77
Asst. Prof. Dr. Prapun Suksompong [email protected] 8 Discrete Random Variable 1 Probability and Random Processes ECS 315 Office Hours: BKD, 6th floor of Sirindhralai building Wednesday 14:00-15:30 Friday 14:00-15:30

Probability and Random Processes€¦ · Asst. Prof. Dr. Prapun Suksompong [email protected] 8 Discrete Random Variable 1 Probability and Random Processes ECS 315 Office Hours:

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Asst. Prof. Dr. Prapun [email protected]

    8 Discrete Random Variable

    1

    Probability and Random ProcessesECS 315

    Office Hours: BKD, 6th floor of Sirindhralai building

    Wednesday 14:00-15:30Friday 14:00-15:30

  • Example 8.15: pdf and probabilities

    2

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1/2

    1 2 3 4x

    1/41/8

    stem plot:

    2 ?

    1 ?

    P X

    P X

    Consider a random variable (RV) X.

    =

  • Example 8.15: pdf and probabilities

    3

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1/2

    1 2 3 4x

    1/41/8

    stem plot:

    12 24

    1 2 3 41 1 1 14 8 8 2

    X

    X X X

    P X p

    P X p p p

    Consider a random variable (RV) X.

  • Example: pdf and its interpretation

    4

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1/2

    1 2 3 4x

    1/41/8

    stem plot:

    Consider a random variable (RV) X.

    ?

  • Example: pdf and its interpretation

    5

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1 2 3 4x

    probability “mass”

    Consider a random variable (RV) X.

  • Example: pdf and its interpretation

    6

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1 2 3 4x

    probability “mass” of size 1/4

    Consider a random variable (RV) X.

  • Example: Support of a RV

    7

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1 2 3 4x What about the support of

    this RV X?

    Consider a random variable (RV) X.

  • Example: Support of a RV

    8

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1 2 3 4

    The set {1,2,3,4} is a support of X.

    Consider a random variable (RV) X.

  • Example: Support of a RV

    9

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1 2 3 4

    The set {1,2,2.5,3,4,5} is also a support of this RV X.

    2.5 5

    Consider a random variable (RV) X.

  • Example: Support of a RV

    10

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1 2 3 4

    The set {1,2,4} is not a support of this RV X.

    Consider a random variable (RV) X.

  • Example: Support of a RV

    11

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1 2 3 4

    The set {1,2,3,4} is the “minimal” support of X.

    For discrete RV, we take the collection of x values at which to be our “default” support.

    Consider a random variable (RV) X.

  • Example: Support of a RV

    12

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    probability mass function (pmf)

    1/2

    1 2 3 4x

    1/41/8

    stem plot: The “default” support for this RV is the set SX = {1,2,3,4}.

    Consider a random variable (RV) X.

    =

  • Asst. Prof. Dr. Prapun [email protected]

    9 Expectation and Variance

    1

    Probability and Random ProcessesECS 315

    Office Hours: BKD, 6th floor of Sirindhralai building

    Wednesday 14:00-15:30Friday 14:00-15:30

  • Expectation and Variance

    2

    The expectation (or mean or expected value) of a discrete random variable X is given by

    The expected value of a function g of a RV X is given by

    The variance of a RV X is given by

    The standard deviation of a RV X is given by

    Xx

    X xp x

    Xx

    g X g x p x

    2 22Var X X X X X

    VarX X

  • Example

    3

    1,2,3,4X

    1 , 1,21 , 2,41 , 3,480, otherwise

    X

    x

    xp x

    x

    Approximately 50% are number ‘1’s

    2 1 1 2 1 4 1 1 1 11 1 4 1 1 2 4 2 2 13 1 1 2 3 2 4 1 2 42 1 1 2 1 1 3 3 1 11 3 4 1 4 1 1 2 4 14 1 4 1 2 2 1 4 2 14 1 1 1 1 2 1 4 2 42 1 1 1 2 1 2 1 3 22 1 1 1 1 1 1 2 3 22 1 1 2 1 4 2 1 2 1

    [GenRV_Discrete_finite_support.m]

  • 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    x

    Rel. freq. from sim.pmf pX(x)

    Example

    4

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    x

    Rel. freq. from sim.pmf pX(x)

    n = 100 n = 106

    [GenRV_Discrete_finite_support_average.m]

    average 1.8739average 1.7400

    15 1.8758

    X As → ,the average will converge to

  • Christiaan Huygens (1629-1695)

    5

    Dutch astronomer In 1657, wrote the first treatise (textbook) on

    probability theory: “On Reasoning in Games of Chance” Van Rekeningh in Spelen van Geluck De ratiociniis in ludo aleae http://www.york.ac.uk/depts/maths/histstat/h

    uygens.htm

    Interest sparked partly by the work of Pascal and Fermat.

    Originally introduced the concept of expected value.

    http

    ://e

    n.w

    ikip

    edia

    .org

    /wik

    i/C

    hrist

    iaan

    _Huy

    gens

    #m

    edia

    view

    er/F

    ile:C

    hrist

    iaan

    _Huy

    gens

    .jpg

    http

    ://b

    c.ub

    .leid

    enun

    iv.n

    l/bc

    /ten

    toon

    stel

    ling/

    Huy

    gens

    /Im

    ages

    /htm

    l/03

    _2.h

    tml

  • Christiaan Huygens (1629-1695)

    6

    Also famous for the “Huygens’ Principle”

    All points on a wavefront serve as point sources of spherical secondary wavelets. After a time t, the new position of the wavefront will be that of a surface tangent to these secondary wavelets.

  • Calculations of Expected Values

    7

    Poisson()

    Binomial(n,p)

    X

    X np

  • Government Lottery (สลากกนิแบ่งรฐับาล)

    8

    ตั้งแต่งวดวันที่ 1 ก.ย. 2560 เป็นต้นไป สาํนักงานสลากกนิแบ่งรัฐบาล ปรับปรุงรูปแบบสลากฯใหม่ จากเดิมฉบบัคู่ 80 บาท (ฉบบัละ 40 บาท) เป็นรูปแบบใบเดียวฉบบัละ 80 บาท

    เงินรางวัลยังเท่าเดิม เปลี่ยนแค่ขนาดที่กระชับเลก็ลงเท่านั้น

    หวย (Huay)[http://www.glo.or.th]

    http

    s://

    ww

    w.p

    ptvh

    d36.

    com

    /new

    s/ประเดน็

    ร้อน/

    6258

    3

  • Government Lottery (สลากกนิแบ่งรฐับาล)

    9

  • “คอหวย” ปลง นาํหวยมาทาํ “วอลเปเปอร์บา้น”

    10

    นายพิภพ ปานแย้ม รองนายกเทศมนตรีเทศบาลเมืองคลองหลวง นาํลอ็ตเตอรี่จาํนวนมากติดฝาผนังบ้าน

    ของตนที่ อ.คลองหลวง จ.ปทุมธานี

    [http://money.sanook.com/204469/][http://www.nationtv.tv/main/content/lifestyle/378418937/]

  • Government Lottery (สลากกนิแบ่งรฐับาล)

    11

    Expected Profit 32

  • Before Sep 1, 2015

    12

    Expected Profit 16

    Assumption

  • Sep 2015 to Sep 2017

    13

    http://www.nationtv.tv/main/content/social/378469538/

    Expected Profit 16

  • Can only press once

    14

  • “Similar” Example

    15

    ฉันเหมือนคนที่มีเสื้อใส่ แต่ยังไม่พอใจกบัที่ฉันมี

    เพราะแค่เพียงได้เจอเสื้อใหม่ อย่างที่ฉันพอใจอยากจะรีบควา้

    ใครกเ็ตอืนว่าไม่คุ้มกบัสิ่งที่ฉันทิ้งไป เพื่อสิ่งที่ฉันยังไม่ได้มา

    ใครกเ็ตอืนอย่ารีบร้อนจะเสีย่งทาํไมนะ แต่มันกย็ังถลาํไปหมดทั้งใจ

    ฉันอตุส่าห์ไม่รกัเขาเพือ่ที่จะรกัเธอ

    ยอมทุม่เทหมดแล้วให้เธอ แล้วเธอกท็ิ้งไป

    เสียเคา้แลว้ยงัตอ้งเสียใจเธอสอนฉันให้เข้าใจ

    การลงทุนเสีย่งเหลือเกิน

  • From the SET’s website,…

    16

    [Stock Exchange of Thailand]

    [www.set.or.th]

  • Asst. Prof. Dr. Prapun [email protected]

    10 Continuous Random Variables

    1

    Probability and Random ProcessesECS 315

    Office Hours: BKD, 6th floor of Sirindhralai building

    Wednesday 14:00-15:30Friday 14:00-15:30

  • Ex. rand function

    2

    Generate an array of uniformly distributed pseudorandom numbers. The pseudorandom values are drawn

    from the standard uniform distribution on the open interval (0,1).

    rand returns a scalar. rand(m,n) or rand([m,n])

    returns an m-by-n matrix. rand(n) returns an n-by-n matrix

  • Ex. Muscle Activity

    3

    Look at electrical activity of skeletal muscle by recording a human electromyogram (EMG).

    [http://www.adinstruments.com/solutions/education/ltexp/electromyography-emg-german]

  • Three Important Continuous RVs

    4

    0 50 100-2

    0

    2

    4

    -4 -2 0 2 4 60

    5

    10

    0 50 100-5

    0

    5

    -4 -2 0 2 4 60

    5

    10

    15

    0 50 1000

    2

    4

    6

    -4 -2 0 2 4 60

    10

    20

    30

    Mean = 1Std = 1N = 100

    [IntroThreeContinuousRV.m]

  • Three Important Continuous RVs

    5

    Mean = 1Std = 1N = 1,000

    0 500 1000-2

    0

    2

    4

    -4 -2 0 2 4 60

    50

    100

    0 500 1000-5

    0

    5

    -4 -2 0 2 4 60

    50

    100

    150

    0 500 10000

    5

    10

    -4 -2 0 2 4 60

    200

    400

  • Three Important Continuous RVs

    6

    0 5000 10000-2

    0

    2

    4

    -4 -2 0 2 4 60

    200

    400

    600

    0 5000 10000-5

    0

    5

    -4 -2 0 2 4 60

    1000

    2000

    0 5000 100000

    5

    10

    15

    -4 -2 0 2 4 60

    2000

    4000

    6000

    Mean = 1Std = 1N = 10,000

  • Review: P[some condition(s) on X]

    7

    For discrete random variable,

    Sum over all the x values that satisfy the condition(s)

    somecondition s on

    Discrete RV

  • P[some condition(s) on X]

    8

    For discrete random variable,

    For continuous random variable,

    Sum over all the x values that satisfy the condition(s)

    somecondition s on

    Discrete RV

    Integrate over all the x values that satisfy the condition(s)

    somecondition s on

    Continuous RV

    probability mass function (pmf)

    probability density function (pdf)

    pmf → pdf

  • Support of a RV

    9

    In general, the support of a RV is any set such that

    In this class, we try to find the smallest (minimal) set that works as a support.

    For discrete random variable,

    For continuous random variable,

  • World Map of Population Density

    10 [http://i.imgur.com/gBYMfWO.jpg]

  • Thailand’s Population Density

    11

    https://www.researchgate.net/publication/260378246_Climate-Related_Hazards_A_Method_for_Global_Assessment_of_Urban_and_Rural_Population_Exposure_to_Cyclones_Droughts_and_Floods/figures?lo=1

  • World Map of Population Density

    12

  • World Map of Population Density

    13 http://globe.chromeexperiments.com/

  • “Density”

    14

    Density = quantity per unit of measure.

    Population Density = number of people per unit area Location with high density value means there are a lot of people

    around that location. Given a region, we integrate the density over that region to get

    the number of people residing in that region.

    Probability Density = probability per unit “length”. Given an interval, we integrate the density over that interval to

    get the probability that the RV will be in that interval.

  • pdf and cdf for continuous RV

    15

    “ ”

  • Sections 10.1-10.2

    16

    Continuous RV

    0 pdf ∶

    Two characterizing properties: 0

    1

    : 0 somecondition s on

    allthe valuesthatsatisfythecondition s

    cdf is a continuous function.

    Discrete RV

    pmf: ≡ Two characterizing properties:

    0 ∑ 1

    : 0 somecondition s on

    allthe valuesthatsatisfythecondition s

    cdf is a staircase function with jumps whose size at gives .

    1/2

    3/47/81

    1 2 3 4

    1

  • Chapter 9 vs. Section 10.3

    17

    Continuous RVDiscrete RV

    2 2

    X

    X

    X

    X xf x dx

    g X g x f x dx

    X x f x dx

    Xx

    X xp x

    Xx

    g X g x p x

    2 2 Xx

    X x p x

    2 22Var

    VarX

    X X X X X

    X

  • Johann Carl Friedrich Gauss

    18

    1777 –1855

    A German mathematician

    German 10-Deutsche Mark Banknote (1993; discontinued)

  • Ex. Muscle Activity

    19

    Look at electrical activity of skeletal muscle by recording a human electromyogram (EMG).

    [http://www.adinstruments.com/solutions/education/ltexp/electromyography-emg-german]

  • Ex. Measuring the speed of light

    20

    100 measurements of the speed of light (1,000 km/second), conducted by Albert Abraham Michelson in 1879.

  • Expected Value and Variance

    21

    >> syms x>> syms m real>> syms sigma positive

    >> int(1/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)),x,-inf,inf)ans =1>> EX = int(x/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)),x,-inf,inf)EX =m>> EX2 = int(x^2/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)),x,-inf,inf)EX2 =-(2^(1/2)*(limit(- x*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) - x^2/(2*sigma^2)) - m*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) - x^2/(2*sigma^2)) -(2^(1/2)*pi^(1/2)*sigma*erfi((2^(1/2)*(x - m)*i)/(2*sigma))*(m^2 + sigma^2)*i)/2, x == -Inf) - limit(- x*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) -x^2/(2*sigma^2)) - m*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) - x^2/(2*sigma^2)) - (2^(1/2)*pi^(1/2)*sigma*erfi((2^(1/2)*(x - m)*i)/(2*sigma))*(m^2 + sigma^2)*i)/2, x == Inf)))/(2*pi^(1/2)*sigma)

    >> EX2 = simplify(EX2)EX2 =m^2 + sigma^2>> VarX = EX2 - (EX)^2VarX =sigma^2

    “Proof ” by MATLAB’s symbolic calculation

  • Gaussian Random Variable

    22 [Wikipedia.org]

    mmmmm m m m m

  • Gaussian Random Variable

    23

    Standard scores 1

    [Wikipedia.org]

    mmmmm m m m m

  • Gaussian Random Variable

    24

    10

    [Wikipedia.org]

    mmmmm m m m m

  • SIIT Grading Scheme (Option 3)

    25 [Wikipedia.org]

    F D D+ C C+ B B+ A

    7% 9% 15%19%19% 15% 9% 7%

    Class GPA 2.25

    mmmmm m m m m

  • From the News

    26

    4 July 2012

    They claimed that by combining two data sets, they had attained a confidence level just at the "five-sigma" point -about a one-in-3.5 million chancethat the signal they see would appear if there were no Higgs particle.

    However, a full combination of the CMS data brings that number just back to 4.9 sigma - a one-in-two million chance.

    Particle physics has an accepted definition for a discovery: a “five-sigma” (or five standard-deviation) level of certaintyThe number of sigmas measures how unlikely it is to get a certain experimental result as a matter of chance rather than due to a real effect

    6

    6

    1 3.5 101

    15

    4.92 10

    1

  • Six Sigma

    27

  • Six Sigma

    28

    If you manufacture something that has a normal distribution and get an observation outside six of , you have either seen something extremely unlikely or there is something wrong with your manufacturing process. You’d better look it over.

    This approach is an example of statistical quality control, which has been used extensively and saved companies a lot of money in the last couple of decades.

    The term Six Sigma, a registered trademark of Motorola, has evolved to denote a methodology to monitor, control, and improve products and processes.

    There are Six Sigma societies, institutes, and conferences. Whatever Six Sigma has grown into, it all started with

    considerations regarding the normal distribution.

    [Olofsson, 2006, p. 168]

  • Six Sigma

    29 [Bass, 2007, p. 20]

  • Asst. Prof. Dr. Prapun [email protected]

    11 Multiple Random Variables

    1

    Probability and Random ProcessesECS 315

    Office Hours: BKD, 6th floor of Sirindhralai building

    Wednesday 14:00-15:30Friday 14:00-15:30

  • Chapter 6 vs. Chapter 11

    11

    P A B , ( , ) ,X Yp x y P X x Y y

    P A BP B

    P B A

    P A

    P B

    B

    A P

    ,|

    |

    ( , )|

    ( | ) ( )

    X YX Y

    Y

    Y X X

    Y

    p x yp x y

    p yp y x p x

    p y

    A X x

    B Y y

    Conditional pmf

    Joint pmf

    P A B P A P B Events A and B are independent: RVs X and Y are independent:

    , ( , ) ( )X Y X Yp x y p x p y for any x and y

  • Example: small joint pmf matrix

    12

    close all; clear all;x = [1 3];y = [2 4];PXY = [3/20 5/20; 5/20 7/20];

    [X Y] = meshgrid(x,y); X = X.'; Y = Y.';

    stem3(X,Y,PXY,'filled')xlim([0,4])ylim([0,5])xlabel('x')ylabel('y')

    01

    23

    4

    01

    23

    450

    0.1

    0.2

    0.3

    0.4

    xy

    Ex. 11.7

  • Example: small joint pmf matrix

    13

    close all; clear all;x = [3 4];y = [1 3];PXY = [1/15 4/15; 2/15 8/15];

    [X Y] = meshgrid(x,y); X = X.'; Y = Y.';

    stem3(X,Y,PXY,'filled')xlim([0,5])ylim([0,4])xlabel('x')ylabel('y')

    01

    23

    45

    01

    23

    40

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    xy

    (More)

    Ex. 11.26

  • Example: large joint pmf matrix

    14

    close all; clear all;n = 10; p = 3/5;x = 0:n;y = 0:n;

    pX = binopdf(x,n,p);pY = binopdf(y,n,p);

    PXY = pX.'*pY;

    [X Y] = meshgrid(x,y); X = X.'; Y = Y.';

    stem3(X,Y,PXY, 'filled')%mesh(X,Y,PXY)%surf(X,Y,PXY)

    xlabel('x')ylabel('y')

    02

    46

    810

    0

    5

    100

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    xy

  • Evaluation of Probability

    15

    Consider two random variables X and Y.

    Suppose their joint pmf matrix is

    Find

    0.1 0.1 0 0 0 0.1 0 0 0.1 00 0.1 0.2 0 00 0 0 0 0.3

    2 3 4 5 6xy

    1346

    ,X YP

  • Evaluation of Probability

    16

    Consider two random variables X and Y.

    Suppose their joint pmf matrix is

    Find

    0.1 0.1 0 0 0 0.1 0 0 0.1 00 0.1 0.2 0 00 0 0 0 0.3

    2 3 4 5 6xy

    1346

    3 4 5 6 75 6 7 8 96 7 8 9 108 9 10 11 12

    2 3 4 5 6xy

    1346

    Step 1: Find the pairs (x,y) that satisfy the condition“x+y < 7”

    One way to do this is to first construct the matrix of x+y.

    ,X YP

    x y

  • Evaluation of Probability

    17

    Consider two random variables X and Y.

    Suppose their joint pmf matrix is

    Find

    0.1 0.1 0 0 0 0.1 0 0 0.1 00 0.1 0.2 0 00 0 0 0 0.3

    2 3 4 5 6xy

    1346

    3 4 5 6 75 6 7 8 96 7 8 9 108 9 10 11 12

    2 3 4 5 6xy

    1346

    Step 2: Add the corresponding probabilities from the joint pmf (matrix)

    ,X YP

    x y7 0.1 0.1 0.1

    0.3

  • Example: small joint pmf matrix

    18

    close all; clear all;x = [3 4];y = [1 3];PXY = [1/15 4/15; 2/15 8/15];

    [X Y] = meshgrid(x,y); X = X.'; Y = Y.';

    stem3(X,Y,PXY,'filled')xlim([0,5])ylim([0,4])xlabel('x')ylabel('y')

    01

    23

    45

    01

    23

    40

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    xy

    ,  115

    415

    215

    815

    x3

    4

    y 1 3Ex. 11.29

  • Joint pmf matrix for independent RVs

    19

    >> pX = [1/3 2/3]pX =

    0.3333 0.6667>> pY = [1/5 4/5]pY =

    0.2000 0.8000>> sym(pX'*pY)ans =[ 1/15, 4/15][ 2/15, 8/15]>>

    Command Window

  • Joint pmf for two i.i.d. RVs

    20

    close all; clear all;n = 10; p = 3/5;x = 0:n;y = 0:n;

    pX = binopdf(x,n,p);pY = binopdf(y,n,p);

    PXY = pX.'*pY;

    [X Y] = meshgrid(x,y); X = X.'; Y = Y.';

    %stem3(X,Y,PXY, 'filled')mesh(X,Y,PXY)%surf(X,Y,PXY)

    xlabel('x')ylabel('y')

    02

    46

    810

    0

    5

    100

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    xy

    i.i.d. 3, 10,5

    X Y

    Note how the pmfsare multiplied because of the independence.

  • Correlation

    21

    Correlation measures a specific kind of dependency. Dependence = statistical relationship between two random

    variables (or two sets of data). Correlation measures “linear” relationship between two random

    variables.

    Correlation and causality. “Correlation does not imply causation” Correlation cannot be used to infer a causal relationship

    between the variables.

  • Two “Unrelated” Events

    22Correlation: 0.666004 http://www.tylervigen.com/

  • Two “Unrelated” Events

    23

    85 90 95 100 105 110 115 120 1251

    1.5

    2

    2.5

    3

    3.5

    4

    Number people who drowned by falling into a swimming-pool

    Num

    ber o

    f film

    s N

    icol

    as C

    age

    appe

    ared

    in

    Correlation: 0.666004 http://www.tylervigen.com/

  • Spurious Correlation

    24http://www.tylervigen.com/Correlation: 0.992082

  • Spurious Correlation

    25

    1.8 2 2.2 2.4 2.6 2.8 3

    x 104

    5000

    5500

    6000

    6500

    7000

    7500

    8000

    8500

    9000

    US spending on science, space, and technology [Millions of todays dollars]

    Sui

    cide

    s by

    han

    ging

    , stra

    ngul

    atio

    n an

    d su

    ffoca

    tion

    [Dea

    ths]

    Correlation: 0.992082 http://www.tylervigen.com/

  • Spurious Correlation

    26http://www.tylervigen.com/

  • Spurious Correlation

    27http://www.tylervigen.com/

  • Spurious Correlation

    28

    (gross number of murders)

    [http://www.geek.com/microsoft/does-internet-explorers-falling-market-share-mirror-the-drop-in-us-homicides-1537095/]

  • Spurious Correlation

    29

    ECS315 - 8 - Discrete RVECS315 - 9 - Expectation and VarianceECS315 - 10 - Continuous Random Variables - u1ECS315 - 11 - Multiple Random Variables - u1