49
Probing neutrino physics with a galactic supernova Amol Dighe Tata Institute of Fundamental Research Mumbai CuTAPP 2005, Ringberg Castle, Germany, April 25-29, 2005 Probing neutrino physics with a galactic supernova – p.1/44

Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Probing neutrino physics with agalactic supernova

Amol Dighe

Tata Institute of Fundamental Research

Mumbai

CuTAPP 2005, Ringberg Castle, Germany, April 25-29, 2005

Probing neutrino physics with a galactic supernova – p.1/44

Page 2: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Why study a rare event(¿¿ Galactic SN: once in a few decades ??)

For neutrino mixing:Identifying normal / inverted mass hierarchyProbing extremely low values of �13

For SN astrophysics: Talk by R. Tomàs

Pointing to the SN in advanceTracking the shock wave propagation inside SN

For being prepared to observe relevant signals:Water Cherenkov / Ice CherenkovCarbon-based ScintillatorLiquid Ar

For long-term future:A guide for design parameters of future long baselineexperiments [superbeams / neutrino factories]

Probing neutrino physics with a galactic supernova – p.2/44

Page 3: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

A Type II supernova

“Onion-shell” structure:

Probing neutrino physics with a galactic supernova – p.3/44

Page 4: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Trapped neutrinos before the collapseNeutrinos trapped inside “neutrinospheres” around � � 1010g/cc.

For �e; ��e

For all �; ��

G. Raffelt

Probing neutrino physics with a galactic supernova – p.4/44

Page 5: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

The core collapseGravitational core collapse

Probing neutrino physics with a galactic supernova – p.5/44

Page 6: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

The core collapseGravitational core collapse

Generation of a shock wave

Probing neutrino physics with a galactic supernova – p.5/44

Page 7: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Neutrino emission after the collapseNeutronization burst:Shock wave breaks up the nuclei ) e� capture enhanced�e emitted at the �e neutrinosphere.Duration: The first � 10 ms

�e; ��e; ��; ���; �� ; ���

Probing neutrino physics with a galactic supernova – p.6/44

Page 8: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Neutrino emission after the collapseNeutronization burst:Shock wave breaks up the nuclei ) e� capture enhanced�e emitted at the �e neutrinosphere.Duration: The first � 10 ms

Cooling through neutrino emission: �e; ��e; ��; ���; �� ; ���Duration: About 10 secEmission of 99% of the SN energy in neutrinos

Can be used for “pointing” to the SNin advance. (“Early warning”)

Probing neutrino physics with a galactic supernova – p.6/44

Page 9: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Neutrino emission after the collapseNeutronization burst:Shock wave breaks up the nuclei ) e� capture enhanced�e emitted at the �e neutrinosphere.Duration: The first � 10 ms

Cooling through neutrino emission: �e; ��e; ��; ���; �� ; ���Duration: About 10 secEmission of 99% of the SN energy in neutrinos

Can be used for “pointing” to the SNin advance. (“Early warning”)

¿¿¿ Explosion ???

Probing neutrino physics with a galactic supernova – p.6/44

Page 10: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Neutrino emission after the collapseNeutronization burst:Shock wave breaks up the nuclei ) e� capture enhanced�e emitted at the �e neutrinosphere.Duration: The first � 10 ms

Cooling through neutrino emission: �e; ��e; ��; ���; �� ; ���Duration: About 10 secEmission of 99% of the SN energy in neutrinos

Can be used for “pointing” to the SNin advance. (“Early warning”)

¿¿¿ Explosion ???

Talk by R. Tomàs

Probing neutrino physics with a galactic supernova – p.7/44

Page 11: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Initial neutrino spectraNeutrino fluxes:F 0�i = �0E0 (1 + �)1+��(1 + �) � EE0�� exp ��(�+ 1) EE0 �E0, �: in general time dependentKnown properties of the spectra:

Energy hierarchy: E0(�e) < E0(��e) < E0(�x)Spectral pinching: ��i > 2

E0(�e) � 10–12 MeVE0(��e) � 13–16 MeVE0(�x) � 15–25 MeV��i � 2–4

G. G. Raffelt, M. T. Keil, R. Buras, H. T. Janka

and M. Rampp, astro-ph/0303226 10 20 30 40

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E(MeV)

Probing neutrino physics with a galactic supernova – p.8/44

Page 12: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Flavor-dependent neutrino fluxes

10

15

20

25

0 250 500 750

0 1 2 3 4 5 6

0 250 500 750

Time [ms]

10

15

20

25

0 1 2 3 4

⟨E⟩

0 1 2 3 4 5 6

0 1 2 3 4

L [

1052

erg

s-1

]

Time [s]

ν−eν−x

solid line: ��e

dotted line: ��x

Model hE0(�e)i hE0(��e)i hE0(�x)i �0(�e)�0(�x) �0(��e)�0(�x)

Garching (G) 12 15 18 0.8 0.8

Livermore (L) 12 15 24 2.0 1.6

G. G. Raffelt, M. T. Keil, R. Buras, H. T. Janka and M. Rampp, astro-ph/0303226

T. Totani, K. Sato, H. E. Dalhed and J. R. Wilson, Astrophys. J. 496, 216 (1998)

Probing neutrino physics with a galactic supernova – p.9/44

Page 13: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Propagation through matter

core

envelope

ρ=1010

0.1

10 14

12g/cc

ν

SUPERNOVA

VACUUMEARTH

10 km

10 R kpcsun 10000 km

Matter effects on neutrino mixing crucialFlavor conversions at resonances / level crossings

Probing neutrino physics with a galactic supernova – p.10/44

Page 14: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Level crossings during propagationNormal mass hierarchy Inverted mass hierarchy

H resonance: (�m2atm, �13), � � 103 g/ccIn � channel for normal hierarchy, �� channel for inverted hierarchyL resonance: (�m2�, ��), � � 10 g/ccAlways in � channel�m2 hierarchy ) Independent dynamics at resonances

Probing neutrino physics with a galactic supernova – p.11/44

Page 15: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Conversion probability at resonance

1−P

Pf

Pf

1−Pf

Core

Vacuum

Envelope

f

Pf � exp���2 � ; � �m22E sin2 2� os 2� � 1ne dnedr ��1 � 1) Pf � 1) Adiabatic resonance

Landau’1932, Zener’1932L resonance always adiabaticH resonance adiabatic for jUe3j2 >� 10�3,non-adiabatic for jUe3j2 <� 10�5

AD, A. Smirnov, PRD 62, 033007 (2000)Probing neutrino physics with a galactic supernova – p.12/44

Page 16: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Fluxes arriving at the EarthMixture of initial fluxes:F�e = pF 0�e + (1� p)F 0�x ;F��e = �pF 0��e + (1� �p)F 0�x ;4F�x = (1� p)F 0�e + (1� �p)F 0��e + (2 + p+ �p)F 0�x :Survival probabilities in different scenarios:

Case Hierarchy sin2�13 p �p

A Normal Large 0 os2��

B Inverted Large sin2�� 0C Any Small sin2�� os2��

“Small”: sin2�13 <� 10�5, “Large”: sin2�13 >� 10�3.Sensitivity to sin2�13 an order of magnitude better than currentreactor experiments !

Probing neutrino physics with a galactic supernova – p.13/44

Page 17: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

SN87A

(Hubble image)

Confirmed the SN coolingmechanism through neutrinos

Number of events too small tosay anything concrete aboutneutrino mixing

Some constraints onSN parameters obtained

J. Arafune, J. Bahcall, V. Barger, M. Fukugita, B. Jegerlehner, M Kachelrieß,

C. Lunardini, D. Marfatia, H. Minakata, F. Neubig, D. Nötzold, H. Nunokawa,

G. G. Raffelt, K. Shiraishi, A. Smirnov, D. Spergel, A. Strumia, H. Suzuki,

R. Tomàs, J. V. F. Valle, B. Wood, T. Yanagida, M. Yoshimura, et al

Probing neutrino physics with a galactic supernova – p.14/44

Page 18: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Detecting a galactic SNEvents expected at Super-Kamiokande with a SN at 10 kpc:��ep! ne+: � 7000 – 12000�e� ! �e�: � 200 – 300�e +16 O ! X + e�: � 150–800

Some useful reactions at other detectors:

Carbon-based scintillator: � + 12C ! � +X + (15.11 MeV)

Liquid Ar: �e + 40Ar ! 40K� + e�

Probing neutrino physics with a galactic supernova – p.15/44

Page 19: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Identifying

neutrino mixing scenario

A ?? B ?? C ??

Probing neutrino physics with a galactic supernova – p.16/44

Page 20: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

The task at hand

Measure the spectra, determine the mixing scenario.

A. Bandyopadhyay, AD, S. Choubey, G. Dutta, I. Gil-Botella, S. Goswami, D. Indumathi,

M. Kachelrieß, K. Kar, C. Lunardini, H. Minakata, M. V. N. Murthy, H. Nunokawa, G. Raffelt,

G. Rajasekaran, A. Rubbia, K. Sato, A. Smirnov, K. Takahashi, R. Tomàs, J. Valle, et al

��e

Probing neutrino physics with a galactic supernova – p.17/44

Page 21: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

The task at hand

Measure the spectra, determine the mixing scenario.

A. Bandyopadhyay, AD, S. Choubey, G. Dutta, I. Gil-Botella, S. Goswami, D. Indumathi,

M. Kachelrieß, K. Kar, C. Lunardini, H. Minakata, M. V. N. Murthy, H. Nunokawa, G. Raffelt,

G. Rajasekaran, A. Rubbia, K. Sato, A. Smirnov, K. Takahashi, R. Tomàs, J. Valle, et al

C. Lunardini, A. Smirnov, JCAP 0306:009 (2003)

Poorly known initial spectra

Only final ��e spectrumcleanly available (till we haveliquid Ar)

Difficult to find a “clean” ob-servable, i.e. one indepen-dent of some assumptionsabout the initial spectra

Probing neutrino physics with a galactic supernova – p.17/44

Page 22: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Some possible observablesDuring neutronization burst: RB � NCC=NNCCase A ) RB=RB0 � jUe3j2 � 0:05

Broadening of spectra:pinched ! antipinched, i.e. � > 2! � < 2Pinching parameter 3hE2i=4hEi2:Information about the spectrum around the peak

Tail fraction: ftail = N(E > Etail)N(E > Eth)Information about the high-energy part of the spectrum

Difficult to find a “clean” observable, i.e. one independent of someassumptions about the initial spectra.

M. Kachelrieß, C. Lunardini, H. Minakata, H. Nunokawa, G. Raffelt,

K. Sato, A. Smirnov, K. Takahashi, R. Tomàs, J. Valle, et al

Probing neutrino physics with a galactic supernova – p.18/44

Page 23: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Exploiting Earth matter effectsNeutrinos Antineutrinos

10 20 30 40 50 60 70

2.5

5

7.5

10

12.5

15

10 20 30 40 50 60 70

2.5

5

7.5

10

12.5

15

E E

(�e, �x, mixed �) (��e, ��x, mixed ��)

�e ��e

Probing neutrino physics with a galactic supernova – p.19/44

Page 24: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Exploiting Earth matter effectsNeutrinos Antineutrinos

10 20 30 40 50 60 70

2.5

5

7.5

10

12.5

15

10 20 30 40 50 60 70

2.5

5

7.5

10

12.5

15

E E

(�e, �x, mixed �) (��e, ��x, mixed ��)

Total number of events (in general) decreasesCompare signals at two detectors

“Earth effect” oscillations are introducedScenarios B, C for �e, scenarios A, C for ��e

Probing neutrino physics with a galactic supernova – p.19/44

Page 25: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Comparing spectra at multiple detectors

C. Lunardini and A. Smirnov, NPB616:307 (2001)

Probing neutrino physics with a galactic supernova – p.20/44

Page 26: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

IceCube as a co-detector with SK/HKIceCube primarily meant for neutrinos with energy >� 150 GeV

The number of Cherenkov photons increases beyond statisticalbackground fluctuations during a SN burst

This signal can be determined to a statistical accuracy of � 0:25%for a SN at 10 kpc.

The Earth effects may change the signal by � 0–10%.

The extent of Earth effectschanges by 3–4 % between theaccretion phase (first 0.5 sec)and the cooling phase.

Absolute calibration not essen-tial

Accretion phase

Cooling phase

Probing neutrino physics with a galactic supernova – p.21/44

Page 27: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Useful SN locations for SK-IC comparison

Earth effects detectable inregions (A) and (B)

AD, M. Keil, G. Raffelt, JCAP 0306:005 (2003)

Probing neutrino physics with a galactic supernova – p.22/44

Page 28: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

At a single detector(Identifying Earth oscillation frequency)F��e = sin2�12F 0�x + os2�12F 0��e +�F 0 �A� sin2(�m2�Ly)

(F 0��e � F 0�x) sin 2���12 sin(2���12 � 2�12) (12:5=E)

Oscillation frequency: k� � 2�m2�LThe highest frequency in the “inverse energy” dependence of thespectrum

Completely independent of the primary neutrino spectra

Depends only on solar oscillation parameters, Earth density andthe distance travelled through the Earth

Probing neutrino physics with a galactic supernova – p.23/44

Page 29: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Fourier TransformPower spectrum: GN (k) = 1N ��Pevents eiky��2

Energy resolution is a crucial factor

Scintillation detector: a few thousand events

Water Cherenkov detector: a few ten thousand events

AD, M. Keil, G. Raffelt, JCAP 0306:006 (2003)

Probing neutrino physics with a galactic supernova – p.24/44

Page 30: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Passage through the Earth core

FD�e = sin2 �12 F 0�x + os2 �12 F 0�e + �F 0 7Xi=1 �Ai sin2(kiy=2) ;

i kiy �Ai1 �m=2 � 12 sin(2�12 � 4�m) sin(4� � 4�m) O(!)

2 (�m=2 + � ) os2(� � �m) sin(2�12 � 4�m) sin(2� � 2�m) O(!)

3 (�m + � ) sin(2�12 � 2�m) os4(� � �m) sin(2�m) O(!)

4 � � sin2(2� � 2�m) [ os(2�12 � 4�m)�� 12 sin(2�12 � 2�m) sin(2�m)℄ O(!2)

5 �m 12 sin(2�12 � 2�m) sin2(2� � 2�m) sin(2�m) O(!3)

6 (�m=2� � ) �2 sin(2�12 � 4�m) os(� � �m) sin3(� � �m) O(!3)

7 (�m � � ) sin(2�12 � 2�m) sin4(� � �m) sin(2�m) O(!5)

Probing neutrino physics with a galactic supernova – p.25/44

Page 31: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

At a scintillation detector

Passage through the Earth core gives rise to extra peaks.

Model independence of peak positions:

Probing neutrino physics with a galactic supernova – p.26/44

Page 32: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

At a water Cherenkov detector

High-k suppression:

Probing neutrino physics with a galactic supernova – p.27/44

Page 33: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Peak identificationStatistical fluctuations may "drown" peaks

Use area under the spectrum for peak identification

Quantifying "efficiency" of a detector

Probing neutrino physics with a galactic supernova – p.28/44

Page 34: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Efficiencies of detectors

High-k suppressionaffects the efficiency ofHK for 35Æ < � < 55Æ.(�: nadir angle)

Large number of eventscompensates forpoorer energy resolution

AD, M. Kachelrieß, G. Raffelt, R. Tomàs, JCAP 0401:004 (2004)

Probing neutrino physics with a galactic supernova – p.29/44

Page 35: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Observation of a Fourier peak in ��e

)Eliminate scenario B independently

of SN models !!!

Probing neutrino physics with a galactic supernova – p.30/44

Page 36: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Shock wave

for identifying

neutrino mixing scenario

Probing neutrino physics with a galactic supernova – p.31/44

Page 37: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Shock wave and level crossings

When shock wave passesthrough a resonance region,adiabatic resonances maybecome non-adiabatic for sometimescenario A ! scenario Cscenario B ! scenario C

May cause sharp changes in thefinal spectra even if the primaryspectra are unchanged /smoothly changing

R. C. Schirato, G. M. Fuller,

astro-ph/0205390

G. L. Fogli, E. Lisi, D. Montanino and

A. Mirizzi, PRD 68, 033005 (2003)

Probing neutrino physics with a galactic supernova – p.32/44

Page 38: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

��e Survival probability

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E E EE1b 2b 2a 1a

p_

E�!Shifts right as shock propa-gates to lower densities

Correspondence between densities and energies:

�i = mN�m2atm os 2�132p2GFYeEi � 600 g= m3 os 2�13 25 MeVEi 1Ye

For sharp changes in the density profile: �p = sin2(�a � �b) os2 ��

Probing neutrino physics with a galactic supernova – p.33/44

Page 39: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

At a megaton water Cherenkov

“Double dip” feature for hEei“Double peak” feature for hE2e i=hEei2

R. Tomás, M. Kachelrieß, G. Raffelt, AD,

H. T. Janka, L. Scheck, JCAP09(2004)015

Probing neutrino physics with a galactic supernova – p.34/44

Page 40: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Single/double dip

“Single/double dip” robust underneutrino flux modelsmonotonically decreasing average energy

“Single/double dip” visible forsin2 2�13 >� 10�5In �e for normal hierarchyIn ��e for inverted hieratchy

Probing neutrino physics with a galactic supernova – p.35/44

Page 41: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Summary [Detector wishlist]

SN � spectra can help identifying the neutrino mixing scenario:normal / inverted mass hierarchysmall / large �13

A positive identification of the Earth effects rules out scenario B(inverted hierarchy � sin2�13 > 10�3) from ��e or scenario A(normal hierarchy � sin2�13 > 10�3) through �e.

comparison between multiple detectors [SK/MWC, IceCube]identifying earth matter oscillations [SK/MWC, LENA, liquid Ar]

Tracking the shock fronts “in neutrinos”recognizes the presence / absence of a reverse shockconfirms the scenario A [liquid Ar] or scenario B [MWC].determines the times the shocks pass through � � 102–104 g/cc

Talk by R. Tomàs

Probing neutrino physics with a galactic supernova – p.36/44

Page 42: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Extra slides

Probing neutrino physics with a galactic supernova – p.37/44

Page 43: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Splitting events into energy bins

Dip-times energy-bin dependent !!!

Probing neutrino physics with a galactic supernova – p.38/44

Page 44: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Tracking the shock fronts

At t � 4:5 sec, (reverse) shock at �40At t � 7:5 sec, (forward) shock at �40

Multiple energy bins ) the times the shock fronts reach differentdensities of � � 102–104 g/cc

Probing neutrino physics with a galactic supernova – p.39/44

Page 45: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Shock wave at SK

Probing neutrino physics with a galactic supernova – p.40/44

Page 46: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Time evolution of observablesPrimary spectra:F 0i (E) = �ihEii ��ii�(�i) � EhEii��i�1 exp���i EhEii�Number of events:

Nobs = N ����x hE��xi2�2��x �(���x + 2)�(���x) + os2 ��(���eg��e2 � ���xg��x2 )�

where gik = hE��x ik�ki �(�i) h��a; E1hEii�i; E2hEii�i�+ ��a; E3hEii�i; E4hEii�i�i

(Time dependence through the time evolution of E1; E2; E3; E4)Energy moments:

Emobs = N "���x hE��xi2+m�2+m��x �(���x + 2 +m)�(���x) + os2 ��(���eg��e2+m � ���xg��x2+m)#

Probing neutrino physics with a galactic supernova – p.41/44

Page 47: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Time dependence of observables

Model hE0(�e)i hE0(��e)i hE0(�x)i �0(�e)�0(�x) �0(��e)�0(�x)

L 12 15 24 2.0 1.6

G1 12 15 18 0.8 0.8

G2 12 15 15 0.5 0.5

Probing neutrino physics with a galactic supernova – p.42/44

Page 48: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Role of neutrinos in explosion

cooling

Neutrino heating

dM/dt

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Neutrino

70 km200 km

Proto−NeutronStar (n,p)

20 km

p

e

n Stalled Shock

Neutrinosphere�����������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������

Neutrino heating essential, but not enough

No spherically symmetric (1-D) simulations show robust explosions

Probing neutrino physics with a galactic supernova – p.43/44

Page 49: Probing neutrino physics with a galactic supernovaamol/talks/technical/2009/dighe-cutapp.pdf · Generation of a shock wave Probing neutrino physics with a galactic supernova – p.5/44

Ingredients required for explosion

[ms]

R. Buras, H.-T. Janka, M. Rampp,

K. Kifonidis, astro-ph/0303171

Neutrino heating: higher neutrino opacity

Large scale convenction modes

Stiffer equation of state for the core

Rotation of the star

O. E. Bronson Messer, S. Bruenn, C. Cardall, M. Liebendoerfer,

A. Mezzacappa, W. Raphael Hix, F.-K. Thielemann et alProbing neutrino physics with a galactic supernova – p.44/44