26
Probing the Ligand Shell of Nanoparticles: Opportunities and Limitations Martin Volk University of Liverpool NPL Focus User Meeting: DCS 29 November 2016

Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Probing the Ligand Shell of Nanoparticles:

Opportunities and Limitations

Martin Volk

University of Liverpool

NPL Focus User Meeting: DCS

29 November 2016

Page 2: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Outlook

Gold Nanoparticles (5-40 nm)

ligand shell determination

dependence of shell thickness on

ligand length

capping density

protein (BSA) corona

Page 3: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Ligand Shells on Gold Nanoparticles

gold NPs: 10 – 40 nm diameter @ ligands: ~ 1 - 4 nm

a-helical

[Krpetic et al, ACS Nano 2013]

Page 4: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Ligand Shells – Differential Centrifugal Sedimentation

13.5nm Au-NP @ ligands: ~ 1 - 4 nm

DCS can distinguish

between different shells

larger ligands

smaller apparent NP size

(citrate)

(citrate)

Page 5: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Ligand Shells – Differential Centrifugal Sedimentation

sedimentation time:larger ligands

smaller apparent NP size

average density (dcore, s, rshell)

… because software assumes

shell (s) to have density of gold!

BUT:

software assumes reffective = rcore = 19.3 g/cm3

2)2)(( sd

Ct

e

corefluidffective rr

3

333

)2(

))2((

sd

dsdd

core

shellcorecorecorecoreeffective

rrr

ligand shell thickness

correct value MUCH smaller: rshell ~ 1.4 g/cm3 (small organic molecules)

ligand shell adds “drag”, but not much weight

slower sedimentation reported as smaller NP

Page 6: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Ligand Shells – Differential Centrifugal Sedimentation

simulated DCS results for dcore = 10 nm:

measured

“apparent”

NP size

shell

thicknessLimitations:

value of rshell ? (only for thicker shells)

measured

“apparent”

NP size

thicker shells cannot be measured

BUT:

requires knowledge

of precise core size

dcore!

TWO unknowns,

but only one

experimental value

Page 7: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

DCS Calibration – CALNN as “internal ruler”

Peptide P1: CALNN

C A L N N

capping density: 2.4 peptides/nm2

density of protein interior < 1.4 g/cm3

s > 1.5 nm

extended backbone: s < 1.7 nm

Page 8: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

DCS Calibration – CALNN as “internal ruler”

Peptide P1: CALNN

C A L N N

capping density: 2.4 peptides/nm2

density of protein interior < 1.4 g/cm3

s > 1.5 nm

extended backbone: s < 1.7 nm

s (P1) ~ 1.6 nm

gold NP core diameter

shell thickness for other layers

(also supported by

IR and MD data)

Page 9: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Ligand Shells – PEG

DCS-Results

P1 citrate PEG1 PEG2 PEG3 PEG4 PEG5

s/nm 1.6 1.00 1.15 1.30 1.45 2.00 2.15

(independent of core size)generic calibration !

Page 10: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Ligand Shells – Capping Density

CALNN ligand exchange: [CALNN] = 0.2 mM 2.4 peptides/nm2

0.01 mM 1.7 peptides/nm2

Duchesne et al, Langmuir 2008, 24, 13572

FTIR:

high capping density forces

peptide into extended conformation

1643 cm-1 extended

~1650 cm-1: random coil

Page 11: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Ligand Shells – Capping Density

Peptide P1: CALNN

DCS:

Layer thickness

1.7 peptides/nm2: 1.47 nm

2.4 peptides/nm2: 1.6 nm

layer thickness NOT

is proportional to

capping density /

amount of peptide on NP

Page 12: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Ligand Shells – Capping Density

Peptide P1: CALNN - Molecular Dynamics Simulations

(10 nm NP in explicit solvent)

DCS correctly reports reduced ligand shell

(effective) size for lower capping density

2.4 peptides/nm21.7 peptides/nm2

low capping

density layer is

less compact !

Page 13: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Au-NPs

Protein Corona

Walczyk et al, JACS 2010, 132, 5761

physisorbed

(“soft” corona)

chemisorbed

(“hard” corona)

Page 14: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Au-NPs

Incubation of Au-NPs (11 nm) in Bovine Serum Albumin (over night)

corona formation on

citrate-NPs

corona formation on

PEG-COOH ligand layer

PEG: HS-(CH2)11-(EG)6-

Page 15: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Au-NPs

Density of Protein Corona

must be < 1.25 g/cm3

assume 1.1-1.2 g/cm3

(density of protein crystals)

BSA

Page 16: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Citrate Au-NPs

Bovine Serum Albumin on citrate-stabilized NPs (11 nm)

no BSA in DCS-gradient

protein detaches as

it enters gradient ?

BSA in DCS-gradient

corona in protein solution

DCS allows study of chemi- and physisorbed corona !

Page 17: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Citrate Au-NPs

Chemisorbed Bovine Serum Albumin on citrate-stabilized NPs (11 nm)

Page 18: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Citrate Au-NPs

Chemisorbed Bovine Serum Albumin on citrate-stabilized NPs (11 nm)

very rapid formation of chemisorbed corona !

Page 19: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Citrate Au-NPs

Chemisorbed Bovine Serum Albumin on citrate-stabilized NPs (11 nm)

smax = 5.9 nm

Dissociation constant

KD = 6.0 mM

Hill coefficient

n = 0.55

anti-cooperative binding

nn

n

KN

N

D[BSA

BSA

]

][

max

Hill-model for adsorption

as more proteins bind, chemisorption gets hindered

Page 20: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Citrate Au-NPs

Chemisorbed Bovine Serum Albumin on citrate-stabilized NPs (11 nm)

maximum corona thickness: smax = 5.9 nm

3.15 nm

7.3 nm

single cystein

Au-S bond?

[Röcker et al, Nat Nanotechn. 2009]

Page 21: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Citrate Au-NPs

Physisorbed Bovine Serum Albumin on citrate-stabilized NPs (11 nm)

physisorbed corona

shows steeper isotherm

more cooperativity?

Page 22: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Au-NP@PEG-COOH

Bovine Serum Albumin on 11nm Au-NPs@PEG-COOH

rPEG = 1.4 g/cm3

rBSA = 1.15 g/cm3

citrate-NPs

Page 23: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

BSA-Corona on Au-NP@PEG-COOH

Bovine Serum Albumin on 11nm Au-NPs@PEG-COOH

vs. citrate NPs

BSA corona on

NP@PEG-COOH

close to the situation

where DCS not useful!

NP@PEG-COOH

Page 24: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Summary

DCS for measurement of ligand shell thickness

requires “internal ruler”

Capping layers formed by small molecules

PEG ligands of different length

peptide capping density

Protein Corona

DCS allows investigation of chemisorbed AND

physisorbed corona

BSA corona on citrate-NPs forms rapidly, with anti-

cooperative binding via the only free cysteine

BSA corona on NP@PEG-COOH less well definded

no corona (physi- or chemisorbed) on NP@PEG-OH

Page 25: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles:

Acknowledgements

Ligand Shell Thickness Determination

Zeljka Krpetic

A. Michael Davidson

Mathias Brust, Raphael Levy, David L. Cooper

MD-Simulations

Elena Colangelo

Raphael Levy

David Paramelle, Qiubo Chen, Michael Sullivan (Singapore)

Protein Corona

A. Michael Davidson

Mathias Brust

European Research Council, EPSRC, University of Liverpool

Page 26: Probing the Ligand Shell of Nanoparticles: Opportunities and Limitationsempir.npl.co.uk/innanopart/wp-content/uploads/sites/6/... · 2017-01-23 · Probing the Ligand Shell of Nanoparticles: