59
Prior Authorization Review Panel MCO Policy Submission A separate copy of this form must accompany each policy submitted for review. Policies submitted without this form will not be considered for review. Plan: Aetna Better Health Submission Date:11/01/2019 Policy Number: 0735 Effective Date: Revision Date:10/10/2019 Policy Name: Pulsed Radiofrequency Type of Submission – Check all that apply: New Policy Revised Policy* Annual Review – No Revisions Statewide PDL *All revisions to the policy must be highlighted using track changes throughout the document. Please provide any clarifying information for the policy below: CPB 0735 Pulsed Radiofrequency This CPB has been revised to state that pulsed radiofrequency is considered experimental and investigational for carpal tunnel syndrome, chronic knee pain, frozen shoulder, infraorbital neuralgia, and metatarsalgia. Update History since the last PARP Submission: 03/22/2019-This CPB has been updated with additional coding. Name of Authorized Individual (Please type or print): Dr. Bernard Lewin, M.D. Signature of Authorized Individual: Proprietary Revised July 22, 2019 Proprietary

Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Prior Authorization Review Panel MCO Policy Submission

A separate copy of this form must accompany each policy submitted for review. Policies submitted without this form will not be considered for review.

Plan: Aetna Better Health Submission Date:11/01/2019

Policy Number: 0735 Effective Date: Revision Date:10/10/2019

Policy Name: Pulsed Radiofrequency

Type of Submission – Check all that apply:

New Policy Revised Policy* Annual Review – No Revisions Statewide PDL

*All revisions to the policy must be highlighted using track changes throughout the document. Please

provide any clarifying information for the policy below:

CPB 0735 P ulsed Radiofrequency

This CPB has been revised to state that pulsed radiofrequency is considered experimental and investigational for carpal tunnel syndrome, chronic knee pain, frozen shoulder, infraorbital neuralgia, and metatarsalgia.

Update History since the last PARP Submission:

03/22/2019-This CPB has been updated with additional coding.

Name of Authorized Individual (Please type or print):

Dr. Bernard Lewin, M.D.

Signature of Authorized Individual:

Proprietary Revised July 22, 2019

Proprietary

Page 2: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

(https://www.aetna.com/)

Pulsed Radiofrequency

Clinical Policy Bulletins Medical Clinical Policy Bulletins

Number: 0735

*Please see amendment for Pennsylvania Medicaid at the end of this CPB.

Aetna considers pulsed radiofrequency experimental and investigational for all indications,

including those in the following list, because its effectiveness has not been established.

Abdominal cutaneous nerve entrapment syndrome

Carpal tunnel syndrome

Chronic knee pain

Chronic pain following inguinal herniotomy

Chronic perineal pain

Coccydynia

Diabetic peripheral neuropathy

Discogenic pain

Face and head pain

Facet and sacroiliac joint arthropathy

Frozen shoulder

Glossopharyngeal neuralgia

Headache

Hemiplegic shoulder pain

Idiopathic axonal polyneuropathy

Idiopathic supraorbital n euralgia

Infraorbital neuralgia

Inguinal neuralgia

Last Review

10/14/2019

Effective: 08/21/2007

Next

Review: 08/13/2020

Review

History

Definitions

Additional

Clinical Policy

Bulletin

Notes

www.aetna.com/cpb/medical/data/700_799/0735.htm Proprietary 1/57

Page 3: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Intercostobrachial neuralgia in post-mastectomypainsyndrome

Interstitial cystitis

Low back pain

Lower extremity neuralgia

Lumbo-sacral radicular syndrome

Meralgia paresthetica

Metatarsalgia

Metatarso-phalangeal joint pain

Morton's neuroma

Myofascial pain syndrome of gastrocnemius / the trapezius muscle

Myofascial or neuromatous pain

Neck pain

Occipital neuralgia

Ophthalmic neuralgia

Orchalgia

Osteoarthritis of the knee

Pain associated with tumors involving peripheral nerves

Palmar hyperhidrosis

Pelvic pain

Peripheral neuralgia

Peripheral post-traumatic neuropathic pain

Post-herpetic itch

Post-herpetic neuralgia

Post-surgical orchialgia

Plantar fasciitis

Premature ejeculation

Pudendal neuralgia

Reflex sympathetic dystrophy/complex regional pain syndrome

Sacro-iliac joint pain

Sensory deficits following stroke

Shoulder pain

Striae rubra

Stump pain

Sural neuralgia

Tarsal tunnel syndrome

Testicular pain (orchialgia)

Thoracic pain

Trapezio-metacarpal joint pain

Trigeminal neuralgia

www.aetna.com/cpb/medical/data/700_799/0735.html#dummyLink2 Proprietary 2/57

Page 4: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Urinary urgency and hesitancy

Vaginismus

Ventricular arrhythmias (fibrillation or tachycardia)

Vulvodynia

Zygapophyseal joint pain.

Aetna considers the Stimpod NMS460 nerve stimulator (Xavant Technology) experimental and

investigational because its effectiveness has not been established.

See CPB 0016 Back Pain - Invasive Procedures (../1_99/0016.html) for conventional

radiofrequency facet denervation.

Radiofrequency (RF) treatment is a minimally invasive procedure that has been used for over

three decades in treating various chronic pain syndromes such as trigeminal neuralgia, post­

herpetic neuralgia, low back pain (LBP), and complex regional pain syndrome/reflex sympathetic

dystrophy. It is a palliative treatment not without complications. Radiofrequency procedures

have been reported to be associated with high number of complications compared with other

ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment

occasionally results in worsening and even new onset ofpain.

The use of pulsed radiofrequency (PRF, also known as cold RF), a non- or minimally­

neurodestructive and thus less painful technique, serves as an alternative to conventional RF

therapy. Pulsed radiofrequency treatment, performed under fluoroscopic guidance, entails

the use of pulsed time cycle that delivers short bursts of RF energy to nervous tissue.

Pulsed radiofrequency is a proposed alternative to traditional radiofrequency neurotomy. Pulsed

radiofrequency delivers short bursts of radiofrequency current instead of a continuous flow,

which allows the needle to remain relatively cool so that the tissue cools slightly between each

burst, reducing the risk of destroying nearby tissue.

The available evidence on the effectiveness of PRF in the treatment of patients with various

chronic pain syndromes is largely based on retrospective, case series studies. Its clinical value

needs to be examined in well-designed, randomized controlled trials with large sample size and

long-term follow-up.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 3/57

Page 5: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

In a case series study, Mikeladze and colleagues (2003) reported that application of PRF to

medial branches of the dorsal rami in patients with chronic facet joint arthropathy provided

temporary pain relief in 57.6 % (68 of 118) of patients. The procedure was successful and lasted

on average 3.93 +/- 1.86 months.

Pevzner and co-workers (2005) reported the findings in 28 patients (LBP = 20, cervical pain = 8;

average age of 56.7 years) who were treated by PRF and followed for 3, 6 and 12 months. The

3-month follow-up revealed the following results: excellent results in 2 cases (7.1 %), good

results in 12 cases (42.9 %), fair in 9 (32.1 %), and 5 (17.9 %) reported that their condition have

not changed. Results after 6 and 12 months were excellent in 2 (both groups), good in 7 and 6

respectively, 11 fair (both groups), and unresponsive to treatment was noticed in 8 patients after

6 and 9 patients after 12 months. Significant reduction was found in the visual analog scale

(VAS) for pain from an average of 8.8 to 4.2 after 3 months, 4.8 after 6 months and 4.9 after 1

year. The authors concluded that PRF is a safe and simple procedure to control radicular pain in

the lumbar and cervical regions. Moreover, they emphasized the need for further prospective,

double-blind studies to better ascertain the clinical value of this technique.

Bayer and associates (2005) evaluated the effectiveness of spheno-palatine ganglion PRF

(SPG-PRF) treatment in patients suffering from chronic head and face pain. A total

of 30 patients were observed from 4 to 52 months after PRF treatment. The primary outcome

measures were reduction in oral medication use (including opioids), time to next treatment

modality for presenting symptoms, duration of pain relief, and the presence of residual

symptoms. Secondary outcome measures included the evaluation of adverse effects and

complications. All data were derived from patient charts, phone conversations, and clinical

follow-up visits. A total of 14 % of respondents reported no pain relief, 21 % had complete pain

relief, and 65 % of the patients reported mild-to-moderate pain relief from SPG-PRF treatment.

A total of 65 % of the respondents reported mild-to-moderate reduction in oral opioids. None of

the patients developed significant infection, bleeding, hematoma formation, dysesthesia, or

numbness of palate, maxilla, or posterior pharynx. The authors concluded that these findings

suggested that a prospective, randomized, controlled study to confirm the safety and

effectiveness of PRF treatment for chronic head and face pain is justified.

Vallejo and co-workers (2006) presented a prospective case series on the treatment of

intractable sacroiliac joint (SIJ) dysfunction with PRF denervation (PRFD) of lateral branches

from L4 to S3. A total of 126 patients with presumptive SIJ dysfunction based on history and

physical examination underwent arthrographically confirmed steroid/local anesthetic SIJ

injection. Fifty-two patients (41.3 %) had greater than 75 % pain relief after 2 consecutive

injections, physical therapy, repeated SIJ injections, and/or analgesics. A total of 22 patients

failed to respond; these individuals underwent PRFD of the medial branch of L4, posterior

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 4/57

Page 6: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

primary rami of L5, and lateral branches S1 and S2. Visual analog score and quality of life

(QOL) assessments were performed before and after treatment. Sixteen patients (72.7 %)

experienced "good" (greater than 50 % reduction in VAS), or "excellent" (greater than 80 %

reduction in VAS) pain relief following PRFD. Duration of pain relief ranged from 6 to 9 weeks

in 4 patients, 10 to 16 weeks in 5 patients, and 17 to 32 weeks in 7 patients. In addition, QOL

scores improved significantly in all measured categories. Six patients (26.1 %) did not respond

to PRFD and had less than 50 % reduction in VAS and were considered failures. The authors

concluded that PRFD of the lateral branch of the medial branch of L4, posterior primary rami of

L5, and lateral branches S1 and S2 is an effective treatment for some patients with SIJ pain

unresponsive to other forms of therapy.

Teixeira and Sluijter (2006) stated that intra-discal RF, with the electrode placed in the center of

the nucleus pulposus, has been a controversial procedure in patients with discogenic pain.

These researchers examined the effect of high-voltage, long-duration intra-discal PRF in patients

with 1-level discogenic LBP (n = 8), as confirmed by discography. The pain intensity score on a

0 to 10 Numeric Rating Scale (NRS) was used as outcome measure. The mean duration of pain

was 6.3 years (range of 0.5 to 16 years, median of 4 years). The mean NRS score was 7.75

(range of 5 to 9). Disc height was reduced 60 % in 1 patient and up to 30 % in the remaining

subjects. A 15-cm, 20-G needle with a 15-mm active tip was placed centrally in the disc. Pulsed

radiofrequency was applied for 20 mins at a setting of 2 x 20 ms/s and 60 V. There was a very

significant drop in the NRS scores over the first 3 months (p < 0.0001). On an individual basis,

all patients had a fall of the NRS score of at least 4 points at the 3-month follow-up. A follow-up

of 12.8 months (range of 6 to 25 months, median of 9 months) was available for 5 patients. All

these patients are now pain-free, except for 1 patient with an NRS score of 2. The authors

concluded that this method merits a controlled, prospectivestudy.

Lindner et al (2006) noted that the use of PRF for the treatment of lumbar medial branch for facet

pain is controversial. These investigators reported the findings of a retrospective study of PRF

treatment of the medial branch in 48 patients with chronic LBP. Patients who did not respond

were offered treatment with conventional RF heat lesions. Patients with LBP and greater than

50 % pain relief following a diagnostic medial branch block were included in the study. The

mean age was 53.1 +/- 13.5 years; the mean duration of pain was 11.4 +/- 10.9 years. Nineteen

patients had undergone surgery. Pain scores on a NRS of 1 to 10 were noted before and after

the diagnostic nerve block, before the procedure, and at 1-month and 4-month follow-up. PRF

was applied for 2 mins at a setting of 2 x 20 ms/s and 45 V at a minimum of 2 levels using a 22­

G electrode with a 5-mm active tip. Heat lesions were made at 80 degrees Centigrade (C) for 1

min. A successful outcome was defined as a greater than 60 % improvement on the NRS at 4­

month follow-up. In 21/29 non-operated patients and 5/19 operated patients, the outcome was

successful. In the unsuccessful patients who were subsequently treated with heat lesions, the

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 5/57

Page 7: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

success rate was 1/6. The authors concluded that the setup of the study did not allow a

comparison with the results of conventional/continuous RF (CRF) for the same procedure, other

than the detection of an obvious trend. When comparing these findings with various studies on

CRF of the medial branch such a trend could not be found. Based on these retrospective data,

prospective and randomized studies (e.g., PRF versus CRF) are justified.

In the only prospective, randomized, double-blinded, controlled trial of PRF for trigeminal

neuralgia published to date, Erdine and colleagues (2007) compared PRF to CRF in the

treatment of idiopathic trigeminal neuralgia. A total of 40 patients were randomly assigned to

PRF or CRF. Visual analog scale scores decreased significantly (p < 0.001) and patient

satisfaction scale (PSS) scores improved significantly (p < 0.001) after the procedure in subjects

assigned to CRF. The VAS score decreased in only 2 of 20 patients from the PRF group and

pain recurred 3 months following the procedure. At the end of 3 months, CRF was performed in

patients assigned to PRF because all patients in this group still exhibited intractable pain. The

authors concluded that PRF is ineffective in treating trigeminal neuralgia.

In a Cochrane review, Zakrzewska and Akram (2011) evaluated the efficacy of neurosurgical

interventions for classical trigeminal neuralgia in terms of pain relief, quality of life and any

harms, and determined if there are defined subgroups of patients more likely to benefit. These

investigators searched the Cochrane Neuromuscular Disease Group Specialized Register, (May

13, 2010), CENTRAL (issue 2, 2010 part of the Cochrane Library), Health Technology

Assessment (HTA) Database, NHS Economic Evaluation Database (NHSEED) and Database of

Abstracts of Reviews of Effects (DARE) (issue 4, 2010 (HTA, NHSEED and DARE are part of the

Cochrane Library)), MEDLINE (January 1966 to May 2010) and EMBASE (January 1980 to May

2010) with no language exclusion. Randomized controlled trials (RCTs) and quasi-RCTs of

neurosurgical interventions used in the treatment of classical trigeminal neuralgia were selected

for analysis. Two authors independently assessed trial quality and extracted data. They

contacted authors for clarification and missing information whenever possible. A total of 11

studies involving 496 participants met some of the inclusion criteria stated in the protocol. One

hundred and eighty patients in 5 studies had peripheral interventions, 229 patients in 5 studies

had percutaneous interventions applied to the Gasserian ganglion, and 87 patients in 1 study

underwent 2 modalities of stereotactic radiosurgery (Gamma Knife) treatment. No studies

addressing microvascular decompression (which is the only non-ablative procedure) met the

inclusion criteria. All but 2 of the identified studies had a high-to-medium risk of bias because of

either missing data or methodological inconsistency. It was not possible to undertake meta-

analysis because of differences in the intervention modalities and variable outcome measures.

Three studies had sufficient outcome data for analysis. One trial, which involved 40 participants,

compared 2 techniques of RF thermocoagulation (RFT) of the Gasserian ganglion at 6 months.

Pulsed RFT resulted in return of pain in all participants by 3 months. When this group were

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 6/57

Page 8: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

converted to conventional (continuous) treatment these participants achieved pain control

comparable to the group that had received conventional treatment from the outset. Sensory

changes were common in the continuous treatment group. In another trial, of 87 participants,

investigators compared radiation treatment to the trigeminal nerve at 1 or 2 isocenters in the

posterior fossa. There were insufficient data to determine if one technique was superior to

another. Two isocenters increased the incidence of sensory loss. Increased age and prior

surgery were predictors for poorer pain relief. Relapses were non-significantly reduced with 2

isocenters (risk ratio (RR) 0.72, 95 % confidence intervaI (CI): 0.30 to 1.71). A 3rd study

compared 2 techniques for RFT in 54 participants for 10 to 54 months. Both techniques

produced pain relief (not significantly in favor of neuronavigation (RR 0.70, 95 % CI: 0.46 to 1.04)

but relief was more sustained and side effects fewer if a neuronavigation system was used. The

remaining 8 studies did not report outcomes as pre-determined in the protocol. The authors

concluded that there is very low quality evidence for the efficacy of most neurosurgical

procedures for trigeminal neuralgia because of the poor quality of the trials. All procedures

produced variable pain relief, but many resulted in sensory side effects. There were no studies

of microvascular decompression which observational data suggested gives the longest pain

relief. There is little evidence to help comparative decision making about the best surgical

procedure. They stated that well-designed studies are urgentlyneeded.

In a case series study, Martin and colleagues (2007) reported the effectiveness of PRF in the

treatment of patients with lumbosacral spondylosis. This case series reviewed 22 patients who

had been previously treated with PRF with good results. Patients who had been prescribed

opioids were excluded from this study. During the PRF application, tissue temperature was

limited to 43 degrees C. A minimum of 200 mA of current was delivered in each case. The

minimum current (at 50 Hz) necessary to stimulate the involved nerve was recorded. The time

from PRF treatment until the patient requested a subsequent application was documented. The

effective duration of PRF in patients treated for lumbosacral spondylosis ranged from 5 to 18

months (mean +/- standard deviation [SD]: 9 +/- 3.7 months; n = 16). Administrations of PRF to

dorsal root ganglion (DRG) were effective from 2 to 12 months (7 +/- 3.8 months; n = 8). Similar

results were observed when PRF was applied to cervical medial branch nerves, one

suprascapular nerve, and one stellate ganglion. The mean sensory stimulation thresholds

obtained before treatment ranged from 0.08 V to 0.14 V. The authors concluded that in this

select population of patients who did not receive opioids, and had a favorable response to a

previous PRF application, the duration of pain relief supported the use of PRF as an effective

pain treatment.

In a retrospective study, Abejon and associates (2007) assessed the effectiveness of PRF

applied to the lumbar DRG for the treatment of LBP. This study analyzed the findings of 54

patients who underwent 75 PRF procedures. Patients were divided into 3 groups according to

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 7/57

Page 9: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

the etiology of the lesion: (i) herniated disc (HD), (ii) spinal stenosis (SS), and (iii) failed back

surgery syndrome (FBSS). The analgesic effectiveness of the technique was assessed using a

10-point NRS at baseline and, along with the Global Perceived Effect (GPE), at 30, 60, 90, and

180 days. The reduction in pain medications and the number of complications associated with

the technique were assessed. A decrease in the NRS score was observed in patients with HD

(p < 0.05) and SS (p < 0.001), but not in those with FBSS. The GPE scores confirmed this

finding. No complications were noted. The authors concluded that PRF of the DRG was

significantly more effective in HD and SS than in FBSS patients. The application of PRF was

ineffective in FBSS.

Van Zundert and associates (2007) examined the effect of PRF for the treatment of patients with

chronic cervical radicular pain. A total of 23 patients, out of 256 screened, met the inclusion

criteria and were randomly assigned in a double-blind fashion to receive either PRF or sham

intervention. The evaluation was carried out by an independent observer. At 3-month follow-

up, the PRF group showed a significantly better outcome with regard to the global perceived

effect (i.e., greater than 50 % improvement) and VAS (i.e., 20 point pain reduction). The quality

of life scales also showed a positive trend in favor of the PRF group, but significance was only

reached in theShort Form-36 questionnaire (SF-36) domain vitality at 3 months. The need for

pain medication was significantly reduced in the PRF group after 6 months. No complications

were observed during the study period. These findings are in agreement with the results of the

authors' previous clinical audit that PRF treatment of the cervical DRG may provide pain relief for

a limited number of carefully selected patients with chronic cervical radicular pain as assessed

by clinical and neurological examination.

In an editorial that accompanied the study by Van Zundert et al, Jensen (2007) noted that early

studies show good short-term results of PRF. However, there is currently insufficient evidence to

use PRF routinely for chronic cervical radicular pain. Jensen stated that more research is

needed to ascertain the best way to use PRF and its analgesic mechanism. This is in

agreement with the observation of Tella and Stojanovic (2007) who stated that more studies are

needed to support the routine use of PRF for treating patients with chronic cervical radicular

pain.

Cahana and associates (2006) stated that the clinical advantages and mechanisms of PRF

remain unclear. These investigators reviewed clinical and laboratory data on PRF. The final

analysis yielded 58 reports on the clinical use of PRF in different applications: 33 full publications

and 25 abstracts. They also retrieved 6 basic science reports, 5 full publications, and 1

abstract. The authors stated that the accumulation of these data showed that the use of PRF

generates an increasing interest of pain physicians for the management of a variety of pain

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 8/57

Page 10: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

syndromes. Although the mechanism of action has not been fully elucidated, laboratory reports

suggested a neurobiological phenomenon altering the pain signaling, which some researchers

have described as neuromodulatory. No side effects related to PRF were reported to date. The

authors concluded that further research in the clinical and biological effects of this technique is

justified.

In a review on PRF treatment, Gallagher (2006) stated that "we should cautiously prescribe this

promising intervention following clinical algorithms that are based upon the best clinical evidence

available. However, it is critically important to avoid the mistake of creating a "carte blanche"

environment for those practitioners who would abuse the privilege and opportunity presented by

this new technology, besmirching our credibility and ultimately impeding the opportunity to use

this treatment to the benefit of the public. Ultimately, evidence, not reimbursement, should

determine whether pulsed radiofrequency finds a place in our clinical toolbox".

It should be noted that the Reflex Sympathetic Dystrophy Syndrome Association (2006) did not

recommend PRF for the treatment of patients with complex regional pain syndrome. It stated

that future studies may expand on the role of PRF techniques or such unstudied techniques as

cryosurgery as alternative therapies to treat patients with sympathetically maintained pain. The

Transport Accident Commission, a government-owned organization of the State of Victoria in

Melbourne, Australia (2007) does not consider PRF neurotomy/denervation as part of spinal

injection therapy.

Malik and Benzon (2007) reviewed the available literature on PRF and determined its clinical

efficacy. Their search of the literature yielded 341 citations; and 51 relevant articles were found.

There were 4 review articles: 44 articles pertained to the application of PRF by an electrode

placed in the vicinity of a neural structure. Of these, only 2 were randomized controlled trials

(RCTs). Of the remaining 42 articles, 1 was a non-RCT, 3 were prospective uncontrolled trials:

there were 6 retrospective studies, 11 case reports, 8 laboratory studies, 2 position papers, 5

editorials and 7 items of correspondence, while 1 publication reported 2 studies. Three articles

pertained to transcutaneous application of PRF. Of the 2 RCTs, 1 reported efficacy of the PRF

while the other reported it to be ineffective. The majority of the uncontrolled and observational

studies reported clinical efficacy of PRF, however many of these studies had limitations. The

authors concluded that further RCTs are needed for pain physicians to clearly understand the

role of PRF in the treatment of various chronic pain syndromes. Furthermore, these

investigators (Malik and Benzon, 2008) stated that larger RCTs are needed to (i) assess the

long-term effects of RF applications (pulsed and continuous mode) to dorsal root ganglia

and (ii) determine the precise mode of action of this trechnique.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 9/57

Page 11: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Simopoulos and colleagues (2008) prospectively evaluated the response and safety of pulsed

and continuous RF lesioning of the dorsal root ganglion/segmental nerves in patients with

chronic lumbosacral radicular pain. A total of 76 patients with chronic lumbosacral radicular pain

refractory to conventional therapy met the inclusion criteria and were randomly assigned to 1 of 2

types of treatment, PRF lesioning of the dorsal root ganglion/segmental nerve or PRF followed

immediately by continuous RF. Patients were carefully evaluated for neurological deficits and

side effects. The response was evaluated at 2 months and was then tracked monthly. A Kaplan-

Meier analysis was used to illustrate the probability of success over time and a Box-Whisker

analysis was applied to determine the mean duration of a successful analgesic effect. Two

months after undergoing RF treatment, 70 % of the patients treated with PRF and 82 % treated

with pulsed and continuous RF had a successful reduction in pain intensity. The average

duration of successful analgesic response was 3.18 months (+/- 2.81) in the group treated with

PRF and 4.39 months (+/- 3.50) in those patients treated with pulsed and continuous RF

lesioning. A Kaplan-Meier analysis illustrated that in both treatment groups the chance of

success approached 50 % in each group at 3 months. The vast majority of patients had lost any

beneficial effects by 8 months. There was no statistical difference between the 2 treatment

groups. No side effects or neurological deficits were found in either group. The authors

concluded that pulsed mode RF of the dorsal root ganglion of segmental nerves appears to be a

safe treatment for chronic lumbosacral radicular pain. A significant number of patients can

derive at least a short-term benefit. The addition of heat via continuous radiofrequency does not

offer a significant advantage. A RCT trial is now required to ascertain the effectiveness of PRF.

Byrd and Mackey (2008) stated that the mechanism by which PRF controls pain is unclear, but it

may involve a temperature-independent pathway mediated by a rapidly changing electrical field.

Although much anecdotal evidence exists in favor of PRF, there are few quality studies

substantiating its utility.

In a pilot study, Misra et al (2009) evaluated the effectiveness of PRF of spermatic cord in the

treatment of chronic testicular pain. A total of 10 patients with chronic testicular pain were

treated with PRF stimulation of the spermatic cord. A RF probe placed percutaneously into the

spermatic cord was used to deliver four 120-second cycles of 20-millisecond pulses at 2 Hz.

Test stimulation was first used to confirm the precise placement of the probe. The short-form

McGill Pain Questionnaire was used to assess pain before treatment and at 3 months. Patients

who had experienced improvement were followed-up by telephone, to determine if pain relief

was sustained. Ten patients were entered into the study but 1 was lost to follow-up. Of the 9

patients evaluated, 4 had complete resolution of pain, while 1 had partial pain relief. Three

patients experienced no change and 1 reported that his pain was worse. All patients who

experienced complete and partial pain relief continued to do so at a mean long-term follow-up of

9.6 months (range of 3 to 14 months). There were no complications observed immediately or

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 10/57

Page 12: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

during the follow-up period. The authors reported that pain scores improved in 5 out of 9

patients. They concluded that PRF of spermatic cord appears to be a safe minimally invasive

outpatient procedure that should be investigated further with placebo-controlled trials.

In a case series study, Tamimi and colleagues (2009) examined the use of PRF in the treatment

of myofascial trigger points and scar neuromas. A total of 9 patients were treated over an 18­

month period. All patients had longstanding myofascial or neuromatous pain that was refractory

to previous medical management, physical therapy, and trigger point injections. Eight out of 9

patients experienced 75 to 100 % reduction in their pain following PRF treatment at initial

evaluation 4 weeks following treatment. Six out of 9 (67 %) patients experienced 6 months to

greater than 1 year of pain relief. One patient experienced no better relief in terms of degree of

pain reduction or duration of benefit when compared with previous trigger point injections. No

complications were noted. The authors stated that these findings suggested that PRF could be a

minimally invasive, less neurodestructive treatment modality for these painful conditions and that

further systematic evaluation of this treatment approach isneeded.

Basal et al (2010) noted that premature ejaculation (PE) is the most common sexual problem

experienced by men, and affecting 20 to 30 % of them. Pulsed radiofrequency neuromodulation

has been stuided as a treatment for various pain conditions. These researchers used PRF to

treat PE by desensitizing dorsal penile nerves in patients resistant to conventional treatments. A

total of 15 patients with a lifelong history of PE, defined as an intra-vaginal ejaculatory latency

time (IELT) of less than 1 min that occurred in more than 90 % of intercourses and resistant to

conventional treatments, were enrolled in this study. Patients with erectile dysfunction were

excluded. The mean age of the patients was 39 +/- 9 years. Before and 3 weeks after the

treatment, IELT and sexual satisfaction scores (SSS) (for patients and their partners) were

obtained. The mean IELT before and 3 weeks after procedure were 18.5 +/- 17.9 and 139.9 +/­

55.1 seconds, respectively. There were no side effects. Mean SSS of patients before and after

treatment were 1.3 +/- 0.3 and 4.6 +/- 0.5 and mean SSS of partners before and after treatment

were 1.3 +/- 0.4 and 4.4 +/- 0.5, respectively. In all cases, IELT and SSS were significantly

increased (p < 0.05). None of the patients and their wives defined any treatment failure during

the follow-up period. The mean follow-up time was 8.3 +/- 1.9 months. The authors stated that it

is early to conclude that this new treatment modality might be used widely for the treatment of

PE, however being an innovative modality, placebo controlled studies (e.g., sham procedure),

with larger number of patients, including assessment of penil sensitivity (e.g., biothesiometry) are

needed.

Vanelderen et al (2010) reported on the results of a prospective trial with 6 months of follow-up in

which PRF treatment of the greater and/or lesser occipital nerve was used to treat occipital

neuralgia. Patients presenting with clinical findings suggestive of occipital neuralgia and a

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 11/57

Page 13: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

positive test block of the occipital nerves with 2 ml of local anesthetic underwent a PRF

procedure of the culprit nerves. Mean scores for pain, quality of life, and medication intake were

measured 1, 2, and 6 months following the procedure. Pain was measured by the visual analog

and Likert scales, quality of life was measured by a modified brief pain questionnaire, and

medication intake was measured by a Medication Quantification Scale. During a 29-month

period, 19 patients were included in the study. Mean VAS and median Medication Quantification

Scale scores declined by 3.6 units (p = 0.002) and 8 units (p = 0.006), respectively, during 6

months. Approximately 52.6 % of patients reported a score of 6 (pain improved substantially) or

higher on the Likert scale after 6 months. No complications were reported. The authors

concluded that PRF treatment of the greater and/or lesser occipital nerve is a promising

treatment of occipital neuralgia. They stated that this study warrants further placebo-controlled

trials.

Choi et al (2012) reported the results of PRF treatment of the occipital nerve, which was used to

treat occipital neuralgia. Patients were diagnosed with occipital neuralgia according to the

International Classification of Headache Disorders classification criteria. These

investigators performed PRF neuromodulation when patients presented with clinical findings

suggestive occipital neuralgia with positive diagnostic block of the occipital nerves with local

anesthetics. Patients were analyzed according to age, duration of symptoms, surgical results,

complications and recurrence. Pain was measured every month after the procedure using the

visual analog and total pain indexes. From 2010, a total of 10 patients were included in the

study. The mean age was 52 years (34 to 70 years). The mean follow-up period was 7.5

months (6 to 10 months). Mean VAS and mean total pain index scores declined by 6.1 units and

192.1 units, respectively, during the follow-up period. No complications were reported. The

authors concluded that PRF neuromodulation of the occipital nerve is an effective treatment for

occipital neuralgia. Moreover, they stated that further controlled prospective studies are needed

to evaluate the exact effects and long-term outcomes of this treatment method.

In a randomized, double-blinded, placebo controlled trial, Taverner and colleagues (2010)

examined if transcutaneous-PRF treatment (TCPRFT) was able to reduce the pain experienced

by patients awaiting total knee joint replacement (TKJR). Patients on the waiting list for

assessment for TKJR were invited to participate and were examined in the clinic if they satisfied

the inclusion criteria. Patients were randomized to receive active or sham TCPRFT. The

alteration in pain and function of the treated knee after a single TCPRFT was assessed at

examination at 1 and 4 weeks using VAS at rest and after 20-m and 400-m walks. The results of

50 patients showed a statistically significant reduction in VAS at 1 and 4 weeks compared with

baseline in the group who received active treatment. These researchers also demonstrated what

is considered a clinically significant improvement in this group that became more pronounced at

week 4 compared with week 1 and also more after a 400-m walk compared with a 20-m walk.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 12/57

Page 14: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Maximum improvement observed in group data was 19/100 VAS. Patients receiving sham

treatment showed no statistically significant improvement. The authors believed this to be the

first report of a controlled study of TCPRFT. They stated that the findings of this pilot study

showed a benefit of the technique that justifies future research.

Basal et al (2012) evaluated the effectiveness of PRF denervation of spermatic cord for the

treatment of chronic orchialgia. A total of 5 patients were evaluated with a thorough medical and

psychiatric history, physical examination and scrotal doppler ultrasound, urinary system X-ray

film and urine analysis. One of the patients had bilateral chronic orchialgia. All the patients had

pain for at least a period more than 3 months, and multiple conservative therapies failed to

alleviate the pain. Patients, who had temporary pain relief after undergoing outpatient diagnostic

cord block, were determined to be candidates for PRF denervation. Pulsed RF denervation of

spermatic cord was performed for 6 testicular units. Visual analog scores were noted before and

after the procedure. There were no pathologic conditions that indicated chronic orchialgia in any

of the patients. No complications including testicular atrophy or hypoesthesia of the scrotal or

penile skin occurred after the procedure. Mean VAS before and after the procedure was 9 and

1, respectively. None of the patients needed any analgesics after the procedure and during the

follow-up period. Mean follow-up period was 20 +/- 2.5 weeks. No recurrence was noted and

none of the patients needed additional therapy. The authors concluded that this is a limited case

report on the short-term use of PRF. They stated that randomized, placebo-controlled and long

follow-up period studies are needed to better assess the effectiveness of this procedure for

chronic orchalgia.

In a review on "radiofrequency and pulsed radiofrequency treatment of chronic pain syndromes"

van Boxem et al (2008) stated that there are currently 6 reviews on PRF for the management of

spinal pain. Two reviews on interventional pain management techniques in general also

discussed RF. The outcomes of those reviews depend on the type of studies included and the

opinion of the reviewers, which may result in different evidence levels. Radiofrequency

denervation at the cervical and lumbar level has produced the most solid evidence. The

differences in treatment outcome registered in the 5 RCTs regarding lumbar facet denervation

can be attributed to differences in patient selection and/or inappropriate technique. There is

insufficient evidence supporting the use of RF facet denervation for the management of

cervicogenic headache. The studies examining the management of cervical radicular pain

suggested a comparable efficacy for RF and pulsed RF (PRF). The PRF treatment is supposed

to be safer and therefore should be preferred. The superiority of RF treatment adjacent to the

lumbar dorsal root ganglion for the management of lumbar radicular pain has not been

demonstrated in an RCT. Information regarding RF treatment of sacro-iliac joint pain is

accumulating. No randomized sham-controlled trials on the value of RF treatment of the

Gasserian ganglion for the management of idiopathic trigeminal neuralgia have been published.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 13/57

Page 15: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

One RCT indicated superiority of RF over PRF for the management of idiopathic trigeminal

neuralgia. The authors concluded that future research to confirm or deny the efficacy of (P)RF

should be conducted in carefully selected patient populations. The tests used for patient

inclusion in such a trial could potentially help the clinician in selecting patients for this type of

treatment. They also stated that the value of PRF treatment of the peripheral nerves also needs

to be confirmed in well-designed trials.

Chua et al (2011) evaluated the effectiveness of PRF treatment in chronic pain management in

RCTs and well-designed observational studies. The physics, mechanisms of action, and

biological effects were discussed to provide the scientific basis for this promising modality.

These investigators systematically searched for clinical studies on PRF. They searched the

MEDLINE (PubMed) and EMBASE database, using the free text terms: pulsed radiofrequency,

radio frequency, radiation, isothermal radiofrequency, and combination of these. They classified

the information in 2 tables, 1 focusing only on RCTs, and another, containing prospective

studies. Date of last electronic search was May 30, 2010. These researchers found 6 RCTs that

evaluated the efficacy of PRF, 1 against corticosteroid injection, 1 against sham intervention, and

the rest against conventional RF thermocoagulation. Two trials were conducted in patients with

LBP due to lumbar zygapophyseal joint pain, 1 in cervical radicular pain, 1 in lumbo-sacral

radicular pain, 1 in trigeminal neuralgia, and another in chronic shoulder pain. The authors

concluded that from the available evidence, the use of PRF to the dorsal root ganglion in cervical

radicular pain is compelling. With regards to its lumbo-sacral counterpart, the use of PRF can

not be similarly advocated in view of the methodological quality of the included study. Pulsed RF

application to the supracapular nerve was found to be as effective as intra-articular corticosteroid

in patients with chronic shoulder pain. The use of PRF in lumbar facet arthropathy and

trigeminal neuralgia was found to be less effective than conventional RF thermocoagulation

techniques.

van Boxem et al (2011) noted that lumbosacral radicular syndrome (LRS) is probably the most

frequent neuropathic pain syndrome. Three months to 1 year after onset, 30 % of the patients

still experience ongoing pain. The management of those patients is complex, and treatment

success rates are rather low. The beneficial effect of PRF therapy has been described for the

treatment of LRS in case reports and in retrospective and prospective studies. Up until now, no

neurological complications have been reported after PRF treatment. These investigators

performed a clinical audit to evaluate the amount of pain relief after a single PRF treatment. A

total of 60 consecutive patients who received a PRF treatment adjacent to the lumbar-dorsal root

ganglion for the management of LRS in the period 2007 to 2009 were included. The main study

objective was to measure the reduction of pain after the PRF treatment by using the global

perceived effect. The primary end point was defined as at least 50 % pain relief for a period of 2

months or longer. The primary end point was achieved in 29.5 % of all the PRF interventions.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 14/57

Page 16: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

After 6 months, 50 % pain relief was still present in 22.9 % of the cases and after 12 months in

13.1 % of the cases. The need for pain medication was significantly lower after PRF treatment in

the success group compared with the non-success group. The authors concluded that PRF

treatment can be considered for the management of LRS patients. Moreover, they statedthat

these results need to be confirmed in a RCT.

In a systematic review, Hansen and colleagues (2012) evaluate the effectiveness of therapeutic

sacro-iliac joint (SIJ) interventions. The available literature on therapeutic SIJ interventions in

managing chronic LBP and lower extremity pain was reviewed. The quality assessment and

clinical relevance criteria utilized were the Cochrane Musculoskeletal Review Group criteria for

randomized trials of interventional techniques and the criteria developed by the Newcastle-

Ottawa Scale for observational studies. The level of evidence was classified as good, fair, or

poor based on the quality of evidence developed by the U.S. Preventive Services Task Force

(USPSTF). Data sources included relevant literature published from 1966 through December

2011 that was identified through searches of PubMed and EMBASE, and manual searches of the

bibliographies of known primary and review articles. The primary outcome measure was pain

relief (short-term relief = up to 6 months and long-term relief = greater than 6 months).

Secondary outcome measures were improvement in functional status, psychological status,

return to work, and reduction in opioid intake. For this systematic review, a total of 56 studies

were considered for inclusion. Of these, 45 studies were excluded and a total of 11 studies met

inclusion criteria for methodological quality assessment with 6 randomized trials and 5 non-

randomized studies. The evidence for cooled radiofrequency neurotomy in managing SIJ pain is

fair. The evidence for effectiveness of intra-articular steroid injections is poor. The evidence for

peri-articular injections of local anesthetic and steroid or botulinum toxin is poor. The evidence

for effectiveness of conventional RF neurotomy is poor. The evidence for PRF is poor. The

authors concluded that the evidence was fair in favor of cooled RF neurotomy and poor for short-

term and long-term relief from intra-articular steroid injections, peri-articular injections with

steroids or botulin toxin, PRF, and conventional RF neurotomy.

Werner et al (2012) stated that in the United States, it is estimated that between 6,000 and

18,000 individuals each year present with disabling pain after inguinal hernia repair. Although

surgical treatment with mesh removal is one of few options available, effective alternatives to

non-surgical management are needed. The use of PFR, leading to non-destructive lesions of

nerve structures, has been proposed as a treatment option. To examine the evidence of

treatment efficacy, a systematic literature search was made. From the databases PubMed,

Embase, and CINAHL, 4 case reports were retrieved and 8 patients were included for analysis.

The PFR treatment was peripheral (n = 4) and central (n = 4). Pain relief varied between 63 %

and 100 %, the follow-up period was 3 to 9 months, and no adverse effects or complications

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 15/57

Page 17: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

were reported. The authors concluded that the evidence base of PRF in persistent

pain following inguinal herniotomy is fairly limited. They also presented suggestions for

improved research strategies in this field.

Taverner et al (2013) reported a retrospective audit of transcutaneous PRF treatment therapy

(TCPRFT) for shoulder pain over a 4-year period. Electronic and manual case review revealed

that TCPRFT had been performed on 13 patients, with 15 painful shoulders, using a single

treatment session between 2006 and 2010 in an out-patient setting. Of the 15 shoulders treated,

10 had pain relief for over 3 months with an average pain score reduction of 6.1 of 10 and an

average duration of pain relief of 395 days. Two experienced pain relief of less than 3 months

with an average reduction in pain score of 4.3 of 10 and an average duration of effect of 11

days. Three cases experienced no pain relief from the treatment. These results suggested

TCPRFT may provide clinically useful pain relief and be another treatment modality for shoulder

pain. The authors concluded that these findings justifies further research, and they are

proceeding with a double-blind placebo RCT to determine the effectiveness of TCPRFT in

chronic shoulder pain.

Fang et al (2014) examined the effectiveness and clinical utility of CT-guided PRF for treatment

of trigeminal neuralgia (TN). Patients who were diagnosed with severe TN between September

2010 and October 2010 were included. Pulsed radiofrequency treatment was employed to treat

TN. To verify the accurate needle position, a thin-section cranial CT scan was performed by

using a multi-detector CT scanner. Three-dimensional reconstruction was performed to visualize

the location of the needle and the foramen ovale. A total of 20 patients were included in the

study. Seven patients (35 %) had favorable outcome 1 year after the PRFT. The numeric rating

scale in the 7 patients with good outcome was significantly lower than the 13 patients with bad

outcome at 1 day, 1 week, and 2 weeks after the treatment. The remaining 13 patients had

residual pain 2 weeks after the PRFT and had to receive RF thermo-coagulation (RFTC). The

authors concluded that these findings demonstrated that CT-guided PRFT is not an effective

method of pain treatment for idiopathic TN as compared with conventional RFTC. However, CT-

guided PRFT is associated with less complication than RFTC.

Rana and Matchett (2013) stated that pain associated with cancer is often difficult to treat, even

more so when tumors involve peripheral nerves. Therapy is complex and often requires a multi-

modal approach that can include medications, radiation, and interventional techniques. These

components are utilized with variable success, but are also limited by known complications or

adverse effects. These investigators presented the case of a 53-year old woman with a

metastatic axillary tumor that involved her brachial plexus. Attempts to control her pain with

medication were unsuccessful despite escalation and use of adjunct agents. She was not

deemed to be a surgical candidate due to the size and location of the tumor. Radiation was

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 16/57

Page 18: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

discussed but, obviously, would not work immediately. These investigators decided to employ a

brachial plexus catheter for continuous nerve block, which provided almost complete relief of

pain. Since her pain was deemed to be of peripheral etiology, PRF ablation of her brachial

plexus was used for more long-term pain relief. The patient responded very well with minimal

pain issues and no apparent complications. On follow-up, the patient had good relief for almost

2 months. Pulsed radiofrequency is a poorly understood technology that has increasing

evidence for certain pain conditions; however, for cancer and peripheral nerves the evidence is

slim to none. The authors noted that this case presented a successful use for pain management

of a brachial plexopathy due to a tumor. They proposed that PRF may present a non­

neurodestructive pain management technique for tumors involving peripheral nerves, although

more data are definitely needed.

Bui et al (2013) reported on the utility of a pudendal nerve block by PRF ablation for the

treatment of male pelvic pain and urinary urgency and hesitancy. The patient was an 86-year old

man with a 30-year history of urinary hesitancy and urgency. The patient also had pain in the

area of the perineum but considered it a secondary issue. The patient was seen by a number of

specialists, tried various medications, and underwent a variety of procedures to no avail.

Therefore, the patient underwent a PRF ablation of the pudendal nerve. The patient reported

marked improvement in his pelvic pain as well as a drastic reduction in his urinary urgency and

hesitancy. The authors concluded that urinary urgency and hesitancy and male pelvic pain are

some of the most common symptoms affecting men. Pudendal nerve block by PRF ablation is

an effective treatment of pelvic pain. It may also hold some therapeutic value in the treatment of

urinary urgency and hesitancy as this case demonstrated. Moreover, they stated that further

studies are needed to help clarify both the anatomy of the pelvis as well as if pudendal blocks

are effective in treating more than pelvic pain.

Kestranek et al (2013) described a new treatment of refractory severe vulvodynia. These

researchers reported on the successful use of the PRF treatment in a patient with intractable

chronic vulvodynia. To the authors’ knowledge, this is the first report of a successful use of PRF

in the treatment of chronic vulvodynia. They concluded that if the effectiveness of PRF is

confirmed by more studies, it would be a welcome addition to the treatment modalities used to

treat this sometimes truly intractable condition.

The American Society of Interventional Pain Physicians’ updated guidelines on “Interventional

techniques in chronic spinal pain” (Manchikanti et al, 2013) noted that the evidence is limited for

pulsed radiofrequency neurotomy as a therapeutic lumbar facet joint interventions; and the

evidence is limited for both pulsed radiofrequency and conventional radiofrequency neurotomy

as a therapeutic sacroiliac joint interventions.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 17/57

Page 19: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Schianchi et al (2013) evaluated the effectiveness of intra-articular (IA) PRF in a group of 57

consecutive patients with chronic joint pain. Patients with intractable joint pain for more than 6

months were treated with IA PRF 40 to 45 V for 10 to 15 mins in small joints and 60 V for 15

mins in large joints using fluoroscopic confirmation of correct needle position. A total of 28

shoulders, 40 knees, 10 trapezio-metacarpal, and 11 first metatarso-phalangeal joints were

treated. Results were evaluated at 1, 2, and 5 months. The procedure was repeated after 1

month in 10 patients with initial suboptimal results. Success was defined as a reduction of pain

score by at least 50 %. All groups showed significant reductions in pain scores at all 3 follow-up

visits. Success rates were higher in small joints (90 % and 82 %, respectively) than large ones

(64 % and 60 %, respectively). Interestingly, IA PRF was successful in 6 out of 10 patients who

had undergone previous surgery, including 3 with prosthetic joint replacement and in 6 of the 10

repeated procedures. There were no significant adverse effects or complications. The authors

concluded that IA PRF induced significant pain relief of long duration in a majority of the patients

with joint pain. The exact mechanism is unclear, but may be related to the exposure of immune

cells to low-strength RF fields, inducing an anti-inflammatory effect. The success rate appears to

be highest in small joints. The authors recommended additional research including control

groups to further investigate and clarify this method; these data suggested that PRF may

represent a useful modality in the treatment of arthrogenicpain.

Kim and colleagues (2014) noted that amputation neuroma can cause very serious, intractable

pain. Many treatment modalities are suggested for painful neuroma. Pharmacologic treatment

shows a limited effect on eliminating the pain, and surgical treatment has a high recurrence rate.

These investigators applied PRF treatment at the neuroma stalk under ultrasonography

guidance. The long-term outcome was very successful, prompting these researchers to report

this case. These preliminary findings from a single-case study need to be validated by well-

designed studies.

Terkawi and Romdhane (2014) stated that chronic orchalgia is a frustrating clinical problem for

both the patient and the physician. These researchers presented a 17-year old boy with a

bilateral idiopathic chronic intractable orchalgia with failed conservative treatment. For 2 years,

he suffered from severe attacks of scrotal pain that affected his daily activities and caused

frequent absence from school. These investigators performed ultrasound-guided PRF ablation

of the genital branches of the genito-femoral nerve after local anesthetic nerve block confirmed

the diagnosis and yielded 6 weeks of symptom relief. The authors noted that 7-month follow-up

revealed complete satisfactory analgesia. The clinical value of this non-invasive approach to

treat intractable chronic orchalgia needs to be further researched.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 18/57

Page 20: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Park et al (2014) noted that post-herpetic neuralgia (PHN) is one of the most difficult pain

syndromes to treat. Invasive treatments may be considered when patients fail to obtain

adequate pain relief from noninvasive treatment approaches. These researchers presented 3

cases of PHN in the mandibular branch treated with ultrasound-assisted mental nerve block and

PRF treatment. None of the patients had adequate pain relief from the medical therapy, so these

investigators performed the mental nerve block on the affected side under ultrasound

assistance. Two patients showed satisfactory pain relief continuously over 12 months without

any further interventions, whereas 1 patient only had short-term pain relief. For the patient who

had short-term pain relief, these researchers performed PRF treatment on the left mental nerve

under ultrasound assistance. After PRF treatment, the patient had adequate pain relief for 6

months and there was no need for further management. These preliminary findings from a

single patient need to be validated by well-designed studies.

Chon and colleagues (2014) stated that tarsal tunnel syndrome (TTS) is a compression

neuropathy that results from entrapment of the posterior tibial nerve or its branches. Tarsal

tunnel syndrome may be treated either by conservative measures, including physical therapy,

medications, and steroid injections, or by surgical decompression. Despite a variety of

treatments, a few cases of TTS will relapse, and many cases of recurrent TTS will require re-

operation. These researchers reported a new application of ultrasound-guided PRF in 2 cases

of intractable TTS. Both patients had a long duration of severe foot pain and had been treated

with various therapeutic modalities without lasting relief. These investigators applied ultrasound-

guided PRF to the affected posterior tibial nerve in each patient, and both had significantly

reduced pain intensity scores and analgesic requirements without any complications. The

authors concluded that ultrasound-guided PRF for intractable TTS relieved severe foot pain; it

may supersede surgery as a reliable treatment for intractable TTS. These preliminary findings

need to be validated by well-designed studies.

Nagar and colleagues (2015) investigate the clinical utility of RF neurotomy, and PRF ablation for

the management of cervicogenic headache (CHA). The review included relevant literature

identified through searches of PubMed, Cochrane, Clinical trials, U.S. National Guideline

Clearinghouse and EMBASE from 1960 to January 2014. The quality assessment and clinical

relevance criteria utilized were the Cochrane Musculoskeletal Review Group criteria for RCTs

and the Newcastle-Ottawa Scale criteria for observational studies. The level of evidence was

classified as good, fair, and poor based on the quality of evidence. The primary outcome

measures were reduction in pain scores and improvement in quality of life. The primary outcome

measures were headache relief and improved quality of life. A total of 25 studies were identified

for full text review; of these, 9 studies met inclusion criteria. There were 5 non-randomized,

among them 4/5 were of moderate quality, 3/5 showed RF ablation and 1/5 showed PRF as an

effective intervention for CHA. There were 4 randomized trials among them 2/4 were of high

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 19/57

Page 21: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

quality, 3/4 investigated RF ablation as an intervention for CHA, 1/4 investigated PRF ablation as

an intervention for CHA and none of the randomized studies showed strong evidence for RF and

PRF ablation as an effective intervention for CHA. The authors concluded that there is limited

evidence to support RF ablation for management of CHA as there are no high quality RCTs and/

or multiple consistent non-RCTs without methodological flaws. They also noted that there is poor

evidence to support the use of PRF for the treatment of CHA as there are no high quality RCTs

or non-RCTs.

Face and Head Pain

Akbas et al (2016) retrospectively evaluated the satisfaction of PRF treatment in patients

suffering from chronic face and head pain. Infra-zygomatic approach was used for the PRF of

the spheno-palatine ganglion under fluoroscopic guidance. After the tip of the needle reached

the target point, 0.25 to 0.5 ms pulse width was applied for sensory stimulation at frequencies

from 50 Hz to 1 V. Paraesthesias were exposed at the roof of the nose at 0.5 to 0.7V. To rule

out trigeminal contact that led to rhythmic mandibular contraction, motor stimulation at a

frequency of 2 Hz was applied. Then, 4 cycles of PRF lesioning were performed for 120s at a

temperature of 42° C. Pain relief could not be achieved in 23 % of the patients (unacceptable),

whereas pain was completely relieved in 35 % of the patients (excellent) and mild-to-moderate

pain relief could be achieved in 42 % of the patients (good) through spheno-palatine ganglion-

PRF treatment. The authors concluded that PRF of the spheno-palatine ganglion is effective in

treating the patients suffering from intractable chronic facial and head pain. Moreover, they

stated that there is a need for prospective RCTs in order to confirm the safety and effectiveness

of this new treatment modality in chronic face and head and pain.

Inguinal Neuralgia

In a randomized, double-blind controlled trial, Makharita and Amr (2015) evaluated the

effectiveness of PRF in management of chronic inguinal neuralgia. A total of 21 patients were

allocated into 2 groups. Group 1 received 2 cycles of PRF for each nerve root. In Group 2, after

stimulation, these researchers spent the same time to mimic PRF. Both groups received

bupivacaine 0.25 % +' 4 mg dexamethasone in 2 ml for each nerve root; VAS was assessed.

Duration of the first block effective pain relief was reported. Repeated PRF blockade was

allowed for any patient who reported a VAS greater than 30 mm in both groups during the 1 year

follow-up period. The number and duration of blocks were reported and adverse effects were

also reported. Significantly longer duration of pain relief was noticed in Group 1 (p = 0.005) after

the first block, while the durations of pain relief of the second block were comparable (p = 0.59).

In Group 1 the second PRF produced pain relief from the 24th week until the 10th month while

in Group 2, pain relief was reported from the 16th week until the 8th month after the use of PRF.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 20/57

Page 22: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

All patients in Group 2 received 3 blocks (the first was a sham PRF) during the 1 year follow-up

period. Meanwhile, 2 PRF blocks were sufficient to achieve pain relief for patients in Group 1

except 4 patients who needed a third PRF block. No adverse events were reported. The

authors concluded that for intractable chronic inguinal pain, PRF for the dorsal root ganglion

represents a promising treatment modality. The main drawback of this study was its small

sample size (n = 20)

Morton’s Neuroma

Deniz and associates (2015) stated that Morton's neuroma is a perineural fibrosis of an inter-

metatarsal plantar nerve. Burning, numbness, paresthesia, and tingling down the interspaces of

involved toes may also be experienced. Taking into account all of this information, these

researchers designed a prospective open-label study to evaluate the effectiveness of PRF on

Morton's neuroma. A total of 20 patients with Morton's neuroma were experiencing symptomatic

neuroma pain in the foot not relieved by routine conservative treatment. All of the patients had

been evaluated by a specialized orthopedist and were offered PRF as a last option before having

surgery. Initially, pain level (numerical rating scale), successful pain control (a greater than or

equal to 50 % pain decrease was accepted as successful pain control), comfort when walking

(yes or no), and satisfaction level (satisfied or not satisfied) were evaluated. These investigators

reported a decrease in the pain level in 18 of 20 patients, successful pain control in 12, and

wearing shoes and walking without pain in 16. Overall, satisfaction was rated as excellent or

good by 12 patients with Morton's neuroma in this series. The authors concluded that these

findings indicated that ultrasound-guided PRF is a promising treatment modality in the

management of Morton's neuroma pain.

Post-Herpetic Itch

Ding and colleagues (2014) reported the findings of a patient with intractable post-herpetic itch

lasting for 1 year. The itch was mainly from the left vertex, frontal and ophthalmic regions and

extended to the left neck area. The patient had negative response to the ophthalmic nerve

block. Under the initial positive response to the great occipital nerve block, PRF was performed

on the position of the great occipital nerve. After 4 months treatment, the itch was completely

vanished. The authors concluded that this case study demonstrated the effectiveness of PRF for

intractable post-herpetic itch originating in the head and neck. However, they stated that more

patients are needed to verify this management.

Thoracic Pain

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 21/57

Page 23: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

In a retrospective data analysis involving 49 patients, Cohen et al (2006) compared treatment

outcomes between pharmacotherapy, PRF of the intercostal nerves (ICN) and PRF of the dorsal

root ganglia (DRG) in chronic postsurgical thoracic pain (CPTP). At 6-week follow-up, 61.5 % of

the PRF DRG group reported greater than or equal to 50 % pain relief versus 27.3 % in the

medical management (MM) group and 21.4 % in the IC group (p = 0.12). At 3-month follow-up,

53.8 % in the DRG group continued to report greater than or equal to 50 % pain relief versus

19.9 % in the MM and 6.7 % in the ICN groups, respectively (p = 0.02). Among the PRF patients

who did report a successful outcome, the mean duration of pain relief was 2.87 months in the

ICN group and 4.74 months in the DRG group (p = 0.01). The authors concluded that PRF of

the DRG was a superior treatment to pharmacotherapy and PRF of the ICN in patients with

CPTP. Moreover, they stated that prospective studies are needed to confirm these results and

identify the best candidates for this treatment.

In a prospective, randomized, double-blinded study, Ke and colleagues (2013) examined the

safety and effectiveness of PRF for treating thoracic PHN through the puncture of the angulus

costae. A total of 96 patients with thoracic (T2-L1) PHN were equally randomized assigned into

2 groups. The electrode needle punctured through the angulus costae of each patient guided by

x-ray; PRF at 42° C for 120 seconds was applied after inducing paresthesia involving the affected

dermatome area. Pulsed RF was applied in the PRF group (n = 48) twice. It was also applied in

the sham group (n = 48) twice without RF energy output. The treatment was done once-weekly

for 3 weeks. Tramadol was used for flare pain when the VAS was greater than or equal to 3.

The therapeutic effect was evaluated by VAS, SF-36 health survey questionnaire, side effects

(type, frequency, and onset time) before treatment, at days 3, 7, and 14, and at months 1, 2, 3

and 6 after PRF. The average of tramadol (mg/day) administered within the 1st month after

treatment was also recorded. The post-procedure VAS scores in the PRF group were

significantly lower than those in the sham group and lasted for 6 months after treatment (p <

0.05). The SF-36 score, such as physical functioning, physical role, pain, general perceptions of

health, social function, emotional role, and mental health index were significantly improved until 6

months after treatment in the PRF group compared to the sham group (p < 0.01 to 0.05). The

average dosage of tramadol administrated (mg/day) within the 1st month after treatment was

also significantly reduced in the PRF group compared to the sham group (p < 0.05). There were

no obvious signs of pneumothorax, bleeding, infection, or other severe side effects in either

group (p > 0.05). The authors concluded that the strategy that the angulus costae be used as

the PRF puncture point of an electrode needle and the final localization of the needle tip as

determined by sensory testing was an effective and safe therapeutic alternative for thoracic PHN

treatment. They stated that the benefits included that the procedure was minimally invasive,

provided short-term pain relief, and improved quality of life. The main drawbacks of this study

were its single-center study, relatively small number of patients, and mid-term follow-up duration

(6 months).

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 22/57

Page 24: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

The Work Loss Data Institute’s guideline on “Low back -- lumbar & thoracic (acute & chronic)”

(2013) listed PRF treatment as one of the interventions/procedures were considered, but are not

recommended.

Gulati et al (2015) noted that tumors invading the chest wall and pleura are often incurable, and

treatment is targeted toward palliation of symptoms and control of pain. When patients develop

tolerance or side effects to systemic opioid therapy, interventional techniques can better optimize

a patient's pain. These investigators performed a retrospective review of 146 patients from April

2004 to January 2014 who underwent diagnostic and therapeutic procedures for pain relief.

Using 4 patients as a paradigm for neurolytic approaches to pain relief, these researchers

presented a therapeutic algorithm for treating patients with intractable thoracic chest wall pain in

the oncologic population. For each patient, these researchers described the use of

intercostal/paravertebral nerve blocks and neurolysis, pulsed radio-frequency ablation (PRFA) of

the thoracic nerve roots, or intrathecal pump placement to successfully treat the patient's chest

wall pain. Analysis of 146 patient charts was also performed to assess effectiveness of therapy.

A total of 79 % of patients undergoing an intercostal nerve diagnostic blockade (with local

anesthetic and steroid) stated that they had improved pain relief with 22 % having prolonged

pain relief (average of 21.5 days). Only 32 % of successful diagnostic blockade patients elected

to proceed to neurolysis, with a 62 % success rate; 7 patients elected to proceed to intrathecal

drug delivery. The authors concluded that intercostal nerve diagnostic blockade with local

anesthetic and steroid may lead to prolonged pain relief in this population. Furthermore,

depending on tumor location, the authors have developed a paradigm for the treatment of

thoracic chest wall pain in the oncologic population. Puled RF ablation was not discussed as a

successful means of treating thoracic chest wall pain associated with tumors.

In summary, there is currently insufficient evidence to support the use of PRF in the treatment of

various chronic pain syndromes. Well-designed studies (prospective, randomized, placebo-

controlled trials with large sample size and long-term follow-up) are needed to ascertain the

clinical value of this approach.

Diabetic Peripheral Neuropathy

Naderi and associates (2015) compared the effectiveness of transcutaneous electrical nerve

stimulation (TENS) and PRF lumbar sympathectomy in treating painful diabetic peripheral

neuropathy (DPN). A total of 65 patients with painful DPN refractory to conventional treatment

were randomly and evenly assigned to either the TENS or PRF lumbar sympathectomy groups.

Pain evaluations were based on the 10-point NRS. Subjects were followed for 3 months and

had a total of 4 study visits (baseline and 1 week, 1 month, and 3 months after treatment); 60

patients completed all study visits. In both groups, the NRS rating significantly decreased after

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 23/57

Page 25: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

treatment, with a marked pain reduction observed at the first follow-up evaluation. In the PRF

group, the NRS decreased from 6.46 at baseline to 2.76 at the 1 week visit. One and 3 months

after treatment, the NRS was 4.30 and 5.13, respectively (p < 0.0001). In the TENS group, the

NRS decreased from 6.10 at baseline to 3.96 at the 1 week visit. One and 3 months after

treatment, the NRS was 5.23 and 5.90, respectively (p < 0.0001). Unfortunately, the NRS steady

increased almost back to baseline levels in the TENS group. The NRS only slightly increased

during the follow-up period in the PRF group, but did not reach baseline levels. The authors

concluded that both TENS and PRF lumbar sympathectomy are promising pain relief treatments

for painful DNP. However, PRF lumbar sympathectomy appeared to have a superior efficacy.

They stated that further studies with a larger sample size and a longer follow-up period are

needed.

Striae Rubra

Karia and colleagues (2016) noted that striae are linear atrophic depressions that form in areas

of dermal damage in the skin. Currently, no consensus or protocol exists for the treatment of stria

rubra. Topical retinoids, chemical peels, microdermabrasion, radiofrequency, photothermolysis,

intense pulsed light and lasers are some of the modalities used. These researchers compared

the effectiveness of various therapeutic modalities in striae rubra. This prospective cohort study

comprised of a total of 50 patients from August 2012 to October 2013 in a tertiary care center in

Western India, Gujarat having striae rubra. They were randomly divided into 5 groups of 10

patients each. Patients were evaluated on the basis of visual assessment, both by doctor as

well as the patient. Group I was given topical tretinoin (0.1 % w/w) gel applied once at night,

Group II: microdermabrasion (MDA) combined with trichloroacetic acid (TCA) (30 %) peel, Group

III: mesotherapy, Group IV: Q-switched Nd: YAG laser, and Group V-combination treatment of

microdermabrasion, salicylic acid peel and retinol (yellow) peel. Patients were treated at an

interval of 15 days for 2 months and then at monthly intervals. Objective assessment was done

at 2nd month, 6th month, and at the end of 1st year. Patients in Group I treated with topical

tretinoin showed the least response with 80 % (n = 8) of them showing minimal clinical

improvement (0 to 25 %) as compared to patients in Group V in which 60 % (n = 6) patients

showed moderate clinical improvement (50 to 75 %). While the majority of the patients in Group

II, III, and IV showed mild clinical improvement (25 to 50 %). The authors concluded that striae

rubra is a common cause of concern for adolescent population. Combination treatment with

microdermabrasion, salicylic acid and retinol yellow peel gave superior results as compared to

other therapeutic options. Mild-to-moderate improvement was seen with Nd: YAG laser,

mesotherapy and MDA + TCA whereas minimal improvement were seen with topical tretinoin.

Vaginismus

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 24/57

Page 26: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

   

Carvalho and co-workers (2017) stated that vaginismus is a poorly understood disorder,

characterized by an involuntary muscular spasm of the pelvic floor muscles and outer third of the

vagina during intercourse attempt, which results in aversion to penetration. It is reported to affect

1 % to 7 % of women worldwide. The authors described the case of a young patient with

vaginismus in whom techniques usually from the chronic pain domain (e.g., PRF and trigger

point infiltration) were used as part of her multi-modal therapeutic regimen. The clinical benefit

of PRF for the treatment of vaginismus needs to be further investigated.

Ventricular Arrhythmias (Fibrillation or Tachycardia)

Hayase and associates (2016) stated that there is increasing interest in interventional therapies

targeting the cardiac sympathetic nervous system to suppress ventricular arrhythmias. In this

case report, these researchers described an 80-year old patient with ischemic cardiomyopathy

and multiple implantable cardioverter-defibrillator shocks due to refractory ventricular tachycardia

and ventricular fibrillation who was unable to continue bi-weekly stellate ganglion block

procedures using bupivacaine 0.25 % for suppression of his arrhythmias. He had previously

failed anti-arrhythmic drug therapy with amiodarone, catheter ablation, and attempted surgical

autonomic denervation. He underwent PR treatment (3 lesions, 2 minutes each, temperature

42°C, 2-Hz frequency, 20-millisecond pulse width) of the left stellate ganglion resulting in

persistent arrhythmia suppression for more than 12 months duration. This represented the first

report of a PR stellate ganglion lesion providing long-term suppression of ventricular

arrhythmias. The authors concluded that further study of this technique in patients with

refractory ventricular tachycardia or ventricular fibrillation is needed.

Coccydynia

Chen and colleagues (2017) stated that coccydynia is a condition with a multitude of different

causes, characterized by ill-defined management. There are multiple prospective studies,

including several controlled trials, that have evaluated conservative therapies. Additionally, a

plethora of observational studies have assessed coccygectomy, but few studies have reported

results for non-surgical interventional procedures. In this report, these investigators described

the results of 12 patients who received conventional or PRF for coccydynia and systematically

reviewed the literature on management. They performed a retrospective data analysis

evaluating patients who underwent PRF or conventional RF at Johns Hopkins Hospital and

Walter Reed National Military Medical Center. These researchers also performed a

comprehensive literature review to contextualize these results. The mean age of patients treated

was 50.25 years (SD = 11.20 years, range of 32 to 72 years), with the mean duration of

symptoms being 3.6 years (SD = 3.36 years, range of 1 to 10 years). There were 10 men and 2

women in this cohort. Among patients who received RF treatment, the average benefit was 55.5

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 25/57

Page 27: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

% p ain relief (SD  =  30.33 %, range of 0 to 100 %). Those who underwent conventional

RF(versus PRF) and who received prognostic blocks were more likely to experience a positive

outcome. There were 2 cases of neuritis, which resolved spontaneously after several weeks.

The authors concluded that RF ablation of the sacrococcygeal nerves may serve as a useful

therapeutic option for patients with coccydynia who have failed more conservative measures.

Moreover, they stated that further research into this therapeutic approach and its benefit for

coccydynia should incorporate a control group for comparison.

Interstitial Cystitis

Kim and associates (2016) stated that a variety of therapeutic modalities are available for the

treatment of interstitial cystitis. However, among them, the less invasive therapies are usually

ineffective, whereas the invasive ones carry potential risks of serious side effects and

complications. They noted that PRF treatment of the superior hypogastric plexus may be an

alternative to conventional treatments, as it provides non-destructive neuromodulation to the

superior hypogastric plexus, which transmits the majority of pain signals from the pelvic viscera.

For 7 years, a 35-year old female patient had been experiencing lower abdominal pain provoked

by urinary bladder filling, peri-vulvar pain developing spontaneously during sleep or upon

postural change, urinary urgency and frequency with 15- to 60-min intervals between urinations,

and nocturia with 10 voids per night. Hydro-distension of the bladder, monthly intra-vesical

administration of sterile sodium chondroitin sulfate, and oral medications including gabapentin

and pentosan polysulfate had not been effective in managing the pain and symptoms. Given the

satisfactory result of a diagnostic block of the superior hypogastric plexus, 2 sessions of PRF

treatment of the superior hypogastric plexus, which applied RF pulses with a pulse frequency of

2 Hz and a pulse width of 20 ms for 120 seconds twice per session to maintain the tissue

temperature near the electrode at 42° C, were performed at a 6-month interval. This treatment

relieved the pain and symptoms for 2 years and 6 months. The authors stated that a prospective

RCT is needed to confirm the safety and effectiveness of this procedure for the treatment of

interstitial cystitis.

Meralgia Paresthetica

In a retrospective study, Lee and colleagues (2016) evaluated clinical outcomes of PRF

neuromodulation of the lateral femoral cutaneous nerve (LFCN) in meralgia paresthetica (MP)

patients refractory to conservative treatment. These investigators reviewed the clinical data of 11

patients with medically intractable MP who underwent PRF neuromodulation of the LFCN.

These patients with MP underwent a diagnostic LFCN block using 2.0 % lidocaine. Temporary

pain relief greater than 50 % was considered to be a positive response to the diagnostic nerve

block. Following a positive response to the diagnostic nerve block, patients underwent PRF

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 26/57

Page 28: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

neuromodulation at 42 degrees for 2 minutes. Patient pain was evaluated using a 10-cm VAS.

In MP patients who received PRF, these researchers statistically evaluated VAS scores and the

presence of any complications for 6 or more months after the procedure. The mean initial

patient VAS score was 6.4 ± 0.97 cm. This score was decreased to 0.91 ± 0.70 cm, 0.82 ± 0.75

cm, and 0.63 ± 0.90 cm at the 1-, 3-, and 6-month follow-ups, respectively (p < 0.001); 63.6 % of

patients achieved complete pain relief (pain-free) in the last follow-up, whereas 27.3 % of

patients achieved successful pain relief (= 50 % reduction in pain as determined by the VAS

score). Furthermore, these researchers did not observe any complications after the procedure.

The authors concluded that PRF neuromodulation of the LFCN provided immediate and long-

lasting pain relief without complications. They stated that PRF of the LCFN can be used as an

alternative treatment in patients with MP who are refractory to conservative medical treatment.

The authors noted that this study had several drawbacks. It was not a randomized, controlled

study, but a retrospective case series involving a small sample (n = 11). Thus, the outcomes of

this study may not be generalizable. Additionally, the only outcome measure was determined

using a pain assessment scale; however, LFCN neuropathy can influence the patient’s functional

status, including mobility. Future studies should also evaluate patients’ global QOL during the

follow-up period. However, although this study was retrospective, it provided a promising view of

the effectiveness and safety of PRF in patients with refractory MP. They stated that future

placebo-controlled, randomized, and double-blind studies may provide more objective

information on the effectiveness of PRF in patients with MP.

Myofascial Pain Syndrome of the Gastrocnemius / Trapezius Muscle

Park and co-workers (2016) compared the effects of ultrasound-guided PRF treatment (UG-PRF)

in the gastrocnemius inter-fascial space and ultrasound-guided inter-fascial injection (UG-INJ) on

myofascial pain syndrome (MPS). A total of 40 consecutive patients with MPS of the

gastrocnemius were enrolled and were allocated to either of the 2 groups: (i) 20 patients were

treated by UG-PRF delivered to the gastrocnemius inter-fascial space (UG-PRF group) and (ii)

the other 20 patients were treated by inter-fascial injection (UG-INJ group). The primary

outcome measure was the NRS for pain on pressing the tender point in the gastrocnemius, and

the secondary outcome measure was health-related QOL as determined by SF-36; NRSs were

obtained at the 1st visit, immediately after treatment, and at 2 and 4 weeks post-treatment, and

physical component summary scores (PCS) and mental component summary scores (MCS) of

the SF-36 questionnaire were measured at the 1st visit and at 4 weeks post-treatment.

Immediately after treatments, mean NRS in the UG-PRF group was significantly higher than that

in the UG-INJ group (p < 0.0001). However, at 2 and 4 weeks post-treatment, the mean NRS

was significantly lower in the UG-PRF group (both p < 0.0001). Similarly, at 4 weeks post-

treatment, mean PCS and MCS were significantly higher in the UG-PRF group (p < 0.0001 and p

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 27/57

Page 29: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

= 0.002, respectively). The authors concluded that ultrasound-guided gastrocnemius inter­

fascial PRF provided an attractive treatment for MPS of the gastrocnemius.

This study had several drawbacks: (i) it was a single-center study with a small sample size (n =

20 for ultrasound-guided PRF treatment), (ii) the follow-up period was short ( 4 weeks), thus,

the long-term effect of PRF could not be determined, (iii) the study lacked a control group to

circumvent questions regarding therapeutic effects versus spontaneous symptom

resolution and it was not a double-blind study due to the difference between 2 treatments.

In future studies, it is necessary to compare the PRF treatment group with a sham

treatment group, (iv) the study subjects were enrolled at a university hospital and were

more likely to have severe symptoms, and (v) in this study, the explanation for the

therapeutic effect and impact range of inter-fascial PRF was insufficient. These investigators

stated that in order to achieve a greater persuasive power regarding this conclusion, further

research on the nerve in the inter-fascial space and PRF effects is needed.

Cho and associates (2017) examined the effects of ultrasound (US)-guided PRF stimulation on

the inter-fascial area of the trapezius muscle (TM). These investigators also compared the effect

of US-guided PRF stimulation with that of inter-fascial block (IFB) with 10 ml of 0.6 % lidocaine

on the inter-fascial area of the TM. A total of 36 patients with MPS of the TM were included and

randomly assigned into 2 groups: 18 patients underwent PRF stimulation on the inter-fascial

area of the TM (PRF group) and 18 patients underwent IFB with lidocaine on the same area (IFB

group). Pain intensity was evaluated using a NRS at pre-treatment, 2, 4, and 8 weeks after

treatment. At pre-treatment and 8 weeks after treatment, QOL was assessed using the SF-36,

which includes the PCS and the MCS; 1 patient in the PRF group was lost to follow-up. Patients

in both groups showed a significant decrease in NRS scores at 2, 4, and 8 weeks after

treatments and a significant increase in PCS and MCS of the SF-36 at 8 weeks after treatments.

Two weeks after each treatment, the decrements of NRS scores were not significantly different

between the 2 groups. However, 4 and 8 weeks after the procedures, these researchers found

that the NRS score was significantly lower in the PRF group than in the IFB group. At 8 weeks

after the treatments, PCS and MCS of the SF-36 in the PRF group were significantly higher than

those in the IFB group. For the management of MPS of the TM, US-guided inter-fascial PRF

had a better long-term effect on reducing the pain and the QOL compared to US-guided IFB.

The authors concluded that US-guided PRF stimulation on the inter-fascial area of the TM could

be a beneficial alternative to manage the pain following MPS of the TM.

This study had several drawbacks; (i) small sample size (n = 36), (ii) short-term follow-up -­

these researchers evaluated the effects of PRF and IFB in only 8 weeks. (iii) they could not

clearly explain the mechanism of action of PRF in reducing pain induced by MPS, and (iv) the

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 28/57

Page 30: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

lack of a placebo group. These investigators stated that further studies are needed to address

these drawbacks.

Ophthalmic Neuralgia

Bhatjiwale and colleagues (2016) examined the potential of PRF for a prolonged duration in a

highly sensitive anatomic neural location, however, in a very secure, structured, and staged

manner. A patient suffering from ophthalmic division (V1) medically uncontrolled neuralgia with a

pre-operative VAS score of 9/10 was subjected to a percutaneous pain relief procedure. The

patient was treated with prolonged duration PRF for 40 minutes, with corneal sensation

monitoring under conscious sedation keeping a low voltage (7 V) and tip temperature at 37° C.

The patient obtained immediate relief, which was verified on the operation table itself. Post­

operative VAS score of 0/10 was recorded. More than 6 months after the procedure, the patient

was completely free from neuralgic pain and continued to have a VAS score of 0/10. The

authors concluded that as opposed to conventional PRF where mostly a tip temperature of 42° C

and high voltage have been used for 2 to a maximum of 8 minutes, PRF with a tip temperature of

37° C and a safe voltage of 7 V over an ultra-extended duration of 40 minutes could give a more

distinct and effective but equally safe result. They stated that although this case verified the

safety and effectiveness of prolonged duration PRF in sensitive anatomic locations, well-

designed studies are needed to establish this approach as a standard treatment.

Sensory Deficits Following Stroke

Apiliogullari and colleagues (2017) noted that the integrity of the somatosensory system is

important for motor recovery and neuroplasticity after strokes. Peripheral stimulation or central

stimulation in patients with central nervous system (CNS) lesions can be an effective modality in

improving function and in facilitating neuroplasticity. These researchers presented 2 hemiplegic

cases with sensory motor deficit and the result of the PRF electrical stimulation to the dorsal root

ganglia. After PRF electrical stimulation, significant improvement was achieved in the patients

with superficial and deep sensation. However, during the follow-up visits the effect of PRF

electrical stimulation disappeared. The authors concluded that these preliminary results could

be used in the development of future prospective cohort studies and RCTs that focus on the

effect of PRF electrical stimulation on dorsal root ganglia to treat sensory deficits in post-stroke

patients.

The Stimpod NMS460 Nerve Stimulator

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 29/57

Page 31: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Stimpod NMS460 (Xavant Technology) is an non-invasive neuromodulation device that applies a

unique, patented PRF waveform to the affected area transcutaneously for the relief of chronic

intractable pain. This waveform creates electromagnetic effects similar to invasive PRF

treatments. The Stimpod NMS460 also incorporates nerve-locating technology. Its "stimulation

probe" is designed to direct the current to a particular nerve or region, such as a joint or muscle.

It enables practitioners to evaluate the treatment progress of damaged nerves. The Stimpod

NMS460 waveform provides all the generally accepted advantages of a normal transcutaneous

electrical nerve stimulation (TENS) device, with the added advantageous of PRF.

On January 18, 2017, the Food and Drug Administration (FDA) cleared the Stimpod NMS460 for

symptomatic relief and management of chronic intractable pain and/or as an adjunctive

treatment in the management of post-surgical pain, post traumatic acute pain problems, as well

as an adjunct for pain control due to rehabilitation. The Stimpod NMS460 nerve stimulator offers

2 types of waveforms for the management of pain: (i) the first is a monophasic square wave,

which is typical of normal TENS machines, and (ii) the second waveform is a hybrid RF

waveform that consists of a monophasic square wave with a super-imposed RF waveform.

This waveform is proprietary and is unique to Stimpod NMS460 nerve stimulator.

However, there is insufficient evidence on the clinical value of the Stimpod NMS460.

Tsui and colleagues (2013) stated that current methods of assessing nerve blocks, such as loss

of perception to cold sensation, are subjective at best. Transcutaneous nerve stimulation is an

alternative method that has previously been used to measure the current perception threshold

(CPT) in individuals with neuropathic conditions, and various devices to measure CPT are

commercially available. Nevertheless, the device must provide reproducible results to be used

as an objective tool for assessing nerve blocks. In an observational study, these researchers

recruited 10 healthy volunteers to examine CPT reproducibility using the Neurometer and the

Stimpod NMS450 peripheral nerve stimulator. Each subject's CPT was determined for the

median (2nd digit) and ulnar (5th digit) nerve sensory distributions on both hands - with the

Neurometer at 5-Hz, 250-Hz, and 2,000-Hz and with the Stimpod at pulse widths of 0.1 msec,

0.3 msec, 0.5 msec, and 1.0 msec, both at 5-Hz and 2-Hz. Intra-class correlation coefficients

(ICC) were also calculated to assess reproducibility; acceptable ICCs were defined as greater

than or equal to 0.4. The ICC values for the Stimpod ranged from 0.425 to 0.79, depending on

pulse width, digit, and stimulation; ICCs for the Neurometer were 0.615 and 0.735 at 250 and

2,000 Hz, respectively. These values were considered acceptable; however, the Neurometer

performed less efficiently at 5-Hz (ICCs for the 2nd and 5th digits were 0.292 and 0.318,

respectively). The authors concluded that the Stimpod device displayed good to excellent

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 30/57

Page 32: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

reproducibility in measuring CPT in healthy volunteers, while the Neurometer displayed poor

reproducibility at low frequency (5-Hz). They stated that these findings suggested that peripheral

nerve stimulators may be potential devices for measuring CPT to assess nerve blocks.

Cervicogenic Headaches

Grandhi and colleagues (2018) noted that cervicogenic headache (CHA) is a secondary

headache that has a source in the upper cervical spine. Many traditional analgesic choices lack

good efficacy in managing the associated pain. As a result, in management of CHA, RFA or

PRF has been tried with success. These investigators examined the use of RFA and PRF for

the management of CHA. In the present investigation, a review of the literature was conducted

using PubMed (1966 to February 2017). The quality assessment was determined using The

Cochrane Risk of Bias. After initial search and consultation with experts, a total of 34 articles

were identified for initial review and 10 articles met inclusion for review. Criteria for inclusion

were primarily based on identification of articles discussing CH, which were previously treatment-

resistant and occurred without any other pathology of the craniofacial region or inciting event

such as trauma. This systematic review demonstrated that RFA and PRFA provided very limited

benefit in the management of CHA. At present, there is no high-quality RCT and/or strong non-

RCTs to support the use of these techniques, despite numerous case reports that had

demonstrated benefit. The authors concluded that this review was one of the first to provide a

comprehensive overview of the use of RFA and PRF in the management of CHA.

Abdominal Cutaneous Nerve Entrapment Syndrome

Maatman and co-workers (2018) noted that chronic abdominal pain is occasionally due to

entrapped intercostal nerve endings (ACNES, abdominal cutaneous nerve entrapment

syndrome). If abdominal wall infiltration using an anesthetic agent is unsuccessful, a

neurectomy may be considered; PRF is a relatively new therapeutic option for various chronic

pain syndromes. Evidence regarding a beneficial effect of this minimally invasive technique in

ACNES is lacking. These investigators evaluated the effectiveness of PRF treatment in ACNES

patients. A series of ACNES patients undergoing PRF treatment between January 2014 and

December 2015 in 2 hospitals were retrospectively evaluated. Pain was recorded prior to

treatment and after 6 weeks using NRS (0 (no pain) to 10 (worst possible pain)). Successful

treatment was defined as greater than 50 % NRS pain reduction. Patient satisfaction was

scored by patient global impression of change (PGIC, 1 = very much worse, to 7 = very much

improved). A total of 26 patients were studied (17 women, median age of 47 years, range of 18

to 67 years). After 6 weeks, mean NRS score had dropped from 6.7 ± 1.2 to 3.8 ± 2.3 (p <

0.001). A mean 4.9 ± 1.4 PGIC score was reported by then. Short-term treatment success (6 to

8 weeks) was 50 % (n = 13, 95 % CI: 29 to 71), while 8 % was pain-free on the longer term

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 31/57

Page 33: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

   

(median of 15 months). Median effect duration was 4 months (range of 2 to 26). The authors

concluded that PRF was temporarily effective in 50 % of patients with ACNES. They stated that

PRF was safe and may be favored in neuropathic pain syndromes as nerve tissue destruction

was possibly limited. These researchers stated that a RCT determining the potential additional

role of PRF in the treatment strategy for ACNES isunderway.

The authors stated that this study had several drawbacks including its retrospective character

whereas a relatively small sample size (n = 26) limited its power and generalizability.

Furthermore, a control group eliminating the bias of the placebo effect of a novel treatment

option or spontaneous resolution of symptoms was lacking. A previous study showed that a

placebo effect of invasive procedures was possibly higher compared to oral medication pills. In

addition, some authors suggested that improvement of symptoms that was not obtained in a

blind manner was per definition caused by a placebo effect. Therefore, a potential placebo effect

could not be ruled out. However, the results of this study on PRF in ACNES patients must be

seen in the proper context. It must be appreciated that most of these patients were referred after

a median of over half a year of diagnostic delay suggesting that this pain syndrome is still

frequently overlooked as a cause of chronic abdominal wall pain. It is thus unlikely that the

beneficial effect of PRF can be seen solely as placebo effect, since other therapies failed to

achieve any success. In addition, a randomized sham-controlled trial showed a beneficial effect

for PRF against sham intervention. It must be realized that this study represented the only case

series on PRF in ACNES at present providing insight on a “proof of principle” regarding the

efficacy of PRF. However, an RCT that is currently underway will identify a possible placebo

effect.

Chronic Perineal Pain

Usmani and colleagues (2018) noted that chronic non-oncological perineal pain has been

effectively managed by ganglion Impar block. Chemical neurolysis, cryoablation, and RFA have

been the accepted methods of blockade. Recently, PRF, a novel variant of conventional RF, has

been used for this purpose. In a prospective, randomized, double-blind study, these researchers

compared the efficacy of conventional RF and PRF for ganglion Impar block. Patients were

randomly allocated to 1 of 2 groups. In the conventional RF (CRF) group (n = 34), conventional

RFA was performed, and in the PRF group (n = 31), PRF ablation was carried out. After

informed and written consent, fluoroscopy-guided ganglion Impar block was performed through

the 1st intra-coccygeal approach. The extent of pain relief was assessed by VAS at 24 hours,

and at the 1st, 3ird, and 6th weeks following the intervention. A questionnaire to evaluate

subjective patient satisfaction was also used at each follow-up visit. In the CRF group, the mean

VAS score decreased significantly from the baseline value at each follow-up visit. But in the PRF

group, this decrease was non-significant except at 24-hour follow-up. Inter-group comparison

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 32/57

Page 34: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

also showed significantly better pain relief in the CRF group as compared with the PRF group.

At the end of follow-up, 28 patients (82 %) in the CRF group and 4 patients (13 %) in the PRF

group had excellent results, as assessed by the subjective patient satisfaction questionnaire.

There was no complication in any patient of either study group, except for short-lived infection at

the site of skin puncture in a few. The authors concluded that ganglion Impar block by

conventional RF provided a significantly better quality of pain relief with no major side effects in

patients with chronic non-oncological perineal pain as compared with PRF. The authors stated

that the short-term follow-up period of only 6 weeks was a major drawback associated with this

study.

Glossopharyngeal Neuralgia

Bharti and associates (2018) stated that the management of glossopharyngeal neuralgia due to

oropharyngeal carcinoma is particularly difficult because of rich innervations of the area, erosive

nature of neoplasm and dynamic pain evoked by the functional movements like swallowing and

chewing. Few case reports have shown the efficacy of PRF treatment in primary and secondary

glossopharyngeal neuralgia in non-cancer patients. However, the efficacy of PRF ablation of the

glossopharyngeal nerve in oral cancer patients is unknown. In a prospective interventional

clinical trial, these researchers evaluated the safety and efficacy of PRF ablation of the

glossopharyngeal nerve for the management of oropharyngeal cancer pain involving the base of

the tongue, tonsillar fossa, and oropharynx. A total of 25 adult patients suffering from

oropharyngeal carcinoma complaining of severe pain in the area mainly supplied by

glossopharyngeal nerve were included. Subhects underwent fluoroscopy-guided PRF ablation

of the glossopharyngeal nerve of the affected site 3 times at 42°C temperature for 120 seconds

with 22-gauge, 10-cm long, 5-mm active tip radiofrequency needle. They were followed-up for 1

year for pain relief, nausea-vomiting and sleep disturbances. The treatment was considered

effective if there was 50 % reduction in pain score at 2 weeks. There was significant reduction in

the overall pain score including site specific pain, odynophagia and ear pain after RFA(p <

0.0001) in all the patients. This was associated with decreased opioid consumption (p < 0.001),

lesser nausea/vomiting, and improved sleep. The treatment was effective in 23 out of 25

patients (92 %) for more than 3 months. No major complication was observed in any patient.

The average duration of effective pain relief was 5 to 9 months. The authors concluded that

these findings showed that PRF ablation could be used safely and effectively for the treatment of

glossopharyngeal neuralgia secondary to oropharyngeal carcinoma. Moreover, these

investigators noted that patients having bilateral glossopharyngeal neuralgia or an advanced

stage of oral cancer with large lymph nodes at the angle of mandible were not included. They

stated that this study was a single-center, observational clinical trial and further multi-center,

RCTs are needed to obtain higher level of evidence.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 33/57

Page 35: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Hemiplegic Shoulder Pain

Picelli and co-workers (2018) stated that hemiplegic shoulder pain (HSP) is the most common

pain condition after stroke. To-date, there is no study regarding the effects of PRF treatment for

HSP. These researchers reported on a case series about its use in chronic stroke. A total of 6

chronic stroke patients with HSP (VAS score for pain greater than or equal to 30 mm) underwent

US-guided supra-scapular nerve (SSN) PRF treatment. All were evaluated before treatment and

at 4 and 16 weeks of follow-up. The main outcome was VAS score; secondary outcomes were

modified Ashworth Scale, shoulder passive range of motion (PROM), Disability Assessment

Scale (DAS), Fugl-Meyer Assessment, and EuroQol-5 dimension questionnaire (EuroQol-5D)

scores. As compared with baseline, improvement was observed in the following parameters:

VAS for pain (at 4 weeks, p = 0.023; at 16 weeks, p = 0.023); shoulder PROM for abduction (at 4

weeks, p = 0.023; at 16 weeks, p = 0.024), flexion (at 4 and 16 weeks, p = 0.024), extension (at

4 and 16 weeks, p = 0.02), and external rotation (4 and 16 weeks, p = 0.02); DAS for hygiene (at

4 and 16 weeks, p = 0.024), dressing (at 4 weeks, p = 0.02; at 16 weeks, p = 0.024), and pain (at

4 weeks, p = 0.024; at 16 weeks, p = 0.023); and EuroQol-5D (at 4 and 16 weeks, p = 0.024).

The authors concluded that these findings supported the use of US-guided SSN PRF treatment

for HSP in chronic stroke patients. Moreover, they stated that future larger RCTs are needed to

confirm these preliminary findings.

The authors stated that this study had several drawbacks. First, it did not have a prospective

design and the sample size was small (n = 6). These researchers estimated that a total of 27

patients would provide 90 % power to detect a difference of 13 mm on the VAS (minimal clinically

important difference) at the primary end-point. Second, there was no control group treated with

placebo or other treatments (e.g., intra-articular injection, local anesthesia, botulinum toxin,

physical therapy) for shoulder pain. Third, no further US evaluation of the SSN was done after

PRF. Thus, these investigators had no information about any SSN structural change or nerve

echo signal modification following treatment.

Idiopathic Axonal Polyneuropathy

Lee and Chang (2018) stated that many patients with chronic idiopathic axonal polyneuropathy

(CIAP) suffer from neuropathic pain, which is managed using several oral medications and

modalities. However, despite these treatments, pain persists in some patients. In a prospective

study, these investigators examined the effect of caudal epidural PRF for the management of

CIAP-induced refractory neuropathic pain. A total of 20 patients with neuropathic pain and a

diagnosis of refractory CIAP were recruited. For PRF stimulation, a 22-G cannula was inserted

into the epidural space through the sacral hiatus under fluoroscopic guidance; PRF stimulation

was administered once at 5-Hz with a 5-ms pulse width for 600 seconds at 55 V. The effect of

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 34/57

Page 36: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

stimulation was evaluated using a NRS at 2 weeks and 1, 2, and 3 months after the procedure.

Successful pain relief was defined as a reduction in the NRS score of greater than or equal to 50

% as compared with the score prior to treatment. In addition, at 3 months after treatment, patient

satisfaction levels were examined; patients that reported "very good" (score = 7) or "good" (score

= 6) results were considered to be satisfied with the procedure. Neuropathic pain was

significantly reduced at 2 weeks and at 1, 2, and 3 months follow-up after PRF (p < 0.001,

repeated measures 1-factor analysis). In addition, at 3 months post-PRF, 50 % of the patients

achieved a successful response (greater than or equal to 50 % pain reduction) and were

satisfied with treatment results. The authors concluded that caudal epidural PRF may be a good

therapeutic option for managing neuropathic pain induced by CIAP, especially when pain is

unresponsive to oral medications. The main drawbacks of this study were its small sample size

(n = 20), and the lack of long-term follow-up evaluations.

Idiopathic Supraorbital Neuralgia

Luo and associates (2018) stated that no ideal therapeutic method currently exists for refractory

idiopathic supraorbital neuralgia patients who do not respond to conservative therapy, including

medications and nerve blocks. The efficacy of percutaneous PRF for the treatment of refractory

idiopathic supraorbital neuralgia is unclear. These researchers evaluated the safety and efficacy

PRF for the treatment of patients with refractory supraorbital neuralgia. They prospectively

examined the long-term effects of US-guided percutaneous PRF in the treatment of 22 refractory

idiopathic supraorbital neuralgia patients. A reduction in the verbal pain NRS score of more than

50 % was used as the standard of effectiveness. The effectiveness rates at different time-points

within 2 years were calculated. After a single PRF treatment, the effectiveness rate at 1 and 3

months was 77 %, and the rates at 6 months, 1 year, and 2 years were 73 %, 64 %, and 50 %,

respectively. Except for a small portion of patients (23 %) who experienced mild upper eyelid

ecchymosis that gradually disappeared after approximately 2 weeks, no obvious complications

were observed. The authors concluded that the findings of this study demonstrated that for

patients with refractory idiopathic supraorbital neuralgia, percutaneous PRF may be a safe and

effective treatment choice. These preliminary findings need to be validated by well-designed

studies.

Intercostobrachial Neuralgia in Post-Mastectomy Pain Syndrome

Fam and colleagues (2018) stated that breast cancer is a common neoplastic tumor in women,

and the post-mastectomy pain syndrome has been reported frequently after surgical treatment.

The injury of the intercostobrachial nerve is considered the major cause of this type of pain.

These researches evaluated the safety and efficacy of PRF and steroid injection on the 2nd and

3rd thoracic (T2 and T3) dorsal root ganglions (DRGs) for inter-costo-brachial neuralgia (ICBN)

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 35/57

Page 37: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

post-mastectomy. This study was conducted on 100 patients with ICBN post-mastectomy. The

PRF waves were applied for 120 seconds twice on T2 and T3 DRGs; then 1 ml of 4-mg

dexamethasone and 1 ml of bupivacaine 0.25 % were injected at each level then the technique

was repeated 3 times 1 week apart for each patient. After 6 months from the latest intervention,

the mean VAS dropped from 7.48 to 4.7 (p = 0.005712) and the mean of the QOL scale

improved to 6.88 after being 4.66 (p < 0.00001) before the intervention and 64.68 % of the

patients decided that they would certainly repeat the procedure if they could go back in time and

66.64 % would certainly recommend the same procedure to a family member. The analgesics

consumption decreased mainly in the 1st month but increased again after 6 months (non­

significant). No serious complications were recorded. The authors concluded that PRF and

steroid injection on T2 and T3 DRGs assumed a safe and effective method for ICBN post-

mastectomy treatment.

The authors stated that this study had several drawbacks: First, despite the widely use of the

PRF in the clinical practice for control of neuropathic pain, the ideal parameter of it is not well-

determined unlike the thermal RF. Second, limited number of patients and absent control group

was another drawback, so further research with larger patient populations from multiple health

centers is a must. Lastly, the 6 months follow-up program might not have been enough time to

detect the long-term effects of the PRF for neuropathic pain management.

Palmar Hyperhidrosis

Lin and co-workers (2017) noted that palmar hyperhidrosis (PH) exhibits excessive and

unpredictable sweating. The most effective treatment for permanent cure is the ablation of

thoracic sympathetic ganglia innervating hands. However, sympathectomy of T2 sympathetic

ganglion by clipping or cauterization causes irreversible nerve damage, and results in a

compensatory hyperhidrosis (CH). In an animal study, these researchers employed PRF

stimulation to reversibly block sympathetic ganglion to treat PH and avoid CH. A bipolar

electrode was implanted into the right T2 sympathetic trunk by endoscopic surgery and PRF was

delivered through the electrode. The humidity (%) of right palm was measured to indicate

sweating level; 6 out of 13 rats (46.2 %) that received a 5-min PRF stimulation on the T2

sympathetic trunk showed a decrease in the right palm humidity during the surgery; PRF

stimulation significantly reduced humidity from 69.17 % ± 0.72 % obtained from baseline

condition to 66.93 % ± 0.69 %. The humidity reduction was also observed at 10 mins after the

PRF stimulation. These investigators further evaluated the effect of PRF stimulation 1 week after

surgery and found that the PRF stimuli reduced right hand humidity in 5 out of 8 rats (62.5 %);

PRF stimulation significantly reduced humidity from 66.11 % ± 0.81 % obtained from sham

operation control to 63.62 % ± 0.82 %. The percentage of right hand humidity obtained 10 mins

after PRF stimulation was also reduced to 63.38 % ± 0.80 %. Anesthetics have no effect on

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 36/57

Page 38: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

humidity. The authors concluded that these findings indicated that PRF stimulation of T2

sympathetic trunk reduced palm sweating in rats. These preliminary findings need to be further

investigated in human subjects.

Peripheral Neuralgia

Abd-Elsayed and associates (2018a) noted that peripheral nerve pain is common among

patients with typical management including the use of pain medications, neuropathic agents,

steroid injections, and nerve blocks. Previous studies investigating the effectiveness of RFA and

PRF, typically case reports, have demonstrated that peripheral nerve RFA and PRF have the

potential to provide relief of chronic pain for long duration. In a retrospective review, these

researchers examined the efficacy of RFA/PRF in the treatment of peripheral neuralgia. They

identified 16 patients who received 17 RFAs/PRFs. Outcomes of interest collected included pain

scores before and after procedures, percent improvement in pain after each procedure, and

duration of improvement until the time of data collection. In addition, demographic data including

age, sex, and nerves involved were collected. A total of 11 patients (12 RFAs/PRFs) (80 %)

reported improvement after their procedure. Pain scores improved significantly from 6.3 ±  2.3

before each procedure to 3.6 ±  2.7 after each procedure (p =  0.003). A total of 11 patients (12

RFAs/PRFs) reported an average improvement of 60.8 %  ±  35 % after their procedure with an

average duration of improvement of 128.8 ±  106.8 days. The authors concluded that RFA and

PRF can be used to treat chronic peripheral pain after conservative methods fail to do so.

Moreover, they stated that large clinical trials are needed to confirm these findings.

Peripheral Post-Traumatic Neuropathic Pain

In a double-blind, sham-controlled, randomized clinical trial, Akural and colleagues (2017)

evaluated the safety and efficacy of PRF in the treatment of peripheral post-traumatic

neuropathic pain (NP). A total of 45 patients with peripheral post-traumatic NP in their upper or

lower limb were randomly assigned to receive PRF or sham treatment to the injured peripheral

nerve(s) causing peripheral post-traumatic NP. Only patients whose pain intensity was at least 5

on NRS 0 to 10 and who had suffered from their NP for at least 6 months were included. All

patients had dynamic mechanical allodynia or pinprick hyperalgesia in their painful area. They

had achieved temporary pain relief of at least 50 % with a local nerve block performed at a

previous visit. The primary efficacy variable was the difference in 3-day mean pain intensity

score from the baseline to 3 months. Other variables included response defined as greater than

or equal to 30 % reduction in mean pain intensity at 3 months compared to baseline,

Neuropathic Pain Scale (NPS) results, health-related QOL (SF-36) and adverse effects. The

skin was anesthetized with 1 % lidocaine. A RF needle was introduced through the skin, and

then guided to a SMK cannula (52, 100 or 144 mm depending on the target nerve) with 4 or 5

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 37/57

Page 39: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

mm active tip (SMK-C5-4, SMK-C10-5, SMK-C15-5, Radionics, Burlington, MA). The nerve was

located accurately by stimulating at 50 Hz (threshold less than 0.5 V). Sham treatment or PRF

was applied for 120 seconds 1 to 4 times at each treatment point (Radionics, Burlington, MA).

The total treatment time was up to 8 minutes. Both patients and clinicians were blinded during

the whole treatment and follow-up period. A total of 43 patients were included in the analyses.

There was no statistically significant difference between PRF and sham treatment for the primary

outcome efficacy variable; 7 patients (3 in PRF group and 4 in sham treatment group) achieved

greater than or equal to 30 % pain relief (difference between groups was non-significant). There

was no statistically significant difference in the NPS or any dimension of SF-36 between the

treatments; 18 patients reported adverse effects. They were mild and did not necessitate any

treatment. Transient pain was reported by 17 patients, local irritation by 5 patients and local

inflammation by 1 patient. There was no significant difference between the groups in the

presence of adverse effects. The authors concluded that PRF was well-tolerated, but this study

failed to show efficacy of PRF over sham treatment for peripheral post-traumatic NP. Based on

these findings, these investigators do not recommend PRF for peripheral post-traumatic NP.

They stated that more research of the possible use of PRF for various pain conditions is needed

to determine its role in the management of prolonged pains.

Post-Surgical Orchialgia

Hetta and colleagues (2018) stated that chronic post-surgical pain in the groin region represents

a challenge for the managing physician and is a burden on the QOL of the patient. None of the

existing interventions or medical treatment is satisfactory. In a prospective, randomized,

controlled clinical trial, these researchers evaluated the analgesic efficacy of PRF applied to the

ilio-inguinal nerve and the genital branch of the genito-femoral nerve for patients suffering from

chronic post-surgical orchialgia. A total of 70 patients complaining of chronic post-surgical

orchialgia were randomized into 2 groups: PRF group (n = 35), received PRF on the ilio-inguinal

nerve and genital branch of the genito-femoral nerve, or sham group (n = 35). The percentage

of patients that showed greater than 50 % reduction of their VAS pain score as well as the

percentage of patients that did not require additional analgesic drugs was assessed. The VAS

pain score and the global perceived effect (GPE) were reported during the 3-month follow-up

period. The percentage of patients who showed greater than 50 % reduction of their VAS pain

score was 80 % (24/30) in the PRF group versus 23.33 % (7/30) in the sham group. The

percentage of patients that did not require analgesic drugs was 50 % (15/30) in the PRF group

versus 3.3 % (1/30) in the sham group. There was a significant reduction of the mean post-

procedural VAS pain score at 2, 4, 6, 8, and 12 weeks (p = 0.001) in the PRF group in

comparison to the sham group. Likewise, there was a significant improvement of the GPE in the

PRF group in comparison to the sham group (p = 0.00). The authors concluded that for patients

suffering from chronic post-surgical orchialgia, PRF applied to the ilio-inguinal nerve and the

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 38/57

Page 40: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

genital branch of the genito-femoral nerve was an effective treatment modality; it provided long-

lasting pain relief and decreased the demand for pain medications. The main drawbacks of this

study were its short-term follow-up period (3 months) and its relative small sample size (n = 35 in

the PRF group). These preliminary findings need to be validated by well-designed studies.

Stump Pain

Zheng and co-workers (2017) stated that the post-amputation (pain) syndrome, including stump

pain, phantom limb sensation, and phantom limb pain is common but difficult to treat. Refractory

stump pain is an extremely challenging and troublesome clinical condition. Patients respond

poorly to drugs, nerve blocks, spinal cord stimulation and surgery. This report described a

patient with persistent and refractory upper limb stump pain being successfully relieved with PRF

of brachial plexus under US guidance after a 6-month follow-up period. The authors concluded

that the findings of this report suggested that PRF of brachial plexus under US guidance may be

considered as an alternative treatment for refractory stump pain. To the authors’ knowledge, this

was the first report using US-guided brachial plexus PRF for the management of refractory

stump pain. These preliminary findings need to be validated by well-designedstudies.

Sural Neuralgia

Abd-Elsayed and associates (2018b) noted that sural neuralgia is persistent pain in the

distribution of the sural nerve that provides sensation to the lateral posterior corner of the leg,

lateral foot, and 5th toe. Sural neuralgia is a rare condition but can be challenging to treat and

can cause significant limitation. These investigators presented 2 cases of sural neuralgia

resistant to conservative management that were effectively treated by PRF ablation. A 65-year

old woman developed sural neuralgia after a foot surgery and failed conservative management.

She had successful sural nerve blocks, and PRF ablation led to an 80 % improvement in her

pain. A 33-year old woman presented with sural neuralgia secondary to 2 falls. The patient had

tried several conservative modalities with no success. These researchers performed diagnostic

blocks and PRF ablation, and the patient reported 80 % improvement in her pain. The authors

concluded that PRF ablation may be a safe and effective treatment for patients with sural

neuralgia that did not respond to conservative therapy. However, these investigators stated that

studies are needed to elucidate its effectiveness and safetyprofile.

Plantar Fasciitis

Thapa and Ahuja (2014) stated that plantar fasciitis (PF) is the most common cause of chronic

heel pain, which may be bilateral in 20 to 30 % of patients. The management includes both

pharmacological and operative procedures with no single proven effective treatment modality. In

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 39/57

Page 41: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

the present case series, these investigators managed 3 patients with PF (1 with bilateral PF).

Following a diagnostic medial calcaneal nerve (MCN) block at its origin, these researchers

observed reduction in verbal numerical rating scale (VNRS) in all 3 patients; 2 patients had

relapse of PF pain that was managed with MCN block followed with PRF. All the patients were

pain-free at the time of reporting. The authors concluded that this case series study highlighted

the possible role of combination of diagnostic MCN block near its origin followed with PRF as a

new modality in management of patients with PF. These preliminary findings need to be

validated by well-designed studies.

Li and colleagues (2018) stated that PF is one of the most common causes of adult heel pain.

These researchers compared the effectiveness of various therapies for PF using network meta-

analysis. Studies were searched on Embase, Medline via PubMed, Cochrane Central Register

of Controlled Trials (CENTRAL), and the Physiotherapy Evidence Database (PEDro) up to

December 4, 2017; RCTs that used extracorporeal shock wave therapy (ESWT), ultrasound

(US), US-guided pulsed radiofrequency treatment (UG-PRF), intracorporeal pneumatic shock

therapy (IPST), low-level laser therapy (LLLT), and non-invasive interactive neurostimulation

(NIN) for the treatment of plantar fasciitis were included. The primary outcome was change in

pain relief. Risk of bias was assessed using the Cochrane risk of bias tool. Quality assessment

was performed using the GRADE system. A total of 19 trials with 1,676 patients with PF were

included. In the pair-wise meta-analysis, radial extracorporeal shock wave therapy (RSW), LLLT,

and IPST showed a significant pooled reduction in the VAS compared with placebo at 0 to 6

weeks [mean difference (MD) = 6.60, 95 % CI: 6.04 to 7.16; MD = 2.34, 95 % CI: 1.60 to 3.08; MD 

= 2.24, 95 % CI: 1.44 to 3.04, respectively]. Compared with placebo, UG-PRF [MD = 2.31, 95 %

CI: 1.26 to 3.36] and high-intensity focused extracorporeal shock wave (H-FSW) [MD = 0.82, 95

% CI: 0.20 to 1.45] showed superior pain-relieving effects at 2 to 4 months; UG-PRF [MD = 1.11,

95 % CI: 0.07 to 2.15] and IPST [MD = 4.92, 95 % CI: 4.11 to 5.73] showed superior effects at 6

to 12 months. In the network meta-analysis, only RSW induced significant pain reduction

compared with placebo at 0 to 6 weeks [MD = 3.67, 95 % CI: 0.31 to 6.9]. No significant

differences were found for the 2 to 4-month and 6 to 12-month periods because of the wide 95 %

CIs. The authors concluded that the present meta-analysis compared the effectiveness of 8

modalities for treating PF. Regarding the 3 follow-up effectiveness time-points, RSW provided

relatively more effective and stable pain relief compared with other interventions and is therefore

a promising candidate for clinical applications. Ultrasound therapy and FSW therapies could

also be considered treatment candidates. However, H-FSW and UG-PRF are not

recommended. Regarding the 0- to 6-week and 6- to 12-month periods, NIN and IPST provided

the greatest pain relief, respectively, and, thus, have the potential to be more effective

alternatives. These researchers stated that randomized trials comparing NIN, IPST, UG-PRF,

and LLLT are needed to obtain more precise estimates of their relative efficacy.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 40/57

Page 42: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Complex Regional Pain Syndrome

Park and colleagues (2019) stated that PRF to the thoracic sympathetic ganglion (TSG-PRF) or

to the cervical sympathetic chain (CSC-PRF) can be performed to overcome transient effects of

single sympathetic blocks in patients with upper-extremity complex regional pain syndrome

(CRPS). These investigators retrospectively compared the clinical effects of TSG-PRF and

CSC- PRF. A total of 7 TSG-PRF cases and 10 CSC-PRF cases were enrolled in the present

analysis. These researchers examined effectiveness with multiple clinical measurements: a

NRS of pain before and 1 week after the procedure, post-procedure temperature, effect duration,

and a self-described patient satisfaction score. The temperature was significantly higher in TSG­

PRF cases than in CSC-PRF cases. Pain values (according to the NRS) 1 week after the

procedure were significantly lower, and the effect duration was significantly longer, after TSG­

PRF than after CSC-PRF. The authors concluded that TSG-PRF was a more effective

procedure than CSC-PRF for managing chronic upper-extremity CRPS. They stated that based

on these preliminary findings, a well-designed, prospective study with adequate sample size

would be a valuable advancement of this work.

The authors stated that this study had several limitations. This analysis was not based on proper

sample size due to retrospective nature. In addition, although all patients reported various

degrees of reduction in cold sensation after PRF, these researchers did not perform a diagnostic

method to verify this objectively. Along with a small sample size (n = 17), this was another

limitation of the retrospective nature of this study.

Pudendal Neuralgia

Pudendal neuralgia (PN) involves severe, sharp pain along the course of the pudendal nerve,

often aggravated with sitting. The ideal management for PN has not been determined. Rhame

and colleagues (2009) presented a case of a female with 1.5 years of sharp, burning pain of the

left gluteal and perineal regions. She could not sit for longer than 10 to 15 mins. Sacroiliac joint,

epidural, and piriformis injections did not improve her pain. She had tried acupuncture,

massage, occupational therapy, and physical therapy but the pain persisted. Medication

treatment with amitriptyline, gabapentin, extended release morphine sulfate, and oxycodone­

acetaminophen provided only minor relief and she had failed other multi-analgesic therapy. She

had been unable to work at her desk job for over 1 year. She had a positive response to 2

diagnostic pudendal nerve blocks with lidocaine that provided pain relief for several hours. This

patient elected to undergo PRF of the left pudendal nerve in hopes of achieving a longer duration

and improved pain relief. Pulsed RF was performed at a frequency of 2 Hz and a pulse width of

20 milliseconds for a duration of 120 seconds at 42 degrees Celsius. After the procedure, she

reported tolerating sitting for 4 to 5 hrs. Her multi-analgesic therapy was successfully weaned.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 41/57

Page 43: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

At 5 months follow-up, she felt motivated to return to work. One and a half years after the

procedure the patient is only taking oxycodone-acetaminophen for pain relief and still has good

sitting tolerance. There were no procedure-related complications. To the authors'r knowledge

PRF for the treatment of PN has not been reported elsewhere in the literature. It is a relatively

new procedure and is felt to be safer than continuous RF. Current literature suggests that PRF

delivers an electromagnetic field, which modifies neuro-cellular function with minimal cellular

destruction. The authors concluded that PRF of the pudendal nerve offers promise as a

potential treatment of PN that is refractory to conservativetherapy.

Frank and associates (2019) noted that PN is a recognized cause of chronic pelvic pain. The

diagnosis is complex, and there is no consensus on ideal management. Many current methods

do not provide adequate relief; PRF is a minimally invasive option that has been reported for its

use in other neuropathies. These researchers examined the feasibility and safety of using

transvaginal PRF for the treatment of PN and generated a hypothesis on its efficacy. They

carried out a retrospective review of women who were treated with PRF for chronic pelvic pain

owing to PN between January 2012 and December 2017 at an academic tertiary care center

(Canadian Task Force Classification II-3). A total of 7 patients were included. The mean age

was 43.7 (SD 7.97) years. The average number of PRF treatments was 4.43 (range of 1 to 12),

and the duration of effect averaged 11.4 weeks (SD 3.09). There were no major or minor

complications at the time of procedure or at follow-up visits. The authors concluded that PRF

may be a safe and effective therapeutic option for the management of PN for women in whom

conservative management has not been effective. Moreover, these researchers stated that

future controlled studies are needed to confirm this hypothesis.

Peripheral Neuropathic Pain

Chang (2018) noted that clinicians have recently been applying PRF stimulation on various

peripheral nerves to manage patients' peripheral neuropathic pain. This investigator reviewed

the literature on the use and efficacy of PRF for controlling peripheral neuropathic pain. This

was a narrative review of relevant articles on the effectiveness of PRF for peripheral neuropathic

pain. A PubMed search was conducted for studies published from January 1, 1980 to August

31, 2017 that used PRF to treat peripheral neuropathic pain. The key search phrase for

identifying potentially relevant articles was [PRF and pain]. The following inclusion criteria were

applied for the selection of articles: patients' pain was caused by peripheral nervous system

disorders; PRF stimulation was applied on the peripheral nerve; and after PRF stimulation,

follow-up evaluation was performed to assess the reduction in pain. Review articles were

excluded. A total of 468 articles were found to be potentially relevant. After reading the titles

and abstracts of the papers and assessing them for eligibility based on the full-text articles, 63

publications were finally included in this review. For trigeminal neuralgia, the results of previous

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 42/57

Page 44: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

studies indicated that PRF is not appropriate for managing trigeminal neuralgia and less effective

than conventional RF. Moreover, data on the use of PRF for PN, meralgia paresthetica, carpal

tunnel syndrome, tarsal tunnel syndrome, and Morton's neuroma, is lacking and thus the efficacy

of PRF in these peripheral nerve disorders cannot be determined at this time.

Chronic Knee Pain

Erdem and Sir (2019) stated that PRF of genicular nerves in the management of osteoarthritis

(OA) related chronic knee pain has recently become a promising treatment. Ultrasonography

has replaced fluoroscopic guidance in pain medicine. In a retrospective study, these

investigators examined the effect of US-guided genicular PRF on knee pain and function in

patients who had severe knee OA or who had previous knee arthroplasty. This trial included a

total of 23 patients with chronic knee pain, of which 17 patients were included in Group I (non­

operated), and 6 patients were included in Group II (post-total knee arthroplasty [TKA]).

Treatment was based on US-guided PRF of the superior medial, superior lateral, and inferior

medial genicular nerves. The VAS and Western Ontario and McMaster Universities

Osteoarthritis (WOMAC) scores were evaluated before treatment, and at 3 weeks and at 3

months following the procedure. Pulsed radiofrequency of the genicular nerves significantly

reduced perceived pain and disability in the majority of the patients. The proportion of the

patients with improvement of greater than or equal to 50 % in pre-treatment VAS scores at 3

weeks and 3 months following treatment were 14 out of 17 patients (82 %) and 15 out of 17

patients (88 %) in Group 1, and 4 out of 6 patients (67 %), 4 out of 6 patients (67 %) in Group 2,

respectively. The authors concluded that the findings of this study suggested that US-guided

PRF of genicular nerves was a safe and minimally invasive procedure that significantly alleviated

pain and disability in patients with severe degenerative disease or with previous knee

arthroplasty.

The authors stated that this study had several drawbacks. First, the exact pathological

processes of the OA and the source of the pain after TKA still remains uncertain. The origin of

the pain in the OA group (Group I) was suspected to be deformation of healthy bones, peri­

articular tissues, and secondary synovitis. However, in TKA group (Group II), mal-alignment of

the implants, gap-balancing problems, inflammation, and remaining osteophytes may be

considered. Also, additional innervations apart from the genicular nerves exist that might cause

continuation of pain transmission. Consequently, the RF procedure including other nerves may

result in different outcomes. Second, the current study included a relatively small number of

patients with TKA (n = 6); thus, the results could not be generalized to an overall population with

TKA, and comparing non-operated and operated groups with an inequality in number distribution

may not be strong supportive evidence. However, these investigators observed that in the post­

arthroplasty group, defining the neurovascular bundle was somewhat difficult due to the

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 43/57

Page 45: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

   

operation-related damages. Despite a higher number of patients with pain after arthroplasty,

these researchers performed the procedure only when the neurovascular bundle was identified

clearly with US. This may be the explanation of the small sample size in this study. Third, the

current study lacked a control group and thee researchers were unable to compare treatment

with other modalities. Finally, a 3-month follow-up period might not have been a sufficient length

of time to evaluate the long-term results of the procedure. Although the short-term follow-up data

were superior, consistent with the literature, further studies are needed to evaluate the long-term

effects of US-guided PRF genicular nerve treatment both in OA and post-arthroplasty cases.

Frozen Shoulder

In a randomized, double-blind, sham control trial, Yan and Zhang (2019) examined the safety

and effectiveness of US-guided PRF (UG-PRF) for patients with frozen shoulder (FS). A total of

136 patients with FS were recruited and then were equally randomly allocated into a treatment

group (n =68) and a sham group (n =68). Subjects in the treatment group received UG-PRF,

while subjects in the sham group underwent sham UG-PRF. Subjects in both groups were

treated for a total of 12 weeks. The primary outcome was the pain intensity, measured by the

VAS. The secondary outcomes consisted of shoulder disorder, measured by the score of

shoulder pain and disability index (SPADI); QOL, assessed by SF-36; and any adverse events

(AEs) during the treatment period. All outcomes were measured at baseline, at the end of 6­

week, and 12-week treatment. At the end of 6 weeks, and 12 weeks, UG-PRF showed more

promising outcome results in pain relief, as measured by VAS (p< 0.01), improvement of

shoulder disorder, as assessed by SPADI score (pain, p < 0.01; disability, p < 0.01; total, p <

0.01), and enhancement of QOL, as measured by the SF-36 scale (PCS, p < 0.01; MCS, p <

0.01), compared with sham UG-PRF in this study. The authors concluded that the findings of

this study showed that UG-PRF may benefit for patients with FS after 12 weeks treatment.

The authors stated that this study had 2 limitations. First, it did not include follow-up assessment

following the treatment quit. Therefore, further studies should extend the outcome evaluation

period with follow-up visit after the treatment. Second, since this study was the first study to

examine the effectiveness of UG-PRF for FS, thus, more studies should be focused on this issue

to further validate the findings of this study.

Infraorbital Neuralgia

Jia and colleagues (2019) stated that infraorbital neuralgia lacks systematic treatment guidelines

because few studies on this subject have been published. These investigators previously found

that 42°C percutaneous non-destructive PRF treatment could achieve satisfactory pain relief for

patients with infraorbital neuralgia. However, patients who responded poorly to PRF had no

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 44/57

Page 46: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

other therapeutic options until now. Recently, standard PRF combined with 60°C continuous

radiofrequency (CRF) was successfully performed on trigeminal neuralgia patients and achieved

a promising effective rate with mild complications. However, the efficacy of the combined

therapy in the treatment of infraorbital neuralgia has not yet been reported. In a prospective,

single-center, observational clinical trial, these researchers examined the effectiveness and

safety of 42°C PRF combined with 60°C CRF in infraorbital neuralgia patients who responded

poorly to 42°C PRF and were reluctant to receive destructive therapies or nerve decompression

surgery. These investigators examined the effects of 10 mins of 3-dimensional computer

tomography (3D-CT)-guided 42°C PRF combined with 270 seconds of 60°C CRF in the

treatment of 28 patients with refractory infraorbital neuralgia. The response criterion was a post­

operative verbal pain NRS score reduction of greater than 50 %. The response rates at different

time-points during a 2-year follow-up were calculated. The effective rates of combined PRF and

CRF treatment were 95.5 %, 86.4 %, 81.8 %, 72.7 %, 72.7 %, and 72.7 % post-operative at 1

month, 3 months, 6 months, 1 year, 18 months, and 2 years, respectively. Except for 16 patients

(72.7 %) experiencing mild numbness that gradually disappeared within 1 week to 2 months after

the operation, no obvious complications were observed. The authors concluded that for patients

with intractable infraorbital neuralgia, 42°C PRF combined with 60°C CRF was a s afe and

effective treatment. Moreover, these researchers stated that prospective, double-blind RCTs with

longer follow-up periods are needed to examine if the combined treatment could become an

alternative option for those who do not respond to conservative treatment, sparing those patients

from destructive therapies or more invasive nerve decompression surgery.

This study had several drawbacks. First, the study evaluated the effectiveness and safety of

combined 42°C PRF and 60°C CRF for only 2 years after the operation, a longer follow-up

duration is needed to examine the long-term outcome of the novel combined therapy. Second,

the study recorded only the subjectively reported degree of facial numbness and did not include

quantitative sensory testing to examine the degree of destruction by the operation. Third, the

cost of 3D-CT scanning was comparatively high, and patients were inevitably exposed to

radiation energy, which would restrict clinical access. Ultrasound appeared to be a safer and

more economical imaging modality with which to guide the operation in future research. Fourth,

parameters measuring the effectiveness of the procedure, such as the treatment duration,

waveform, pulse width, and frequency, need to be further studied. Finally, this study was an

observational, single-center study with small sample sizes (n = 28); multi-center, double-blind,

RCTs with larger sample sizes are needed to provide a higher level of evidence of the efficacy of

PRF combined with CRF.

Metatarsalgia

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 45/57

Page 47: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Ho and colleagues (2018) stated that metatarsalgia is characterized by pain in the forefoot,

which is associated with increased stress over the metatarsal head region. Despite the

availability of a variety of conservative or surgical treatments for this condition, a few cases have

demonstrated relapse or poor response to treatment. Pulsed radiofrequency can provide pain

relief in patients with diverse chronic conditions without causing neural injury. Recently, studies

have shown that US-guided PRF may be beneficial for adhesive capsulitis, carpal tunnel

syndrome, tarsal tunnel syndrome, and recalcitrant plantar fasciitis. These researchers

described a successful case of significant pain relief achieved by using US-guided PRF targeting

the posterior tibial nerve (PTN) at the ankle of a 67-year old woman with recalcitrant

metatarsalgia. Ten minutes after US-guided PRF was applied at the PTN, the patient reported

decreased pain (from 8 to 3 on a VAS) and did not exhibit any particular side effects. Three

months after PRF application, the patient's VAS score remained more than 50 % below the

baseline, and she did not need additional conservative treatment during the follow-up period.

The authors concluded that to the best of their knowledge, they presented the 1st case report

using US-guided PRF at the PTN for treatment of recalcitrant metatarsalgia. They hypothesized

that US-guided PRF at the PTN may be a potentially novel approach for treating recalcitrant

metatarsalgia.

CPT Codes / HCPCS Codes / ICD-10 Codes

Information in the [brackets] below has been added for clarification purposes. Codes requiring a 7th character are represented by "+":

Code Code Description

There are no specific codes for pulsed radiofrequency:

HCPCS codes not covered for indications listed in the CPB:

no specific code:

ICD-10 codes not covered for indications listed in the CPB (not all-inclusive):

B02.21 - B02.29 Zoster with other nervous system involvement [post-herpetic neuralgia]

D21.0 - D21.9 Other benign neoplasms of connective and other soft tissue [neuromatous pain]

D36.10 - D36.17 Benign neoplasm of peripheral nerves and automatic nervous system [neuromatous

pain]

E08.40 - E08.49 Diabetes mellitus due to underlying condition with neurological complications

E09.40 - E09.49 Drug or chemical induced diabetes mellitus with neurological complications

E10.40 - E10.49 Type 1 diabetes mellitus with neurological complications

E11.40 - E11.49 Type 2 diabetes mellitus with neurological complications

www.aetna.com/cpb/medical/data/700_799/0735.html#dummyLink2 Proprietary 46/57

Page 48: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

E13.40 - E13.49 Other specified diabetes mellitus with neurological complications

F52.4 Premature ejaculation

G09.01 - G09.09 Idiopathic peripheral autonomic neuropathy [peripheral neuralgia]

G44.1 Vascular headache, not elsewhere classified

G50.0 Trigeminal neuralgia

G52.1 Disorders of glossopharyngeal nerve

G56.00 - G56.03 Carpal tunnel syndrome

G57.0 - G57.93 Mononeuropathies of lower limb [pudendal nerve entrapment or neuropathy] [lower

extremity neuralgia] [tarsal tunnel syndrome] [sural neuralgia]

G58.0 Intercostal neuropathy [intercostobrachial neuralgia in post mastectomy pain

syndrome]

G58.8 - G58.9 Other specified and unspecified m ononeuropathy [pudendal nerve entrapment or

neuropathy]

G60.3 Idiopathic progressive neuropathy [idiopathic axonal polyneuropathy]

G60.8 - G60.9 Other and unspecified hereditary and idiopathic neuropathies [idiopathic axonal

polyneuropathy]

G81.0 - G81.94 Hemiplegia and hemiparesis

G89.21 - G89.28 Chronic pain, not elsewhere classified

G89.3 Neoplasm related pain (acute) (chronic) [tumors involving peripheral nerves]

G90.50 - G90.59 Complex regional pain syndrome I (CRPSI)

I47.0 Re-entry ventricular arrhythmia

I47.2 Ventricular tachycardia

I49.01 Ventricular fibrillation

I69.398 Other sequelae of cerebral infarction

L74.510 - L74.9 Focal hyperhidrosis [palmar hyperhidrosis]

L90.6 Striae atrophicae [striae rubra]

M12.9 Arthropathy, unspecified [facet and sacroiliac joint]

M17.0 - M17.9 Osteoarthritis of knee

M25.50 - M25.579 Pain in joint [zygapophyseal] [metatarso-phalangeal] [trapezio-metacarpal]

M51.15 - M51.17 Thoracolumbar and lumbosacral intervertebral disc disorders with radiculopathy

Code Code Description

www.aetna.com/cpb/medical/data/700_799/0735.html#dummyLink2 Proprietary 47/57

Page 49: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Code Code Description

M51.9 Unspecified thoracic, thoracolumbar and lumbosacral intervertebral disc disorder

[discogenic pain]

M53.3 Sacrococcygeal disorders, not elsewhere classified [sacroiliac joint pain]

M54.10 Radiculopathy, site unspecified [pudendal]

M54.17 Radiculopathy, lumbosacral region

M54.18 Radiculopathy, sacral and sacrococcygeal region [pudendal]

M54.2 Cervicalgia

M54.5 Low back pain [lumbago]

M54.6 Pain in thoracic spine

M54.81 Occipital neuralgia

M54.89 - M54.9 Other and unspecified dorsalgia

M72.2 Plantar fascial fibromatosis

M75.00 - M75.02 Adhesive capsulitis of shoulder

M77.40 - M77.42 Metatarsalgia

M79.10 - M78.18 Myalgia [myofascial pain]

M79.2 Neuralgia and neuritis, unspecified [pudendal] [[idiopathic supraorbital neuralgia]

[peripheral post-traumatic neuropathic pain] [infraorbital neuralgia]

M79.601 - M79.676

Pain in limp, hand, foot, fingers and toes [stump pain]

N50.811 - N50.819 Testicular pain

N94.2 Striae atrophicae [striae rubra]

N94.810 - N94.819 Vulvodynia

R10.2 Pelvic and perineal pain

R39.11 Hesitancy of micturition

R39.15 Urgency of urination

R51 Headache

R52 Pain, unspecified [chronic pain NOS]

Z89.01 - Z89.9 Acquired absence of limb [stump pain]

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 48/57

Page 50: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

1. Forouzanfar T, van Kleef M, Weber WE. Radiofrequency lesions of the stellate ganglion in

chronic pain syndromes: Retrospective analysis of clinical efficacy in 86 patients. Clin J

Pain. 2000;16(2):164-168.

2. Manchikanti L. The role of radiofrequency in the management of complex regional pain

syndrome. Curr Rev Pain. 2000;4(6):437-444.

3. Whitworth LA, Feler CA. Application of spinal ablative techniques for the treatment of

benign chronic painful conditions: History, methods, and outcomes. Spine.

2002;27(22):2607-2612; discussion 2613.

4. Van Zundert J, Brabant S, Van de Kelft E, et al. Pulsed radiofrequency treatment of the

gasserian ganglion in patients with idiopathic trigeminal neuralgia. Pain. 2003;104(3):449­

452.

5. Mikeladze G, Espinal R, Finnegan R, et al. Pulsed radiofrequency application in treatment

of chronic zygapophyseal joint pain. Spine J. 2003;3(5):360-362.

6. Lopez BC, Hamlyn PJ, Zakrzewska JM. Systematic review of ablative neurosurgical

techniques for the treatment of trigeminal neuralgia. Neurosurgery. 2004;54(4):973-982;

discussion 982-983.

7. Ahadian FM. Pulsed radiofrequency neurotomy: Advances in pain medicine. Curr Pain

Headache Rep. 2004;8(1):34-40.

8. Shah RV, Racz GB. Long-term relief of posttraumatic headache by sphenopalatine ganglion

pulsed radiofrequency lesioning: A case report. Arch Phys Med Rehabil. 2004;85(6):1013­

1016.

9. Pevzner E, David R, Leitner Y, et al. Pulsed radiofrequency treatment of severe radicular

pain. Harefuah. 2005;144(3):178-180, 231.

10. Bayer E, Racz GB, Miles D, Heavner J. Sphenopalatine ganglion pulsed radiofrequency

treatment in 30 patients suffering from chronic face and head pain. Pain Pract.

2005;5(3):223-227.

11. Vallejo R, Benyamin RM, Kramer J, et al. Pulsed radiofrequency denervation for the

treatment of sacroiliac joint syndrome. Pain Med. 2006;7(5):429-434.

12. Teixeira A, Sluijter ME. Intradiscal high-voltage, long-duration pulsed radiofrequency for

discogenic pain: A preliminary report. Pain Med. 2006;7(5):424-428.

13. Lindner R, Sluijter ME, Schleinzer W. Pulsed radiofrequency treatment of the lumbar medial

branch for facet pain: A retrospective analysis. Pain Med. 2006;7(5):435-439.

14. Gallagher RM. Pulsed radiofrequency treatment: What is the evidence of its effectiveness

and should it be used in clinical practice? Pain Med. 2006;7(5):408-410.

15. Cahana A, Van Zundert J, Macrea L, et al. Pulsed radiofrequency: Current clinical and

biological literature available. Pain Med. 2006;7(5):411-423.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 49/57

Page 51: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

16. Navani A, Mahajan G, Kreis P, Fishman SM. A case of pulsed radiofrequency lesioning for

occipital neuralgia. Pain Med. 2006;7(5):453-456.

17. Reflex Sympathetic Dystrophy Syndrome Association (RSDSA). Complex regional pain

syndrome: Treatment Guidelines. Milford, CT: Reflex Sympathetic Dystrophy Syndrome

Association (RSDSA); June 2006. Available at:

http://www.rsds.org/3/clinical_guidelines/index.html#diagnosis. Accessed June 6, 2007.

18. Erdine S, Ozyalcin NS, Cimen A, et al. Comparison of pulsed radiofrequency with

conventional radiofrequency in the treatment of idiopathic trigeminal neuralgia. Eur J Pain.

2007;11(3):309-313.

19. Abejon D, Garcia-del-Valle S, Fuentes ML, et al. Pulsed radiofrequency in lumbar radicular

pain: Clinical effects in various etiological groups. Pain Pract. 2007;7(1):21-26.

20. Martin DC, Willis ML, Mullinax LA, et al. Pulsed radiofrequency application in the treatment

of chronic pain. Pain Pract. 2007;7(1):31-35.

21. Van Zundert J, Patijn J, Kessels A, et al. Pulsed radiofrequency adjacent to the cervical

dorsal root ganglion in chronic cervical radicular pain: A double blind sham controlled

randomized clinical trial. Pain. 2007;127(1-2):173-182.

22. Jensen TS. Pulsed radiofrequency: A novel treatment for chronic cervical radicular pain?

Pain. 2007;127(1-2):3-4.

23. Tella P, Stojanovic M. Novel therapies for chronic cervical radicular pain: Does pulsed

radiofrequency have a role? Expert Rev Neurother. 2007;7(5):471-472.

24. State Government of Victoria, Transport Accident Commission. Spinal injection therapy.

Medical Services. Melbourne, VIC: Transport Accident Commission; April 20, 2007.

25. Malik K, Benzon HT. Pulsed radiofrequency: A critical review of its efficacy. Anaesth

Intensive Care. 2007;35(6):863-873.

26. Malik K, Benzon HT. Radiofrequency applications to dorsal root ganglia: A literature

review. Anesthesiology. 2008;109(3):527-542.

27. Simopoulos TT, Kraemer J, Nagda JV, et al. Response to pulsed and continuous

radiofrequency lesioning of the dorsal root ganglion and segmental nerves in patients

with chronic lumbar radicular pain. Pain Physician. 2008;11(2):137-144.

28. Byrd D, Mackey S. Pulsed radiofrequency for chronic pain. Curr Pain Headache Rep.

2008;12(1):37-41.

29. Misra S, Ward S, Coker C. Pulsed radiofrequency for chronic testicular pain-a

preliminary report. Pain Med. 2009;10(4):673-678.

30. Tamimi MA, McCeney MH, Krutsch J. A case series of pulsed radiofrequency treatment

of myofascial trigger points and scar neuromas. Pain Med. 2009;10(6):1140-1143.

31. Basal S, Goktas S, Ergin A, et al. A novel treatment modality in patients with premature

ejeculation resistant to conventional methods: The Neuromodulation of dorsal penile

nerves by pulsed radiofrequency. J Androl. 2010;31(2):126-130.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 50/57

Page 52: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

32. Rhame EE, Levey KA, Gharibo CG. Successful treatment of refractory pudendal

neuralgia with pulsed radiofrequency. Pain Physician. 2009;12(3):633-638.

33. Vanelderen P, Rouwette T, De Vooght P, et al. Pulsed radiofrequency for the treatment

of occipital neuralgia: A prospective study with 6 months of follow-up. Reg Anesth Pain

Med. 2010;35(2):148-151.

34. Taverner MG, Ward TL, Loughnan TE. Transcutaneous pulsed radiofrequency

treatment in patients with painful knee awaiting total knee joint replacement. Clin J

Pain. 2010;26(5):429-432.

35. Basal S, Ergin A, Yildirim I, et al. A novel treatment of chronic orchialgia. J Androl.

2012;33(1):22-26.

36. van Boxem K, van Eerd M, Brinkhuizen T, et al. Radiofrequency and pulsed

radiofrequency treatment of chronic pain syndromes: The available evidence. Pain

Pract. 2008;8(5):385-393.

37. Chua NH, Vissers KC, Sluijter ME. Pulsed radiofrequency treatment in interventional

pain management: Mechanisms and potential indications-a review. Acta Neurochir

(Wien). 2011;153(4):763-771.

38. van Boxem K, van Bilsen J, de Meij N, et al. Pulsed radiofrequency treatment adjacent

to the lumbar dorsal root ganglion for the management of lumbosacral radicular

syndrome: A clinical audit. Pain Med. 2011;12(9):1322-1330.

39. Choi HJ, Oh IH, Choi SK, Lim YJ. Clinical outcomes of pulsed radiofrequency

neuromodulation for the treatment of occipital neuralgia. J Korean Neurosurg Soc.

2012;51(5):281-285.

40. Zakrzewska JM, Akram H. Neurosurgical interventions for the treatment of classical

trigeminal neuralgia. Cochrane Database Syst Rev.2011;(9):CD007312.

41. Werner MU, Bischoff JM, Rathmell JP, Kehlet H. Pulsed radiofrequency in the treatment

of persistent pain after inguinal herniotomy: A systematic review. Reg Anesth Pain

Med. 2012;37(3):340-343.

42. Hansen H, Manchikanti L, Simopoulos TT, et al. A systematic evaluation of the

therapeutic effectiveness of sacroiliac joint interventions. Pain Physician.

2012;15(3):E247-E278.

43. Taverner MG, Loughnan TE, Soon CW, et al. Transcutaneous application of pulsed

radiofrequency treatment for shoulder pain. Pain Pract. 2013;13(4):310-315.

44. Rana H, Matchett G. Using pulsed radiofrequency ablation to treat pain associated with

a tumor involving the brachial plexus. Pain Physician. 2013;16(3):E311-E314.

45. Bui C, Pangarkar S, Zeitlin SI. Relief of urinary urgency, hesitancy, and male pelvic pain

with pulse radiofrequency ablation of the pudendal nerve: A case presentation. Case

Rep Urol. 2013;2013:125703.

46. Fang L, Ying S, Tao W, et al. 3D CT-guided pulsed radiofrequency treatment for

trigeminal neuralgia. Pain Pract. 2014;14(1):16-21.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 51/57

Page 53: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

47. Kestranek J, Spacek J, Ryska P, et al. Radiofrequency therapy for severe idiopathic

vulvodynia. J Low Genit Tract Dis. 2013;17(4):e1-e4.

48. Manchikanti L, Abdi S, Atluri S, et al. An update of comprehensive evidence-based

guidelines for interventional techniques in chronic spinal pain. Part II: Guidance and

recommendations. Pain Physician. 2013;16(2 Suppl):S49-S283.

49. Schianchi PM, Sluijter ME, Balogh SE. The treatment of joint pain with intra-articular

pulsed radiofrequency. Anesth Pain Med. 2013;3(2):250-255.

50. Kim YK, Jung I, Lee CH, et al. Pulsed radiofrequency ablation under ultrasound guidance

for huge neuroma. Korean J Pain. 2014;27(3):290-293.

51. Terkawi AS, Romdhane K. Ultrasound-guided pulsed radiofrequency ablation of the

genital branch of the genitofemoral nerve for treatment of intractable orchalgia. Saudi J

Anaesth. 2014;8(2):294-298.

52. Thapa D, Ahuja V. Combination of diagnostic medial calcaneal nerve block followed by

pulsed radiofrequency for plantar fascitis pain: A new modality. Indian J Anaesth.

2014;58(2):183-185.

53. Park HG, Park PG, Kim WJ, et al. Ultrasound-assisted mental nerve block and pulsed

radiofrequency treatment for intractable postherpetic neuralgia: Three case studies.

Korean J Pain. 2014;27(1):81-85.

54. Eyigor C, Eyigor S, Akdeniz S, Uyar M. Effects of intra-articular application of pulsed

radiofrequency on pain, functioning and quality of life in patients with advanced knee

osteoarthritis. J Back Musculoskelet Rehabil. 2015;28(1):129-134.

55. Chon JY, Hahn YJ, Sung CH, et al. Pulsed radiofrequency under ultrasound guidance for

the tarsal tunnel syndrome: Two case reports. J Anesth. 2014;28(6):924-927.

56. Cohen SP, Sireci A, Wu CL, et al. Pulsed radiofrequency of the dorsal root ganglia is

superior to pharmacotherapy or pulsed radiofrequency of the intercostal nerves in the

treatment of chronic postsurgical thoracic pain. Pain Physician. 2006;9(3):227-235.

57. Ke M, Yinghui F, Yi J, et al. Efficacy of pulsed radiofrequency in the treatment of thoracic

postherpetic neuralgia from the angulus costae: A randomized, double-blinded,

controlled trial. Pain Physician. 2013;16(1):15-25.

58. Work Loss Data Institute. Low back -- lumbar & thoracic (acute & chronic). Encinitas. CA:

Work Loss Data Institute; December 4, 2013.

59. Ding DF, Li RC, Xiong QJ, et al. Pulsed radiofrequency to the great occipital nerve for the

treatment of intractable postherpetic itch: A case report. Int J Clin Exp Med.

2014;7(10):3497-3500.

60. Akbas M, Gunduz E, Sanli S, Yegin A. Sphenopalatine ganglion pulsed radiofrequency

treatment in patients suffering from chronic face and head pain. Rev Bras Anestesiol.

2016;66(1):50-54.

61. Nagar VR, Birthi P, Grider JS, Asopa A. Systematic review of radiofrequency ablation and

pulsed radiofrequency for management of cervicogenic headache. Pain Physician.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 52/57

Page 54: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

2015;18(2):109-130.

62. Gulati A, Shah R, Puttanniah V, et al. A retrospective review and treatment paradigm of

interventional therapies for patients suffering from intractable thoracic chest wall pain

in the oncologic population. Pain Med. 2015;16(4):802-810.

63. Schianchi PM. A new technique to treat facet joint pain with pulsed radiofrequency.

Anesth Pain Med. 2015;5(1):e21061.

64. Makharita MY, Amr YM. Pulsed radiofrequency for chronic inguinal neuralgia. Pain

Physician. 2015;18(2):E147-E155.

65. Deniz S, Purtuloglu T, Tekindur S, et al. Ultrasound-guided pulsed radiofrequency

treatment in Morton's neuroma. J Am Podiatr Med Assoc. 2015;105(4):302-306.

66. Naderi Nabi B, Sedighinejad A, Haghighi M, et al. Comparison of transcutaneous

electrical nerve stimulation and pulsed radiofrequency sympathectomy for treating

painful diabetic neuropathy. Anesth Pain Med. 2015;5(5):e29280.

67. Carvalho JC, Agualusa LM, Moreira LM, Costa JC. Multimodal therapeutic approach of

vaginismus: An innovative approach through trigger point infiltration and pulsed

radiofrequency of the pudendal nerve. Rev Bras Anestesiol. 2017;67(6):632-636.

68. Kesikburun S, Yaşar E, Uran A, et al. Ultrasound-guided genicular nerve pulsed

radiofrequency treatment for painful knee osteoarthritis: A preliminary report. Pain

Physician. 2016;19(5):E751-E759.

69. Bhatia A, Peng P, Cohen SP. Radiofrequency procedures to relieve chronic knee pain:

An evidence-based narrative review. Reg Anesth Pain Med. 2016;41(4):501-510.

70. De Andres J, Sanchis-Lopez N, Asensio-Samper JM, et al. Vulvodynia -- An evidence-

based literature review and proposed treatment algorithm. Pain Pract. 2016;16(2):204-

236.

71. Karia UK, Padhiar BB, Shah BJ. Evaluation of various therapeutic measures in striae

rubra. J Cutan Aesthet Surg. 2016;9(2):101-105.

72. Hayase J, Vampola S, Ahadian F, et al. Comparative efficacy of stellate ganglion block

with bupivacaine vs pulsed radiofrequency in a patient with refractory ventricular

arrhythmias. J Clin Anesth. 2016;31:162-165.

73. Guo J, Dong X, Zhao X. Treatment of trigeminal neuralgia by radiofrequency of the

Gasserian ganglion. Rev Neurosci. 2016;27(7):739-743.

74. Tsui BC, Shakespeare TJ, Leung DH, et al. Reproducibility of current perception

threshold with the Neurometer(®) vs the Stimpod NMS450 peripheral nerve stimulator

in healthy volunteers: An observational study. Can J Anaesth. 2013;60(8):753-760.

75. Osman AM, El-Hammady DH, Kotb MM. Pulsed compared to thermal radiofrequency to

the medial calcaneal nerve for management of chronic refractory plantar fasciitis: A

prospective comparative study. Pain Physician. 2016;19(8):E1181-E1187.

76. Kim JH, Kim E, Kim BI. Pulsed radiofrequency treatment of the superior hypogastric

plexus in an interstitial cystitis patient with chronic pain and symptoms refractory to

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 53/57

Page 55: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

oral and intravesical medications and bladder hydrodistension: A case report. Medicine

(Baltimore). 2016;95(49):e5549.

77. Park SM, Cho YW, Ahn SH, et al. Comparison of the effects of ultrasound-guided

interfascial pulsed radiofrequency and ultrasound-guided interfascial injection on

myofascial pain syndrome of the gastrocnemius. Ann Rehabil Med. 2016;40(5):885-892.

78. Bhatjiwale MG, Bhatjiwale MM, Bhagat A. Ultra-extended euthermic pulsed

radiofrequency for the treatment of ophthalmic neuralgia: A case report with

elaboration of a new technique. Surg Neurol Int. 2016;7(Suppl 35):S818-S823.

79. Lee JJ, Sohn JH, Choi HJ, et al. Clinical efficacy of pulsed radiofrequency

neuromodulation for intractable meralgia paresthetica. Pain Physician. 2016;19(3):173-

179.

80. Gupta A, Huettner DP, Dukewich M. Comparative effectiveness review of cooled Versus

pulsed radiofrequency ablation for the treatment of knee osteoarthritis: A systematic

review. Pain Physician. 2017;20(3):155-171.

81. Weiss AL, Ehrhardt KP, Tolba R. Atypical facial pain: A comprehensive, evidence-based

review. Curr Pain Headache Rep. 2017;21(2):8.

82. Chen Y, Huang-Lionnet JHY, Cohen SP. Radiofrequency ablation in coccydynia: A case

series and comprehensive, evidence-based review. Pain Med. 2017;18(6):1111-1130.

83. Cho IT, Cho YW, Kwak SG, Chang MC. Comparison between ultrasound-guided

interfascial pulsed radiofrequency and ultrasound-guided interfascial block with local

anesthetic in myofascial pain syndrome of trapezius muscle. Medicine (Baltimore).

2017;96(5):e6019.

84. Apiliogullari S, Gezer IA, Levendoglu F. Transient sensory recovery in stroke patients

after pulsed radiofrequency electrical stimulation on dorsal root ganglia: A case series.

Neurologist. 2017;22(1):18-20.

85. Facchini G, Spinnato P, Guglielmi G, et al. A comprehensive review of pulsed

radiofrequency in the treatment of pain associated with different spinal conditions. Br J

Radiol. 2017;90(1073):20150406.

86. Lin ML, Huang TR, Kao MC, et al. Pulsed radiofrequency stimulation suppresses palmar

hyperhidrosis in an animal study. Brain Behav. 2017;7(11):e00833.

87. Akural E, Jarvimäki V, Korhonen R, et al. Pulsed radiofrequency in peripheral

posttraumatic neuropathic pain: A double blind sham controlled randomized clinical

trial. Scand J Pain. 2017;3(3):127-131.

88. Zheng B, Song L, Liu H. Pulsed radiofrequency of brachial plexus under ultrasound

guidance for refractory stump pain: A case report. J Pain Res. 2017;10:2601-2604.

89. Grandhi RK, Kaye AD, Abd-Elsayed A. Systematic review of radiofrequency ablation and

pulsed radiofrequency for management of cervicogenic headaches. Curr Pain

Headache Rep. 2018;22(3):18.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 54/57

Page 56: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

90. Maatman RC, Steegers MAH, Kallewaard JW, et al. Pulsed radiofrequency as a minimally

invasive treatment option in anterior cutaneous nerve entrapment syndrome: A

retrospective analysis of 26 patients. J Clin Med Res. 2018;10(6):508-515.

91. Bharti N, Chattopadhyay S, Singla N, et al. Pulsed radiofrequency ablation for the

treatment of glossopharyngeal neuralgia secondary to oropharyngeal carcinoma. Pain

Physician. 2018;21(3):295-302.

92. Picelli A, Lobba D, Vendramin P, et al. A retrospective case series of ultrasound-guided

suprascapular nerve pulsed radiofrequency treatment for hemiplegic shoulder pain in

patients with chronic stroke. J Pain Res. 2018;11:1115-1120.

93. Lee DG, Chang MC. The effect of caudal epidural pulsed radiofrequency stimulation in

patients with refractory chronic idiopathic axonal polyneuropathy. Pain Physician.

2018;21(1):E57-E62.

94. Fam BN, El-Sayed GGE, Reyad RM, Mansour I. Efficacy and safety of pulsed

radiofrequency and steroid injection for intercostobrachial neuralgia in

postmastectomy pain syndrome - A clinical trial. Saudi J Anaesth. 2018;12(2):227-234.

95. Abd-Elsayed A, Anis A, Kaye AD. Radio frequency ablation and pulsed radiofrequency

for treating peripheral neuralgias. Curr Pain Headache Rep. 2018a;22(1):5.

96. Hetta DF, Mahran AM, Kamal EE. Pulsed radiofrequency treatment for chronic post-

surgical orchialgia: A double-blind, sham-controlled, randomized trial: Three-month

results. Pain Physician. 2018;21(2):199-205.

97. Abd-Elsayed A, Jackson M, Plovanich E. Pulsed radiofrequency ablation for treating

sural neuralgia. Ochsner J. 2018b;18(1):88-90.

98. Usmani H, Dureja GP, Andleeb R, et al. Conventional radiofrequency

thermocoagulation vs pulsed radiofrequency neuromodulation of ganglion Impar in

chronic perineal pain of nononcological origin. Pain Med. 2018;19(12):2348-2356.

99. Luo F, Lu J, Ji N. Treatment of refractory idiopathic supraorbital neuralgia using

percutaneous pulsed radiofrequency. Pain Pract. 2018;18(7):871-878.

100. Li X, Zhang L, Gu S, et al. Comparative effectiveness of extracorporeal shock wave,

ultrasound, low-level laser therapy, noninvasive interactive neurostimulation, and

pulsed radiofrequency treatment for treating plantar fasciitis: A systematic review and

network meta-analysis. Medicine (Baltimore). 2018;97(43):e12819.

101. Chang MC. Efficacy of pulsed radiofrequency stimulation in patients with peripheral

neuropathic pain: A narrative review. Pain Physician. 2018;21(3):E225-E234.

102. Jia Y, Pan Y, Ren H, et al. Effectiveness and safety of high-voltage pulsed

radiofrequency to treat patients with primary trigeminal neuralgia: A multicenter,

randomized, double-blind, controlled study protocol. Pain Physician. 2018 ;21(5):469-

481.

103. Ding Y, Li H, Yao P, et al. Clinical observation of CT-guided intra-articular conventional

radiofrequency and pulsed radiofrequency in the treatment of chronic sacroiliac joint

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 55/57

Page 57: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

pain. J Pain Res. 2018;11:2359-2366.

104. Ho TY, Ke MJ, Chen LC, Wu YT. Efficacy of ultrasound-guided pulsed radiofrequency for

recalcitrant metatarsalgia. A case report. J Am Podiatr Med Assoc. 2018;108(6):532-534.

105. Park J, Lee YJ, Kim ED. Clinical effects of pulsed radiofrequency to the thoracic

sympathetic ganglion versus the cervical sympathetic chain in patients with upper-

extremity complex regional pain syndrome: A retrospective analysis. Medicine

(Baltimore). 2019;98(5):e14282.

106. Li J, Ren H, Wang B, et al. Multicentre, prospective, randomised, controlled, blinded-

endpoint study to evaluate the efficacy and safety of pterygopalatine ganglion pulsed

radiofrequency treatment for cluster headache: Study protocol. BMJ Open.

2019;9(3):e026608.

107. Contreras Lopez WO, Navarro PA, Vargas MD, et al. Pulsed radiofrequency versus

continuous radiofrequency for facet joint low back pain: A systematic review. World

Neurosurg. 2019;122:390-396.

108. Fadayomi O, Kendall MC, Nader A. Ultrasound-guided pulsed radiofrequency of C2

dorsal root ganglion as adjuvant treatment for chronic headache disorders: A case

report. A A Pract. 2019;12(11):396-398.

109. Erdem Y, Sir E. The efficacy of ultrasound-guided pulsed radiofrequency of genicular

nerves in the treatment of chronic knee pain due to severe degenerative disease or

previous total knee arthroplasty. Med Sci Monit.2019;25:1857-1863.

110. Yan J, Zhang XM. A randomized controlled trial of ultrasound-guided pulsed

radiofrequency for patients with frozen shoulder. Medicine (Baltimore).

2019;98(1):e13917.

111. Jia Y, Chen Z, Ren H, Luo F. The effectiveness and safety of 42°C pulsed radiofrequency

combined with 60°C continuous radiofrequency for refractory infraorbital neuralgia: A

prospective study. Pain Physician. 2019;22(3):E171-E179.

112. Frank CE, Flaxman T, Goddard Y, et al. The use of pulsed radiofrequency for the

treatment of pudendal neuralgia: A case series. J Obstet Gynaecol Can. 2019 Mar 22

[Epub ahead of print].

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 56/57

Page 58: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and

constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or

program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any

results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna

or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be

updated and therefore is subject to change.

Copyright © 2001-2019 Aetna Inc.

www.aetna.com/cpb/medical/data/700_799/0735.html Proprietary 57/57

Page 59: Prior Authorization Review Panel MCO Policy Submission...ablative neurosurgical techniques. Furthermore, conventional (continuous) RF treatment occasionally results in worsening and

AETNA BETTER HEALTH® OF PENNSYLVANIA

Amendment to Aetna Clinical PolicyBulletin Number: 0735

Pulsed Radiofrequency

There are no amendments for Medicaid.

www.aetnabetterhealth.com/pennsylvania revised 10/10/2019