    2 m2hj`;m 12i: (25)

    3

  • 8/9/2019 Problem Sheet 3 Solutions

    4/6

    For S, S+j12 ;12 i =q

    1

    2

    1

    2+ 1

    12

    1

    2

    hj1

    2; 12i = hj1

    2; 12i, S+j12 ; 12 i = Sj12 ;12 i = 0 and

    Sj12 ; 12 i= hj12 ;12 i.To evaluate the matrix elements, L

    S

    jai

    = 12L+S+ LS++LzS j`;m 12 ij12 ; 12 i note that

    L operators only operate on thej`;m 12i states and Soperators only operate on thej1

    2;1

    2i states.

    Hence using the relations above for the action ofLand Soperators on the states gives

    L Sjai =

    1

    2

    L+S+ LS+

    +LzS

    j`;m 1

    2ij1

    2; 12i (26)

    L Sj`;m 12ij1

    2; 12i = 1

    2

    q` + 1

    2

    2 m2hj`;m + 12ihj1

    2;1

    2i+ m 1

    2

    h

    1

    2hj`;m 1

    2ij12; 12i(27)

    and

    L Sjbi =

    1

    2 L+S+ LS+

    +LzSz

    j`;m + 1

    2ij12;1

    2i (28)

    = 12

    q` + 1

    2

    2 m2hj`;m 1

    2ihj1

    2;1

    2i+ m + 1

    2

    h

    12

    h

    j`;m 12ij12; 12i (29)

    Hence using the orthogonality of the statesj`;m + 12i,j`;m 1

    2i,j1

    2; 12iandj1

    2;1

    2i gives

    hajL Sjai = 12

    m 1

    2

    h2;

    hajL Sjbi = 12

    ` + 1

    2

    2 m2 h2;hbjL Sjai = 1

    2

    ` + 1

    2

    2 m2 h2;hbjL Sjbi = 1

    2 m + 1

    2 h2:

    3. (a) Write down, without proof, the wave functions for two spin- 12

    particles which as eigenstatesjS;Sziof denite total angular momentumS and z-component Sz. [4]

    The singlet state, S= 0, is

    j0; 0i= 1p2

    (1212) : (30)

    The triplet states , S= 1, are

    j1; 1i = 12; (31)j1; 0i = 1p

    2(12+ 12) ; (32)

    j1;

    1i

    = 12: (33)

    (b) Suppose that particles a and b interact through a magnetic dipole-dipole potential

    V =A(a b) r2 3 (a r) (b r)

    r5 ;

    wherer is the inter-particle separation anda andb are the Pauli matrices referring to particlesa and b respectively. If the two particles are a xed distance d apart along the z-axis, showthat (Hint; express V in terms of the total spin operator S2 and z-componentSz and recall,2 =2x+

    2y+

    2z = 3)

    i. Vdoes not mix the statesjS;Szi, i.e. the o-diagonal elements are zero,ii. and that the diagonal elements are

    h1; 1jVj1; 1i=h1;1jVj1;1i=2Ad3

    ; h1; 0jVj1; 0i= 4Ad3

    ; h0; 0; jVj0; 0i= 0:

    4

  • 8/9/2019 Problem Sheet 3 Solutions

    5/6

    As the two particles are separated by a xed distance d along the z-axis, the dipole-dipoleinteraction reduces to

    V =A(a b) d2 3 (az) (bz) d2

    d5 =

    A

    d3[(a

    b)

    3 (az) (bz)] (34)

    since r= dz so a r= a zd= az, and similarly for b r.The total spin

    S= Sa+ Sb= h

    2(a+ b) (35)

    and

    S2 =

    h2

    4

    2a+

    2b+ 2ab

    (36)

    and so

    ab = 12

    4

    h2S2 2a2b

    : (37)

    But 2

    =2

    x+ 2

    y+ 2

    z = 3 soa b = 2

    h2S2 3: (38)

    Similarly sinceSz = h2

    (az+ bz), then

    azbz = 1

    2

    4

    h2S2z 2az 2bz

    ;

    = 2

    h2S2z1: (39)

    Using eq(??) and eq(??) in eq(34) gives

    V = A

    d3 2

    h2S2 33 2h2 S2z1 ;

    2A

    d3h2

    hS2 3S2z

    i: (40)

    Thus since S2jS;Szi= S(S+ 1) h2jS;Sziand SzjS;Szi= SzhjS;Szithen S2z jS;Szi= S2zh2jS;Sziand

    VjS;Szi= 2Ad3h2

    hS2 3S2z

    ijS;Szi= 2A

    d3h2S(S+ 1) h2 3S2zh2

    jS;Szi: (41)Hence the matrix elements are

    hS0; S0zjVjS;Szi= 2A

    d3h2 S(S+ 1) h2 3S2zh2

    hS0; S0zjS;Szi: (42)

    Since the statesjS;Szi are orthonormal, i.e. hS0; S0zjS;Szi = S0SS0zSz eq(??) shows that theo-diagonal matrix elements are all zero. [2]

    The diagonal elements are [8]

    h1; 1jVj1; 1i = 2Ad3h2

    2h2 3h2 =2A

    d3; (43)

    h1; 0jV1; 0i = 2Ad3h2

    2h2

    =

    4A

    d3; (44)

    h1;1jVj1;1i = 2Ad3h2

    2h2 3h2 =2A

    d3; (45)

    h0; 0jVj0; 0i = 0: (46)

    5

  • 8/9/2019 Problem Sheet 3 Solutions

    6/6

    (c) At time t= 0 the two spins are pointing towards each other. By expressing this state in terms of

    a linear combination of thejS;Szistates show that after a time t= hd3

    4Athe spins will be pointing

    away from each other. [6]

    Recall from the second year course, that the general solution of the time-dependent Schrdingerequation is j (t)i =Pn cnjnieiEnt=h where jni satises the time-independent Schrdingerequation Hjni= Enjni with energy eigenvalueEn.At timet = 0if the two spins are pointing towards each other the spin statej (0)imust be either12 or12 depending on which particles are labelled a and b. Taking the rst case12, thenstate can be expressed in terms of the total spin statesjS;Szias

    j (0)i= 11 = 1p

    2[j1; 0i+j0; 0i] : (47)

    Thus the general time-dependent wavefunction is

    j (t)i= aj1; 0ieiE10t=h + bj0; 0ieiE00t=h (48)

    whereE10and E00are the energies of thej1; 0iandj0; 0istates respectively. These are found fromthe time-independent Schrdinger equation VjS;Szi= ESS

    zjS;Szi. Hence ESS

    z=hS;SzjVjS;Szi

    and so E10 =h1; 0jVj1; 0i= 4Ad3 and E00 =h0; 0jVj0; 0i= 0, and thus

    j (t)i= aj1; 0iei4At=hd3 + bj0; 0i: (49)

    Thus evaluating eq(??) att = 0and comparing with equ(??) gives a = b = 1p2

    , and hence

    j (t)i= 1p2j1; 0iei4At=hd3 + 1p

    2j0; 0i: (50)

    Express this in terms of the individual particle spin states gives

    j (t)i = 1p2

    1p

    2(12+ 12)

    ei4At=hd

    3

    + 1p

    2

    1p

    2(12 12)

    ;

    = 1

    2

    ei4At=hd

    3

    + 112+

    1

    2

    ei4At=hd

    3 112

    = ei2At=hd31

    2

    hei2At=hd

    3

    + ei2At=hd312+

    ei2At=hd

    3 ei2At=hd3i

    12

    = ei2At=hd3

    12cos

    2At

    hd3

    i12sin

    2At

    hd3

    : (51)

    Thus initially at t = 0 the system is in a pure 12 state. It is in a pure 12 state whencos

    2Athd3

    = 0, i.e. when 2Athd3 = (2n + 1) =2, with n a positive integer. Thus the spins are rst

    pointing away from each other at a time t = hd3=4A.

    6