principles turbine gen aux.pdf

Embed Size (px)

Citation preview

  • 8/22/2019 principles turbine gen aux.pdf

    1/124

    NUCLEAR TRAINING CENTRE

    COURSE 134

    FOR ONTARIO HYDRO USE ONLY

    This course was originally developed for

    the use of Ontario Hydro employees.

    Reproduced on the CANTEACH web

    site with permission

  • 8/22/2019 principles turbine gen aux.pdf

    2/124

    134.00-0134.00-1

    134.00-2

    134.00-3

    134.00-4

    134.00-5

    134.00-6

    134.00-7

    September 1976

    NUCLEAR TRAINING COURSECOURSE 134

    1 - Level3 - Equipment & System Pr inc ip les4 - TURBINE, GENERATOR & AUXILIARIES

    Index

    Objec t ives

    Turbine Theory

    Turbine Opera t iona l Performance

    Turbine Opera t iona l Problems

    Turbine Sta r t -up

    Facto rs Limit ing Star tup and Rates o f Loading

    Rel iab i l i ty and Test ing Requirements

    Maintenance

  • 8/22/2019 principles turbine gen aux.pdf

    3/124

    134.00-0

    Turbine , Generator & Auxi l i a r i e s - Course 134OBJECTIVES

    At the end of t h i s course you wi l l be able to :Courses 434, 334 and 2341. Meet the o bje ctiv es f or the Courses 434, 334 and 234.

    134.00-1 Turbine Theory1. Sta te a working de f in i t i on o f:

    (a ) entropy(b) enthalpy(c ) percent mois ture(d ) qua l i ty .2. Sketch and l abe l a Moll ie r Diagram showing:

    (a) the sa tu ra t ion l ine(b) cons tant pre ssure l ines(c) cons tant temperature l ines(d) cons tant pe rcen t moisture l i ne s(e) cons tant degree of superheat l i nes .3. On a ske tch o f a Moll ie r Diagram, p lo t the condi t ionl ine fo r the steam sys tem in your p l an t showing:

    (a) ou t l e t of steam genera tor(b) i n l e t to HP turb ine(c ) ou t l e t o f HP turb ine(d) i n l e t to moisture separa to r(e) ou t l e t o f mois tu re separa to r(f) i n l e t to rehea te r(g) ou t l e t of r ehea te r(h) i n l e t to LP tu rb ines(i) ou t l e t of LP tu rb ines .(Personnel not a t a genera t ing s ta tio n w i l l usePicker ing NGS as it i s t yp ica l of l a rge un i t s . )

    4. Expla in what i s meant by Rankine cyc le and Carnot cycle .5. Calcula te Carnot Cycle Eff ic iency and expla in it'ss ign i f i cance .6. Expla in the advantages of superheated steam and whysuperheated cannot be produced in our nuc lear steamgenera tors .September 1976

    - 1

  • 8/22/2019 principles turbine gen aux.pdf

    4/124

    2 -

    134.00-0

    7. Exp la in u sin g an enthalpy-entropy diagram the extrac t ionof usefu l energy from the steam passing through a tu rb ines tage including:(a) i n i t i a l t emperature , pressure and enthalpy(b) useful energy ext rac ted(c) loss of entropy(d) f r i c t iona l reheat(e) exhaust pressure(f) ac tua l exhau st e nth al py(g) i sentropic exhaust entha lpy .

    8. Define and expla in the s ig ni fic an ce o f:(a) s tage eff ic iency(b) expansion eff ic iency(c) diagram eff ic iency(d) f ixed b lad e leak ag e fac to r(e) moving blade leakage fac to r(f) dryness fac tor .

    9. Sta te and expla in the fac tors a f fec t ing s tagee f f i c i ency inc lud ing:(a ) expansion eff ic iency(b) diagram eff ic iency(c ) f ixed blade leakage fac tor(d) moving blade leakage fac to r(e) steam moisture percentage .

    10. Expla in the s igni f icance of carryover from a turb ines tage and the s igni f icance of carryover from the f i na lturb ine s tage (exhaust l o s s ) .

    11. Draw a typ ica l condi t ion l ine fo r a mult i -s tageturb ine and ind ica te and expla in :(a) i n i t i a l pressu re , temperature and enthalpy(b) s tage pressures(c) pressure drop across th ro t t l e valve(d) i sen t rop ic enthalpy drop fo r each s tage(e) ac tua l enthalpy drop fo r each s tage(f) exhaust pressure(g) exhaust loss .

    12. Explain th e fo llowin g:(a) Curt i ss Stage(b) Rateau Stage(c) Reaction Stage(d) Impulse Stage .

  • 8/22/2019 principles turbine gen aux.pdf

    5/124

    134.00-0

    13. Expla in the fac to rs i nf lu en cin g th e choice o f turb ineblading inc luding:(a) maximum diagram e f f i c i ency(b) enthalpy drop per s tage(c) veloci ty r a t io(d) steam pressure drop across the stage(e) ax ia l t h rus t(f) moisture e f f e c t s .

    14. Expla in what i s meant by "nozzle governing" and" th ro t t l e governing and the advantages and disadvantagesof each.15. Explain how each of the fol lowing a f fec t s tu rb inee f f i c i ency :

    (a) superheat ing(b) moisture(c ) moisture separa to r(d) feedhea't ing(e) pressure drop in piping and va lves .

    134.00-2 Turbine Opera t ional Performance1 . Define:

    (a ) Sta t ion Heat Rate(b) Turbine H eat Rate(c ) Derat ing .2. Expla in why s ta t ion hea t ra te and tu rb ine heat ra teare n ot eq ua l.3. Expla in the e f f e c t s of each o f the fol lowing on tu rb inehea t r a t e :

    (a ) condenser vacuum(b ) moisture in steam passing through a turb ine(c) pressure drop through i n l e t valves(d) bo i l e r pressure(e) f i na l feedwater temperature(f) blade t ip leakage(g) a i r in leakage to condenser(h ) fau l ty gland sea ls o r gland sea l steam opera t ion(i) fau l ty a i r ex t rac t ion system operat ion .

    4. Given a design hea t balance , compute a Design TurbineHeat Rate fo r your s t a t i on .5. Expla in which p lan t components, opera t ing parametersand flow ra te s have a major e f fec t on heat r a t e . - 3

  • 8/22/2019 principles turbine gen aux.pdf

    6/124

    - 4 -

    134.00-0

    6. Develop a sys temat ic approach to improving a degradedhea t r a t e .7. Discuss the fac to rs which could cause d era tin g of atu rb ine-genera to r un i t .8. Li s t the major fac to rs which c ou ld ca use a decrease incondenser vacuum and expla in how you would d i f f e ren t i a t ebetween them .9. Li s t the major fac to rs which could decrease thee ff ic ie nc y o f th e f ee dh ea tin g system and how you wouldd i f fe ren t i a t e between them .

    134.00-3 Turbine Operat ional Problems1. Discuss the fac to rs a f fec t ing the sever i ty of thefol lowing opera t iona l problems, the poss ib leconsequences and the des ign and opera t iona l considerat i ons which minimize t he i r frequency or e f f e c t :

    (a ) overspeed(b) motoring(c) low condenser vacuum(d) water induc t ion(e) condenser tube l eak(f) blade fa i lu re(g) expan si on bel lows fa i lu re(h) bear ing fa i lu re or de te r iora t ion(i) low cycle fa t igue cracking .2. Explain the advantages of using FRF as a hydraul ic f lu idfo r turb ine con t ro l .3. Explain the precaut ions wh ich must be exerc ised withFRF and an e lec t r ica l -hydraul ic con t ro l system.

    134.00-4 Turbine Sta r tup1. Describe the s e q u e n c ~ of events on a un i t s ta r tupinc luding:

    (a ) genera tor sea l o i l(b) turb ine l ub r i ca t ing o i l system(c ) jacking o i l pump(d) turn ing gear(e) pos i t ion of governor steam valves , in te rceptvalves and steam re l ease valves(f) posi t ion of speeder gear(g ) posi t ion of emergency s top valve

  • 8/22/2019 principles turbine gen aux.pdf

    7/124

    134.00-0

    1 . (Continued)(h) t empera ture in deae ra t o r( i) condensate ex t rac t ion pumps( j) bo i l e r feed pumps(k ) a i r ex t rac t ion system(1) gland sea l system(m) condenser cool ing water system(n ) s t a t o r cool ing system(0) hydrogen coo l ing system(p ) bo i l e r s top valve pos i t ion(q ) condenser vacuum(r) lube o i l temperature(s) runup to ope ra t ing speed( t) synchroniz ing(u) load ing of gene ra to r .

    2. Explain th e reason fo r each o f th e fol lowing in th es t a r tup sequence:(a) gland sea l ing system(b) a i r ex t rac t ion system(c) condenser c i r cu l a t i ng water system(d ) main lube o i l system(e) con t ro l o i l system(f) s ea l o i l system(g) genera tor cool ing systems(h) tu rn in g g ea r.

    134.00-5 Fac tors Affec t ing Sta r tup and Rates of Loading1 . Explain th e reasons fo r each o f the fo l lowing:

    (a) COLD, WARM and HOT s t a r tup procedures(b) b lock load on synchroniz ing(c) l imi t a t ion on r a t e s o f loading(d) HOLD and TRIP tu rb ine s uperv is o ry pa rame te rs .2. Discuss th e fac to rs which l im i t th e r a t e a t which al a rge steam t u rb ine may be s t a r t ed up and loadedinc luding:

    (a ) steam pressure(b) dra in ing steam piping and tu rb ine(c ) condenser vacuum(d) the rmal s t r e s s e s in cas ing and ro t o r(e) d i f f e r en t i a l expansion between cas ing and ro t o r(f) lube o i l temperature(g) gene ra to r ro t o r temperature(h) s h af t e c ce n tr ic it y( i) v ib ra t ion( j) c r i t i c a l speeds .-

  • 8/22/2019 principles turbine gen aux.pdf

    8/124

    - 6 -

    134.00-0

    134.00-6 Rel iab i l i ty and Tes t ing Reguirements1 . Expla in the hazards of an unterminated tu rb ine overspeed.2. Discuss the two fac to rs which determine con t ro l valveunava i lab i l i ty : valve unava i lab i l i ty and t r ippingchannel unava i lab i l i ty .3. Discuss the e f f e c t of t es t ing frequency on t r ippingc i r cu i t unava i l ab i l i t y .

    134.00-7 Maintenance1 . Out l ine a program of prepara t ions pr io r to shut t ing

    down a t ur bi ne g en era to r u nit p rio r co overhaul .2. Discuss items which should be examined dur ing ove rh au linc luding:

    (a) blading(b) glands(c) diaphragms and nozzles(d) al ignment(e) t h rus t bear ing(f) r ad i a l bear ings(g) casing(h) ro to r( i) casing drains( j) evidence of presence of water(k) c learances between f ixed and moving blades(1) shroud c learances(m) turb ine f lange faces .3. Outlin e the bas ic fac to rs to be considered in turb inemaintenance.4. Outlin e the fac to rs which determine when a majorturb ine overhaul i s scheduled.

    R.O. Schuelke

  • 8/22/2019 principles turbine gen aux.pdf

    9/124

    13.4.00-1

    T u rb in e, G e ne ra to r & A u x i l i a r i e s - Course 134TURBINE THEORY

    The s u b j e c t of t u r b i n e th eo ry len ds i t s e l f t o a r a p i dd i g r e s s i o n i n t o a maze o f e s o t e r i c s c h o l a r s h i p which i s o fuse only t o t h e design e n g i n e e r s . On t h e o t h e r hand ast u r b i n e u n i t s become l a r g e r and push f u r t h e r toward t h el i m i t o f e x i s t i n g knowledge, the need f o r o p e ra ti n g ands u p e r v i s o r y p e r s o n n e l t o unders tand t h e reasons f o r t h el i m i t a t i o n s p l a c e d on t h e u n i t becomes a p a r t o f d a i l ye x i s t e n c e . It seems u n l i k e l y we can ever r e t u r n t o t h ehalcyon days of judging t u r b i n e u n i t performance by t h e"rumble of t h e engine and t h e smoke from t h e e x h a u s t " . Thepurpose of t h i s l e s s o n i s t o d i s c u s s t h e b a s i c theory o ft u r b i n e and steam c y c l e o p e r a t i o n from t h e s t a n d p o i n t ofunderstanding why t u rb in e s a r c c o ns t r u ct e d i n a c e r t a i nmanner. It i s hoped t h a t t h i s approach w i l l g i v e t h e r e a d e ran a p p r e c i a t i o n f o r t h e design f e a t u r e s of a t y p i c a l l a r g en u c l e a r t u r b i n e u n i t without t h e need t o r e s o r t t o a d e t a i l e dmathemat ical t r e a t m e n t . Those who d e s i r e a more r i g o r o u st r e a t m e n t a r e r e f e r r e d t o t h e l a r g e number o f e x i s t i n g textbookson power p l a n t theory and a p p l i e d thermodynamics.THERMODYNAMICS

    The second law of thermodynamics t e l l s us t h a t it i simpossible t o c o n s t r u c t a system o p e r a t i n g i n a c y c l e whichcan c o n v e r t a l l t h e h e a t energy i n p u t from a h e a t sourcet o u s e a b l e work. It f u r t h e r d e f i n e s the maximum e f f i c i e n c yo f any c y c l e can by d e r i v e d from the e q u a t i o n :n = (1 .1)

    n =

    where: T, i s t h e a b s o l u t e temperature a t whichh e a ~ i s s u p p l i e d

    T2 i s t h e a b s o l u t e temperature a t whichh e a t i s r e j e c t e dA CANDU n u cl ea r g e ne ra ti ng s t a t i o n s u p p l i e s h e a t i n thesteam g e n e r a t o r s a t approximately 250C and r e j e c t s h e a t t o t h ec i r c u l a t i n g water i n the condenser a t approximately 33C.Using e q u a t i o n 1 . 1 between t h e s e two temperatures we g e t :

    523 0 K - 306K523 K217 K= 523K

    = 42%- 1 -

    September 1976

  • 8/22/2019 principles turbine gen aux.pdf

    10/124

    134.00-1

    In a system o p e r a t i n g between 250C and 33C a maximum o f only42% o f t h e h e a t s u p p l i e d can be converted t o work. It i sobvious t h a t t h i s maximum e f f i c i e n c y can be i n c r e a s e d byi n c r e a s i n g t h e temperature a t which h e a t i s s u p p l i e d o r bylowering the temperature a t which h e a t i s r e j e c t e d . In aCANDU n u c l e a r power p l a n t , however, t h e s e temperaturescannot be v a r i e d s u b s t a n t i a l l y i n a d i r e c t i o n which w i l l improvee f f i c i e n c y . The upper l i m i t i s imposed by m a t e r i a l l i m i t sw i t h i n t h e f u e l e lem en ts, w hile t h e lower l i m i t i s im posed bythe a v a i l a b l e temperature o f condenser c o o li n g w a te r from t h el a k e o r r i v e r and a b s o l u t e ly l im i te d by t h e f r e e z i n g temperatureo f water a t OC.

    It i s w e l l t o remember t h a t t h i s 42% r e p r e s e n t s an upperl i m i t on the e f f i c i e n c y o f a CANDU g e n e r a t i n g s t a t i o n . As longas a CANDU system i s used t o conver t h e a t energy t o e l e c t r i c a lenergy the c y c l e cannot be more e f f i c i e n t than 42%.1 T

    Condenser

    Boiler4 CompressorI--+.

    3 2

    (a l

    3

    THE CARNOT CYCLEFigure 1 . 1

    (b)s

    Figure l . l ( a ) shows a system which has an i d e a l e f f i c i e n c yas d e s c r i b e d by e q u a t i o n 1 . 1 . T his system i s d e s c r i b e d asa Carnot Cycle. Heat i s added i n the b o i l e r a t 250C, worki s e x t r a c t e d i n the t u r b i n e , h e a t i s r e je c t e d i n t h e condenser a t 33C u n t i l about 80% o f t h e steam i s condensed andthen t h e wet stearn i s compressed t o s a t u r a t e d water a t t h ep r e s s u r e i n the b o i l e r . While t h i s c y c l e would have at h e o r e t i c a l e f f i c i e n c y equal t o t h e maximum of 42% it hass e v e r a l p r a c t i c a l draw backs:(al it i s d i f f i c u l t t o s t o p the condensing process s h o r t o fcomplete condensat ion t o w a t e r ,(bl t h e compressor must handle a low q u a l i t y wet stearn whichtends t o s e p a r a t e i n t o i t s component phases f o r c i n g thecompressor t o d e a l with a non-homoqen",ous mixture .- 2 -

  • 8/22/2019 principles turbine gen aux.pdf

    11/124

    134.00-1

    (c) the volume of f l u id handled by th e compressor i s high andth e compressor must be c omparab le in s i ze and cos t to th etu rb ine ,(d ) because th e compressor consumes a l a rge percentage of the

    tu rb ine outpu t power, t h i s cyc le i s very sens i t ive toi r r eve r s ib i l i t i e s . While t h i s cyc le i s idea l ly 42%e f f i c i en t , i f the compressor and tu rb ine are only 80%e f f i c i en t , the cyc le e f f i c i ency drops to about 28%. I fthe compressor and tu rb ine e f f i c i ency drop to about 50%,the cyc le becomes a ne t consumer o f energy.Most of the prac t i c a l problems of the Carnot Cycle can beavoided by al lowing the steam to completely condense and thencompressing the l i qu id to bo i l e r pre ssure with a smal l feed pump.The re su l t ing cyc le , shown in Figure 1 .2 , i s known as aRankine Cycle .

    Boiler

    4

    1

    (a )

    3

    T

    Turbine

    Condenser

    THE RANKINE CYCLEFigure 1 .2

    4

    (b) 5

    It i s ev iden t without ca lcu la t ion t ha t the e f f i c i ency o ft h i s cyc le wi l l be l e s s than t ha t of the Carnot Cycleopera t ing between the same t empera tu res , because a l l thehea t suppl ied i s no t t rans fe r red a t the upper t empera tu re .Some hea t i s added whi le the temperature o f the l iqu id i sincreas ing from T4 to T s By comparing the work outpu t perkilogram o f steam (the shaded area of the T-s diagram) , iti s apparen t t h a t the s team consumpt ion i s l e ss in theRankine Cycle . In add i t ion s ince the power requi rements o fthe pump i s a smal l percentage of the tu rb ine ou tpu t, thee f f e c t o f i r r eve r s ib i l i t i e s i s s ign i f i c an t ly l e ss than withthe Carnot Cycle. While the Rankine Cycle has a lower i d ea le f f i c i ency than the Carnot Cycle, the prac t i ca l l y a t ta inablee f f i c i ency i s no t much d i f f e r en t and the p lan t i s ce r ta in lysmal le r and l e s s cos t ly .

    - 3 -

  • 8/22/2019 principles turbine gen aux.pdf

    12/124

    134.00-1

    In th e Rankine Cycle shown in Figure 1 .2 , the s teamexhaust ing from th e t u rb ine has a mois tu re con ten t o f 28%.This i s much too high fo r any economic tu rb ine . The waterdrop le t s which a re c a r r ie d in th e wet steam cannot move asr ap id ly as the steam and as th e water passes through th e movingb l ade s , th e back of th e b la de s c o n ti nu a ll y s t r i ke the slower movingmoving d rop l e t s . This exer t s a r e ta rd ing e f f e c t on th e movingblades which decreases e f f i c i ency . On the o rde r of 1% o ftu rb in e s tag e ef f ic iency i s lo s t fo r each 1% average mois tu rein th e s t age . In ad di t io n th e eros ion e f f e c t of the waterdrop le t s fo r mois tu re pe rcen t s much above 13-14% would shor tenthe blade l i f e to an economically una t t rac t ive po in t .

    The e f f e c t t h i s has on th e design ef f ic iency o f at u rb ine un i t can be seen on th e Mo ll ie r diagram in Figure 1 .3 .

    ,,,,

    ""OJ '"00.'

  • 8/22/2019 principles turbine gen aux.pdf

    13/124

    134.00-1

    I f t h e e xh au st mo is tu re must be l i m i t e d t o around 10%, asit i s on most l a r g e t u r b i n e u n i t s , then t h e t u r b i n e mustexhaus t a t p o i n t 2 (10% m o i s t u r e , 33C) r a t h e r t h a n a tp o i n t 1. That i s , we cannot des ign t h i s t u r b i n e t o bei s e n t r o p i c because we c an no t h an dle t h e i n c r e a s e d m o i s t u r eo f a complete ly r e v e r s i b l e expension .

    To d e c r e a s e t h e e xh au st mo is tu re t o a c c e p t i b l e v a l u e swe must a c c e p t a c o n s i d e r a b l e i n c r e a s e i n entropy whichi m p l i e s a l o s s o f a v a i l a b l e energy and a d e c r e a s e i n e f f i c i e n c y .I n t h i s case t h e t u r b i n e e f f i c i e n c y must be l i m i t e d t o onlyabout 50% o f t h e i d e a l e f f i c i e n c y because we cannot copewith t h e mois ture c o n t e n t a h i g h e r e f f i c i e n c y would imply.While t h e t u r b i n e u n i t shown i n F i g u r e 1 . 2 has an i d e a le f f i c i e n c y o f 35%, t h e problem o f ex hau st moistu re alo nel i m i t s t h e p r a c t i c a l e f f i c i e n c y t o about 17%.MOISTURE SEPARATION

    To improve t h e e f f i c i e n c y o f t h e c y c l e above t h a t p o s s i b l ew i t h a s i n g l e t u r b i n e , it i s common t o remove t h e steam from t h et u r b i n e a t 10% m o i s t u r e , s e p a r a t e t h e water from t h e s team, andthen u t i l i z e t h e steam i n a second t u r b i n e . While t h e e x a c tp r e s s u r e t o remove t h e steam f o r m o i s t u r e s e p a r a t i o n dependson a number o f f a c t o r s , p la n t e ff i c ie n c y i s g e n e r a l l y opt imizeda t a p r e s s u r e i n t h e 500-700 KPa (g) r a n g e . F i g u r e 1 . 4 showst h e e f f e c t o f such m o i s t u r e s e p a r a t i o n .

    The dashed l i n e (1245) shows t h e i d e a l i s e n t r o p i c p r o c e s s .While t h i s p r o c e s s still r e s u l t s i n a m o i s t u r e c o n t e n t abovet h e maximum a c c e p t i b l e , t h e r e a l t u r b i n e p r o c e s s (1346) i smuch c l o s e r t o t h e i d e a l than was p o s s i b l e i n t h e s i n g l et u r b i n e . The i s e n t r o p i c e f f i c i e n c y o f t h i s process i ss l i g h t l y over 35%, a smal l improvement over t h e i s e n t r o p i ce f f i c i e n c y w i t h o u t mois ture s e p a r a t i o n . However, t h er e a l i s t i c a l l y a l l o w a b l e p r o c e s s i s almost 25% e f f i c i e n twhich i s a c o n s i d e r a b l e improvement over t h e 17% f o r t h ep ro c e ss w i t h o u t mois ture s e p a r a t i o n .

    - 5 -

  • 8/22/2019 principles turbine gen aux.pdf

    14/124

    134.00-1

    ; o ; , ~ r . ,

    100

    1'!IO,O

    Ol , " 0 0 I'" - ,~ ?7'\() ,--., ,'">

    26COX

    ~ ~ ( )Z2 $ 0 0

    2 4 ~ Q

    2400

    1 . ' 1 ~ 0

    1'1(10

    ; ' l ~ Ui

    nn e~ t " ( )

    ?l1'()

    =0''>'>0

    I ~ O O

    -1~ i J j j ' - --I.......-LL,;/h"",41"t"'7!'-+--""A++,--tl- -, ....- ~ ~ ~ ~ " " "'"

    .."

    'O i l . 1 6 78 8 0 " 2 84 811 "0, i_ l i ' L ) f ' ~ . N kJ I kg K

    MOISTURE SEPARATOR~ i g u r e 1 . 4

    REHEATINGReheat ing i s o f t e n used t o f u r t h e r improve t h e c y c l ee f f i c i e n c y . Figure 1 . 5 shows a t y p i c a l n u c l e a r t u r b i n e systemw i t h r e h e a t i n g and m o i s t u r e s e p a r a t i o n .A p e r c e n t a g e o f t h e steam produced i n t h e b o i l e r i sl e a d t o a r e h e a t e r where it i s used t o s up e r h e a t t h e steameXhaust ing from the m o i s t u r e s e p a r a t o r .

    - 6 -

  • 8/22/2019 principles turbine gen aux.pdf

    15/124

    Steam GeneratorHP

    urbine

    1 3 4 . 0 0 - 1

    LPTurbine

    Moist .

    7 - ~ __, C o n d e n s e rRehea te r Dra inPump

    F e e d Pump

    2'/..,0

    2 9 ~ O

    01 2A X-" ,""10 i--, I'" >mo~ f , ( \ O," : ~ . . , ( )zw

    ~ . . , o o

    , , ~ ~ o

    < ~ l ' Q

    , ' ~ o

    ?\ t l rl

    < ' ? ~ Q :2

  • 8/22/2019 principles turbine gen aux.pdf

    16/124

    134.00-1

    The dashed l i ne (12456) in Figure 1 .6 shows the i d ea li s en t r op i c process which has an ef f i c iency o f 38% which i sstill no t s i gn i f i c an t l y above the 35% a t t a i nab l e by a s ing letu rb ine wi th o ut mo is tu re sepa ra t ion o r r ehea t ing . However,the r e a l i s t i c a l l y a l lowable process (13457) i s a lmost 30%e f f i c i en t . It should be noted how much more c lose ly thea l lowable cond i t ion process fo l lows the i d e a l process inFigure 1 .6 than occurred in Figure 1 .3 .

    In add i t ion it should be noted t h a t th e average moisturecon ten t in th e low pressure t u rb ine wi th moisture sepa ra t ionalone i s abou t 5% when th e e xh au st mo is tu re i s held to 10%.However, wi th r ehea t ing th e average moisture con ten t i s nomore than 1% w ith the same 10% l im i t on exhaus t mois tu re . Notonly does t h i s decrease e ro s ion in the low pressure t u rb i ne ,bu t th e decrease in e f f i c i ency due to water d rop l e t impingementon th e moving blades i s subs t an t i a l l y r educed .SUPERHEATING

    Almost withou t e xcep ti on, c onven ti on a ll y fue l l ed powerp lan t s supe rhea t steam before sending it to th e high pressuret u rb ine . Not only does t h i s give the high p re ss ur e t ur bin eth e same bene f i t s t h a t r ehea t ing gives to the low pressuretu rb ine bu t in add i t ion the r a i s i ng of steam tempera ture aboves a tu r a t i on t empera tu re in cre as es th e average tempera ture a t whichhea t i s ex t rac t ed from the hea t source and thus in cre as es th eCarnot e f f i c i ency . Unfor tuna te ly , we are unable to add anyapprec iable amount o f supe rhea t to the 4000 KPa(g) sa tu ra t eds te am p ro du ce d in our steanl gene ra to r s . The same meta l lu rg i ca ll im i t a t i on s which r e s t r i c t steam gene ra to r t empera tu re to250C, r e s t r i c t th e tempera ture in a hypo th e ti ca l s u pe rh e at erto about 250C; t h a t i s , no supe rhea t .

    While a CANDU r eac to r could produce superhea ted steam a t apressure lower than 4000 KPa(g) t h i s i s una t t r a c t i v e no t onlyfrom th e s tandpo in t o f a lower s a tu r a t i on t empera tu re in thebo i l e r and , t h e r e fo r e , a lower Carno t e f f i c i ency but a lso fromth e lower steam dens i ty which would r equ i r e l a r ge r pip ing andcomponents fo r the same power outpu t .PRESSURE DROPS IN PIPING AND VALVES

    The pressure drops which occur as steam passes down themain steam piping and through valves can be considered at h r o t t l i ng process . Thro t t l i ng i s a cons tan t en tha lpy process ;t h a t i s , hea t con ten t o f th e ste am does no t change, eventhough th e p re ss ure and tempera ture dec rease . A t h ro t t l i ngprocess can be shown as a hor i zon ta l l i ne ( cons t an t entha lpy)on a Mol l i e r diagram. These pressure drops have to be heldto a minimum because the en t ropy o f the steam inc reases and,t h e r e fo r e , th e ava i l ab i l i t y o f energy dec reases .- 8 -

  • 8/22/2019 principles turbine gen aux.pdf

    17/124

    134.00-1

    ........'! '"

    _: zeoo ~ ~ m " ' o-+- -I 2100,...""

    2 8 ~ O

    OJ 2!l;x l'" ,"- i I--, IX ,"'" ,, I Ir

    2600 " II"W

    ~ ~ O O -

    2 4 ~ C '

    ~ . D C

    " j ~ ( )

    2J. ( ' ( '

    , , , ~ O in'()

    ;"'10

    ,,"on-'90

    '\ l , .. ,, ; .. " IU !; 4 6( . 6 8 'C rt '4 r t Ti l 8 0 8 2 . . . . 1. 6 8 . 0c:NTROP,' IN k. j / kg K

    INLET VALVE PRESSURE DROPFigure 1. 7

    Figure 1 .7 shows th e p ressu re drop across th e i n l e t valves toth e high pressure t u rb ine . I f th e exhaust pressure does no tchange, then th e p re ssu re drop r e su l t s in l e ss ava i l ab leenergy. In fh i s case the 25% pre ssu re drop (12) r e su l t s inonly 87% (13 /13) as much energy ava i lab le in the highpressure tu rb ine . Typica l ly th e p ressu re drop between thesteam genera tors and i n l e t to the high pressure i s held tono more than 5%. The e f f e c t of a pre ssu re drop across themois ture s ep ar ato r, r eh ea te r and va lves between th e HP andLP tu rb ines i s s imi l a r and t h i s pre ssu re drop i s l ikewiseheld to a maximum of about 5%.FEEDHEATING

    The t heo re t i c a l asp ec ts o f regenera t ive feedheat ing i sfu l ly discussed in the 225 Heat and Thermodynamics courseand does not r equ i re a complete red iscuss ion in t h i s l e s son .- 9 -

  • 8/22/2019 principles turbine gen aux.pdf

    18/124

    .J . . , j ' l : .UU-J.

    The advantages o f ex t rac t ing steam from th e high and lowpressure tu rb ine fo r use in hea t ing feedwater i s f a i r l y obvious .With turb ine exhaus t wetness l imi ted to 10%, o nly about 10%o f th e l a t en t hea t o f vapor iza t ion can be u t i l i zed by pass ingthe steam through th e remaining s tages o f th e tu rb ine .However, if the steam i s ex t rac ted from th e t u rb ine and usedto hea t feedwater a l l of th e l a t en t hea t of vapor iza t ion canbe u t i l i zed . Of course , we are in a sense robbing Pete r( turbine output) to pay Paul (heat ing feedwater) so there i sa po in t o f diminishing r e tu rns bu t th e i n i t i a l e f f e c t i squ i t e pronounced in favor o f inc reas ing cycle e f f i c i ency . Inaddi t ion th e ex t rac t ion of steam from the low pressure turb inehelps to reduce the vas t volumes of steam which the l a t t e r s tageso f th e low p re ss ur e tu rb in e must handle . The e f f e c t of ahigher f i n a l feedwater temperature can be seen on th e T-sdiagram in Figure 1.8.

    T

    65 F - - - - - - - - - - - - - ~ 4

    s

    EFFECT OF FEEDHEATINGFigure 1. 8

    Feedheat ing has r a i sed th e feedwater temperature from T6to Tl so th e bo i l e r must only inc rease the temperature fromTl to Tz before steam product ion beg ins . This r a i s e s th eaverage temperature a t which th e bo i l e r adds hea t energyand the re fo re i nc rea se s the Carnot e f f i c i ency . Feedwatert yp ica l ly en te r s a nuc lear steam genera ted heated to near175C. This r e su l t s in the steam genera to r adding hea tenergy a t an average temperature 35C ho t t e r than withoutfeedhea t ing .- 10 -

  • 8/22/2019 principles turbine gen aux.pdf

    19/124

    134.00-1

    It i s worth not ing t h a t in p lan t s such as Bruce N.G.S.where th e prehea te r i s loca ted ex te rna l to the bo i l e r , it i sth e t empera tu re of feedwater e nte rin g th e p re he ate r whiche f f e c t s e f f i c i ency . Thermodynamically th e prehea te r i snot a fe ed he ate r b ut ra the r an extens ion o f th e steam gene ra to r .

    40000 300FINAL FEEDWATER TEMPERATURE. of

    ..-r .z/ ' ~ ~ ~~ STAGES OF- ............

    A V FEEDWATER HEATING 2'--.../ ' V ---. ..... ""-/ / .............

    # ~/" "". - '"32

    o80 100

    '0

    Figure 1 . 9Figure 1 .9 shows th e t yp ica l e f f e c t of feedheat ing on cyclee f f i c i ency . Since the temperature dif ference between th eex t rac t ion steam en te r ing a feedhea te r and the feedwater

    leaving a feedhea te r i s t yp ica l ly SOC or l e s s , th e f i n a lf eedwa te r t empe ra tu re c lose ly approximates th e t empera tu reof the highes t temperature ex t rac t ion steam.Examination of th e curves in Figure 1 .9 rev ea ls th efo l lowing:

    (al as the number of feedhea te rs inc reases , th e optimumtemperature and, the re fo re , p ressu re o f th e ex t rac t ionsteam to th e l a s t feedhea te r inc reases ,(bl the re i s little advantage to be gained in going beyonds ix to e igh t s tages of feedhea t ing , and(cl s ince the curves are r e l a t i ve ly f l a t on top th e ex t rac t ionsteam pressures can vary subs tan t i a l ly from th e optimumwithout much e f f e c t on e f f i c i ency .TURBINE STAGE EFFICIENCY

    Thus fa r we have discussed the e f fec t s of var ious cyc lecomponents on id e a l e f f ic ie n cy whether i s en t rop ic or t ha tr e a l i s t i c a l l y imposed by exhaust mois ture . Tur bin es c anno talways be designed to work as we would l ike them to work andwe must accept e f f ic ienc ies lower than theore t ica l ly poss ib le .

    - 11 -

  • 8/22/2019 principles turbine gen aux.pdf

    20/124

    134.00-1

    h

    1

    Frict ional Reheat*2

    s

    STAGE EFFICIENCYFigure 1.10

    Figure 1.10 shows the condi t ion l i ne fo r a t u rb ine s tageopera t ing on wet steam between pressure PI and P 2 The dashedl i ne (12) represents the i dea l i s en t rop ic path between thesetwo pressures and hI - h 2 represents the i dea l work done bya kilogram o f steam pass ing through the s t age . In a r e a lturb ine we would find t h i s much work was not done and theac tua l path through the s tage (13) would r e su l t in l e s s hea tenergy being ex t rac t ed from the steam. The r a t i o

    i s known as s tage ef f ic iency and fo r a wel l designed s tage i st yp ica l ly between 75% and 90% depending on the type o f s t age ,th e en tha lpy drop across the s tage and the moisture content ofthe steam.There a re a number of reasons why s tage ef f ic iency i snot 100%, bu t a s i gn i f i c an t source of ine f f i c iency i s f r i c t i onbetween the steam and blading. This f r i c t i on adds hea t energyback in to the s team and r e su l t s in a leaving en tha lpy higherthan i d ea l . Because of the s ign i f i cance of t h i s f r i c t i onhea t ing , the amount o f i s en t rop ic enthalpy drop not u t i l i z ed

    in a s tage i s known as f r i c t i ona l rehea t even though f r i c t i oni s not the only cause of i n e f f i c i enc i e s . Although f r i c t i ona l- 12 -

  • 8/22/2019 principles turbine gen aux.pdf

    21/124

    134.00-1

    r ehea t r e su l t s in a g rea t e r enthalpy of the steam a t theou t l e t of the s tage than one would t heo re t i c a l l y expec t ,there i s also an increase in entropy which r ep resen t s a lossin ava i l ab i l i t y of energy.Stage e f f i c i ency i s a product o f f ive fac to r s as describedbelow:

    Stage ~ E x p a n S i o n ~ ~ D i a g r a m ~ ( ~ ~ ~ ~ ~ ~ ( M ~ ~ ~ ~ ~ ~ ~ D r Y n e S JEf fi ci en cy = ,E ff ic ie n cy Eff i c i enc Leakage Leakage Fac torFac tor Fac torwhere: Expansion Eff ic iency = Steam Kine t ic Energy ProducedSteam Enthalpy Supplied

    Diagram Eff ic iency = Work Done On RotorSteam Kine t ic Energy ProducedDryness fac to r accounts fo r the decrease in e f f i c i encydue to moi$ture impingement on the moving blades .

    Of prac t i ca l s ig nif ic an ce in tu rb ine design i s thee f f i c i ency of the convers ion o f steam k ine t i c energy to work.I f t h i s diagram e f f i c i ency o f the turb ine i s not 100%, thensome steam kine t ic energy i s l o s t as steam l eaves the movingb la de s w ith some ve loc i ty . This loss of kine t ic energy i sknown as ca r ryove r . I f the subsequent s tag es a re wel ldes igned, th is c ar ry ov er can be pa r t i a l ly or fu l ly recovered;however, the c a r r yove r from the l a s t s tage represen t s anunrecoverable loss o f energy. After the steam leaves thel a s t s tage , t h i s k ine t i c energy i s converted to hea t andappears on the Moll ie r diagram as an unexpected in cre ase inexhaust entha lpy. This l eaving loss or exhaust loss as iti s ca l l ed must be minimized by insur ing the ve loc i ty of thesteam leav in g th e l a s t stage i s as small as poss ib le . For th i sreason, the annular area of the l a s t row of blading i s madeas l a rge as economical ly poss ib le .THE TURBINE CONDITION LINE

    F igure 1 .11 shows a t yp i ca l tu rb ine condi t ion l ine fo ra seven s tage sa tu ra ted steam tu rb ine .You wi l l note the pre ssure drop across the i n l e t valvesand steam s t r a i n e r . At the normal opera t ing load o f thet u rb ine , the des igner at tempts to ach ieve an equal enthalpydrop in each s tage so the work produced in each s tage i sapproximately equa l . The abrup t increase in enthalpy a t theturb ine exhaust i s the appearance o f the exhaust loss ashea t energy. The turb ine e f f i c i ency would be expressed by

    h 2 - h gh 2 - h lO '

    - 13 -

  • 8/22/2019 principles turbine gen aux.pdf

    22/124

    134 .00-1

    Pg

    Pe

    Ps

    7

    9 l~ ~ ~ - - - Exhaust Lossf ~ - -

    5 thStage

    7 6 thStageI

    III

    4 thStage

    3rdStage

    EnthalpyKJ/kg

    EntropyKJ/kg - oK

    F ig ure 1 .11- 14 -

  • 8/22/2019 principles turbine gen aux.pdf

    23/124

    134.00-1

    As a r ep resen ta t ive va lue the e f f i c i ency of thePicker ing N.G.S. high pressure tu rb ine i s approximately 75%while the e f f i c i ency o f the low pressure tu rb ine i s approxi-mately 85%. I f exhaust losses were e l imina ted complete lyin the LP tu rb ine , the ef f ic iency would be near ly 89%. Theg r ea te r e ff ic ie n cy o f the lo w p re ss ure tu rb in e i s a combinat iono f the e f f e c t s o f rehea t ing and lower average mois tu re .Figure 1.12 shows th e c on ditio n l i ne fo r a t yp ica l l a rget u rb ine un i t with r ehea te r s and mois ture separa to r s . Points 1through 6 show the ex t rac t ion po in ts fo r feedhea t ing .,.;>r,n ,

    2 9 ' ~ '

    1 '>0()

    L ' l I ~ O

    OJ UX" ~ ? " O-,-'"

  • 8/22/2019 principles turbine gen aux.pdf

    24/124

    .L. : l ' l .UU- l

    TURBINE STAGE TYPESThere are two bas ic types o f tu rb ine s tage s : the r eac t ions tage and the impulse s tage . The fundamental di f fe rence betweenthe two types o f s tag in g i s the pa r t o f the s tage in which hea tenergy i s conver ted to steam k ine t i c energy_ In the impulses tage , t h i s conversion t akes place only in the f ixed blades ;

    in the reac t ion s tage , t h i s conversion takes place in both thef ixed and moving blades .THE IMPULSE STAGE

    As the steam passes through the f ixed b la de n oz zle s o f animpulse s tage , th e e nth alp y o r hea t energy o f the steam i sreduced and the ve loc i ty i s grea t ly increased . This highve loc i ty steam i s then di rec ted by the f ix ed b la de s in to themoving blades . The s te am changes d i rec t ion in the movingblades and impar ts an impulse (force x t ime) to the movingblades . Figure 1.13 shows th e pre ssure , ve loc i ty and enthalpychange across two impulse s t ages .

    h

    P

    MOVING

    v I - - - - - ; - - - - - ; - - - ~ - - - - - . . . : . -

    RATEAU STAGESF igu re 1.13

    - 16 -

  • 8/22/2019 principles turbine gen aux.pdf

    25/124

    134.00-1

    This type o f impulse s tag e (fixed nozz le , moving blade)i s known as a Rateau Stage . The pressure and e n th a lp y d ec re as eacro ss the nozz le as hea t energy i s conver ted to steam k ine t i cenergy (ve loc i ty ) . Across th e moving b lades , th e steam veloci tydecreases as k ine t i c energy i s t r an sf er re d to the moving b lades .You wi l l note the absence o f a pressure drop across the movingblade . The tu rb ine shown in F igu re 1.13 would be re fe r red toas a two s tage Rateau t u rb ine .

    Figure 1.14 shows another type o f impulse s tage arrange-ment known as a Cur t i s s Wheel.

    h

    FIXED MOVING FIXED MOVING

    p

    v

    TWO STAGE CURTISS WHEELFigure 1.14

    The second s e t of fixed b lades are no t nozzles and onlyserve to r ed i r e c t the steam in to the second s e t of movingb lades . Because the second f ixed blades only r ed i r e c t thesteam t he re i s no change in steam ve loc i ty across theseb lades . The tu rb ine shown in Figure 1.14 i s a two s tagetu rb ine . These two s tages are col lec t ive ly ca l l ed a Cur t i s s

    - 17 -

  • 8/22/2019 principles turbine gen aux.pdf

    26/124

    134.00-1

    Wheel.s t age ,

    You wi l l note t h a t in th e Cur t i s s Wheel, as in the Rateauthe re i s no pressure drop across th e moving blades .

    THE REACTION STAGEThe f ixed blade nozzles in a r ea ct io n tu rb in e conver thea t energy to steam k ine t i c energy in the same manner as th e

    Rateau s tage . The high ve loc i ty steam impar ts an impulse toth e moving blades .The reac t ion s tage d i f f e r s from th e Rateau s tage in t h a tthe moving blades a re shaped l i k e a nozzle so t h a t hea t energyi s conver ted to k ine t i c energy in the moving as wel l as the

    f ixed b l ades . This conversion fo rces the moving blades awayfrom the expandi ng s te am in a reac t ion e f f e c t s imi l a r to arocke t rea ct in g to the e sc ap in g e xh au st gasses .

    h

    p

    FIXED FIXED MOVING

    v t - - - - - ~ - - - ~ - - - - ' . - - 2 : : : : : : : : : . . -

    REACTION STAGESFigure 1.15

    - 18 -

  • 8/22/2019 principles turbine gen aux.pdf

    27/124

    134.00-1

    Figure 1.15 shows the pres su re , enthalpy and ve loc i tychange across a two s tage r eac t ion tu rb ine . Heat energy i sconverted to k ine t i c energy in both th e f ixed and moving blades .The moving blades move in response to both an impulse and ar eac t ion e f f e c t . You wi l l note t ha t a pressure drop occursacross the moving blades .The d i s t i nc t ion between im pU lse and react ion s tages i smore c l e a r cu t in theory than in p rac t i c e . Turbine s tagesare c l a s s i f i ed by t h e i r degree o f r eac t ion o r th e r a t i o o fthe enthalpy drop across the moving blades to the enthalpydrop across the en t i r e s tage . The degree of r eac t ion may varyfrom 0% to 100%; zero r eac t ion being p ure im pu lse. It i s no ta t a l l uncommon fo r impulse s tages to have a smal l amount o f

    react ion to improve t h e i r e f f i c i ency . General ly if th e degreeo f r eac t ion i s no more than 5-10%, th e stage i s ca l l ed animpulse s tage , otherwise it i s ca l l ed a r ea ctio n s ta ge .CHOICE OF TURBINE STAGE

    The dec is ion o f which type o f s tage to use in a turb inei s never c l e a r cu t . Each type o f s tage has i t s pa r t i cu l a radvantages and disadvantages and an a pp lic at io n in which iti s the supe r io r cho ice .AXIAL THRUST

    React ion tu rb ines have a pressure drop across the movingblades . Because o f t h i s , the fo rce on th e high pre ssure s ideo f the b lade wheel i s g rea t e r than the counte rac t ing fo rceon the low pressure s ide . This force d i f fe rence means the rei s a tendency of th e wheel to move in th e d i rec t ion ofdecreas ing pressure . In a s ing le f low, high pressure r eac t iont u rb ine , the cumulat ive fo rce can be very l a rge and the t h rus tbear ing necessary to handle t h i s force would be extremelyl a rge and cos t ly . Although th e re are methods ( fo r example adummy pis ton) o f compensating fo r t h i s t h rus t in a s ing le flowhigh pressure r ea ctio n t ur bin e , th e l e a s t compl ex method o fhandling ax i a l t h r u s t in a s ing le flow t u rb ine i s to useimpulse s tag ing . Since the impulse s tage has no pressuredrop across the moving blades , it produces no ax ia l t h rus t .

    In a low pressure tu rb ine , the pressure drop across themoving blades of a r ea cti on tu rb in e i s much l e s s . For at yp ica l 50% r eac t ion nuc lea r steam tu rb ine , th e pre ssure dropacross the moving blades of th e HP turb ine would be 200 KPaper s tage while the pressure drop across the moving blades ofth e LP turb ine would be 25 KPa per s tage . It i s p oss ib le toeconomical ly cons t ruc t a t h rus t bear ing which wi l l handle thet h rus t of a s ing le flow low pressure re ac tio n tu rb in e. Ther e s u l t i s t ha t while most s ing le flow HP t u rb ines have impulseblading, many s ing le flow LP turb ines have r eac t ion blading.

    - 19 -

  • 8/22/2019 principles turbine gen aux.pdf

    28/124

    134.00-1

    In l a rg e tu rb in e un i t s with l a rge diameter low pressure bladewheels , even th e smal l p res su re drops across th e moving blades o fa low pressure reac t ion t u rb ine produce a l a rge ax i a l t h r u s t .In such un i t s th e low p ressu re tu rb ines a re t yp i ca l l y doubleflow to compensate fo r t h i s t h ru s t .EFFICIENCY AND ENTHALPY DROP

    30'"

    0 I IT,wo--Rq. , / ......... R ~ r ; , i O lCu.rtisr t / 1\ \I / \ Ratl!Ql.l/ \

    If .: \\

    9

    zo

    10 a 020 OM! ll60 1180 \00 120 lAO~ I o . j t y Ratto.

    IlO

    '"\ T....o Ow c , , ~I ' I?" // ~ I"- R, .."t-.... '"1/

    '"r---Ru tio"50

    E n t h ~ l p y OI'"OJl per S t ~ 9 . Bued 0 .. 50ll Fp .wtour " ~ I o c ; ; t y

    "

    .. o m ro 100 1 ~ 1 ~

    '00

    Figure 1.16 Figure 1.17Figure 1.16 shows how th e diagram e f f i c i ency fo r th e t h reemajor types of tu rb ine s tages changes as the enthalpy dropper s tage va r i e s . I f th e e nth alp y drop pe r s tage i s kep t smal l

    th e re ac tio n tu rb in e i s a t t r a c t i ve due to i t s h ighe r maximume f f i c i e ncy . T yp ic al ly , th e number o f s tages in a reac t iontu rb ine i s high to keep th e e nth alp y drop low. In someins tances it i s d i f f i c u l t to keep the en tha lpy drop acrossa s ta ge w ith in the proper range fo r a r ea ct io n tu rb in e. Inthese cases , th e Rateau s tage and occas iona l ly even thecu r t i s s Wheel i s used to keep th e e f f i c i ency up. The useo f an impulse s tage in th e f i r s t s tage o f a nozzle governedhigh pressure tu rb ine i s w idesp read . In add i t ion , under ce r t a incondi t ions o f re he at in g, th e en tha lpy drop ac ross the f i r s ts tage of the low p re ss ur e tu rb in e may be qui t e l a rge andrequ i re an impulse s t age .

    - 20 -

  • 8/22/2019 principles turbine gen aux.pdf

    29/124

    134.00-1

    VELOCITY RATIOVeloci ty ra t io i s the r a t i o o f blade t angen t i a l speed tosteam ve loc i ty and each s tage type has a d i f f e r en t ve loc i tyr a t i o a t which it runs most e f f i c i en t l y . Figure 1.17 showsthe re l a t ionsh ip between ve loc i ty ra t io and diagram e f f i c i ency .As blade wheels become l a rge r to accomodate the high volumesof steam in modern t u rb ine un i t s , the b lade ta n ge n tia l v elo c it yinc reases and the ve loc i ty ra t io inc reases . As a r e su l t ther eac t ion turb ine become more a t t r ac t i ve as the ve loc i ty ra t ioinc reases . Large turb ines and pa r t i cu l a r ly l a rge low pressuretu rb ines are commonly r ea ct io n t ur b in e s.

    MOISTURE EFFECTSReact ion turb ines are more sens i t ive to the e f f ec t s ofwater drople ts decreas ing ef f ic iency by impact with the movingblades . Typical ly a 1/2 - 3/4% reduc t ion in s tage e f f i c i ency

    fo r each 1% moisture i s encountered in an impUlse s tage . Thise f f e c t i s on the order o f 1 - 1-1/4% fo r each 1% mois tu re in ar ea ctio n s ta ge . In those t u rb ines which encounter wet steamcondi t ions such as the high pressure turb ine in a nuc lear un i t ,th i s fac t has an inf luence on turb ine design. One a l t e rna t i v ei s to make th e HP turb ine an impulse tu rb ine ; if, however, th eHP turb ine i s a r ea ct io n t ur bi ne the need to keep the moisturecontent low can be r ead i ly apprec ia ted .BLADE LEAKAGE

    Since th e react ion t u rb ine produces a pressure drop acrossthe moving b lad es , th ere i s a tendency in th e r eac t ion t u rb inefo r th e steam to crawl over the end o f th e moving blades . Thise f f e c t can be qu i te pronounced in a high p re ss ur e t ur bi ne wherethe pressure drop pe r s tage can be f a i r l y high. This type o fleakage i s l e ss of a problem in the impulse s tage which makesi t s use in HP t u rb ines a t t r ac t i ve in minimizing th e movingblade leakage fac to r . In HP react ion tu rb ine s , a higher bladet ip leakage must be expected and usua l ly an increased numbero f s tages i s requi red to keep th e pressure drop pe r s tagereasonably low.TYPES OF GOVERNOR VALVES

    There are two bas i c types of governor valves in widespreaduse: nozz le governor valves and t h ro t t l e governor va lves . Notonly i s the type o f governor valve i nd ica t ive o f the se rv icethe un i t was designed to see , but in addi t ion i s a determinerof the co ns tru ct io n of the high pressure tu rb ine .THROTTLE GOVERNORS

    In t h r o t t l e governor v alves , th e steam flow to th e t u rb inepasses through a governor valve which con t ro l s steam flow tothe turb ine by t h ro t t l i ng th e steam and thereby con t ro l l ing the

    - 21 -

  • 8/22/2019 principles turbine gen aux.pdf

    30/124

    . L . , J < ; t . v v - ~

    stearn pressure a t the i n l e t to th e high p re ss ur e tu rb in e . Whethert he re i s a s ing le governor valve o r seve ra l valves in pa r a l l e l ,the governor valves t h ro t t l e the steam flow equa l ly . At 25%t u rb ine f u l l power a l l the governor valves are pass ing 25% o ft h e i r design f low. At 50% o f f u l l power a l l are pass ing 50%o f t h e i r design flow and so on. The advantage o f t h ro t t l egoverning i s the s impl ic i ty o f con tro l and cons t ruc t ion . Thisi s pa r t i cu l a r l y t rue o f the stearn i n l e t to the f i r s t s tagenozzles s ince a l l o f the nozzles a re used a t a l l t imes with thegovernor valves regu la t ing steam flow through th e f i r s t s t age .

    Pg

    h

    s

    EFFECT OF THROTTLE GOVERNINGFigure 1.18

    Figure 1.18 shows th e cond i t ion l i nes fo r a t h ro t t l egoverned t u rb ine a t various power l eve l s . In sp ec tio n o f t h i sdiagram read i ly shows the disadvantages o f t h ro t t l e governing.At power l eve l s below 100%, the re i s a l a rge pressure dropacross the t h ro t t l e governor valves . This r e su l t s in a l a rgein crea se in entropy and a corresponding decrease in a va ila ble- 22 -

  • 8/22/2019 principles turbine gen aux.pdf

    31/124

    134.00-1

    energy. s i n c e each kilogram o f steam does l e s s work a t lowpower, t h e low power steam consumption p e r k il o w a t t - h o u r i smuch g r e a t e r than a t high power. This i s c l e a r l y i n e f f i c i e n t .The r e s u l t i s t h a t t h r o t t l e governing i s seldom used on t u r b i n e st h a t a r e used f o r v a r i a b l e load s e r v i c e . A t h r o t t l e governedt u r b i n e i s designed t o o p e r a t e a t a n e a rl y c o n s t an t high powerl e v e l .NOZZLE GOVERNING

    Nozzle governor valves a r e arranged as shown i n Figure 1.19and a r e opened s e q u e n t i a l l y e i t h e r s i n g l y o r i n p a i r s .

    Stearn Chest With Bar L i f tNozzle Governing F i r s t StageNozzles Bypass ToSecond Stage

    NOZZLE GOVERNINGFigure 1.19

    As t h e nozzle block moves up the valves open s e q u e n t i a l l yand as a r e s u l t only one valve i s t h r o t t l i n g s team flow a t anyone t ime. This r e s u l t s i n a n e a rl y c o n s t a n t i n l e t p r e s s u r et o t h e f i r s t s t a g e and e l i m i n a t e s much of t h e adverse p r e s s u r edrop a s s o c i a t e d with t h r o t t l e governing a t low power l e v e l s .To p re ve nt t h e e f f e c t of t h e one valve which i s t h r o t t l i n gfrom e f f e c t i n g the p r e s s u r e a t the i n l e t o f t h e f i r s t s t a g eit i s necessary t o r e s o r t t o each valve a d m i t t i n g steam t o ad i f f e r e n t a r c on the f i r s t s t a g e nozzle r i n g as i s shown i nFigure 1 . 1 9 . This complicates t h e s t r u c t u r e o f the i n l e t t othe f i r s t s t a g e nozzles and makes t h e use o f a s i n g l e flowt u r b i n e v i r t u a l l y manditory w ith n oz zle governing.

    To a p p r e c i a t e one o f t h e o t h e r design f e a t u r e s o f anozzle governed t u r b i n e , it i s necessary t o understand t h a tt h e flow o f steam through a t u rb in e s ta g e i s roughly p r o p o r t i o n a l t o t h e p r e s s u r e drop a c r o s s t h e s t a g e . This means- 23 -

  • 8/22/2019 principles turbine gen aux.pdf

    32/124

    134.00-1

    as the flow through a s tage i nc rea se s , the pressure drop acrossthe s tage must i nc rea se .

    '".."lUl'"..p.

    Turbine In le t Pressure- - - - - - - - - - - - - - - -

    Steam Flow

    VARIATION OF STAGEPRESSURE WITH FLOW

    Figure 1.20

    h Second StageIn le t Pressure

    25%50%75%00%

    S

    EFFECT OF NOZZLEGOVERNING

    F igure 1 . 21Since the ou t l e t pressure o f the turb ine i s re la tiv e lycons tan t , the i n l e t p re ssu re to each s ta ge in cre as es as the

    power l eve l inc rea se s . However, the i n l e t pressure to thef i r s t s tage i s a t steam genera to r pressure and does no t change.Figure 1.20 shows the i n l e t pressure to the f i r s t and seconds tages o f a nozzle governed t u rb ine . At low power l eve l thepressure drop across the f i r s t s tage o f th e t u rb ine i s veryl a rge and the f i r s t s tage does a l a rge percen tage o f th et o t a l work o f the t u rb ine . For t h i s reason th e f i r s t s tagemust be e f f i c i en t with a l a rge enthalpy drop and i s usua l lyan impulse s t age . As th e power l eve l i n c reases th e pressuredrop across the f i r s t s tage decreases un t i l it may be so smal lt h a t the f i r s t s tage becomes unable to pass enough s team todevelop th e requ i red turb ine power. To increase the maximumpower of the tu rb ine when ef f ic iency i s o f a secondary importance ,the f i r s t s tage may be bypassed by some o f th e governor valvesto se nd ste am d i r ec t l y to the second s t age .

    Fig ure 1 .2 1 shows th e c on dit io n l i n e s fo r a nozzle governedtu rb ine a t var ious power l eve l s . Even though th e nozzle governedt u rb ine has a higher steam consumpt ion (kg /kw-h r) a t low powerthan a t high power, it i s more e ff ic ie n t a t low power l eve l s thana t h ro t t l e governed t u rb ine .- 24 -

  • 8/22/2019 principles turbine gen aux.pdf

    33/124

    Nozzle~ G O v e r n i n g

    / Throttle/ Governing

    Load in KW

    COMPARISON OF NOZZLEAND THROTTLING GOVERNING

    Figure 1. 22

    134.00-1

    Figure 1 . 22 i s acomparison of steam ra te sfo r nozzle and t h ro t t l egoverning . The nozzlegoverned t u rb ine consumesl e ss steam pe r k i lowat t -hour fo r a l l power l eve l sup to th e maximum. Thenozzle governed tu rb inei s more e f f i c i en t as avar iab le load tu rb ine ;however, a base loadt u rb ine which seldom runsbelow f u l l power canobta in good ef f ic iencywith a much s implergover ning sys tem.

    - 25 -

  • 8/22/2019 principles turbine gen aux.pdf

    34/124

    1 3 4 . 0 0 - 1

    ASSIGNMENT

    1 . Expla in t h e e f f e c t s t h a t each o f t h e f o l l o w i n g have on t h ee f f i c i e n c y o f a t u r b i n e steam c y c l e :(a) e x c e s si v e m o is tu re i n t h e t u r b i n e .(b ) p r e s s u r e drop a c r o s s t h e i n l e t v a l v e s .(c) m o i s t u r e s e p a r a t o r .(d ) l i v e steam r e h e a t e r .(e) s u p e r h e a t i n g .( f ) r e g e n e r a t i v e f e e d h e a t in g .

    2. Draw and e x p l a i n a c o n d i t i o n l i n e f o r a t y p i c a l l a r g eCANDU t u r b i n e u n i t having one HP t u r b i n e and t h r e e LPt u r b i n e s .

    3. What a r e t h e problems i n v o l v e d i n b u i l d in g a g e n e r a t i n gs t a t i o n u t il i z i n g a Carnot c y c l e .4. Expla in why we u t i l i z e f e e d h e a t i n g i n o u r g e n e r a t i n gs t a t i o n s .5.

    lPTurbine

    LPTurbine

    LPTurbine

    The diagram above i s o f a f o u r c a s i n g t u r b i n e u n i t useda t a c o n v e n t i o n a l l y f i r e d , s u p e r h e a t e d steam g e n e r a t i n gs t a t i o n . Discuss p o s s i b l e r e a s o n s f o r :(a) s i n g l e flow high p r e s s u r e t u r b i n e .(b ) s i n g l e flow i n t er m e d i at e p r e s s u r e t u r b i n e .

    - 26 -

  • 8/22/2019 principles turbine gen aux.pdf

    35/124

    6.

    134.00-1

    (c) double flow low pressure t u rb ine .(d ) cu r t i s s Wheel as f i r s t two s tages o f HP tu rb ine .(e) React ion s tages in LP tu rb ine .

    The diagram above i s o f a four cas ing t u rb ine un i t useda t a nuclear fue l , sa tu ra ted steam genera t ing s t a t i on .Discuss poss ib l e reasons fo r :(a) double flow high pressure tu rb ine .(b ) double flow low pressure t u rb ine .(c) reac t ion s tages in LP tu rb ine .(d ) r ea ct io n s ta ge s in HP tu rb ine .

    R.O. Schuelke

    - 27 -

  • 8/22/2019 principles turbine gen aux.pdf

    36/124

    134.00-2

    Turbine, Generator & Auxi l i a r ies - Course 134TURBINE OPERATIONAL PERFORMANCE

    The purpose o f any steam power p l an t i s to conver t hea tenergy r e leased by th e fue l in to genera tor e l e c t r i c a l ou tpu t .Under th e bes t circumstances t h i s process i s r a the r i n e f f i c i en t .In a t yp i ca l CANDU genera t ing s t a t i on something on the o rdero f 70% o f the hea t generated in the r e ac to r i s l o s t throughthe product ion of waste hea t and through i n t e rna l e l e c t r i c a lpower requirements . The ab i l i t y to produce higher t empera turesuperheated s team, a llows c onv en ti on al foss i l fue l steam p lan t sto be somewha t more e f f i c i en t bu t even in these p lan t s onlyabout 40% o f th e hea t energy i s conver ted to e l e c t r i c a l outputfrom th e g en era to r.Because the conversion of hea t energy to e l e c t r i c a lenergy i s a t bes t r a the r i n e f f i c i en t and because the conversionp ro ce ss in vo lv es a grea t po t en t i a l fo r a degrading o f event h i s e f f i c i ency , steam p l an t opera tors have long been concernedwith asse ss ing the amount of hea t energy requi red to produce

    a ki lowa t t -hour o f e l e c t r i c a l output . The amount o f hea tenergy which must be produced in fue l burnup to produce aki lowat t -hour of e l e c t r i c a l outpu t i s known as the s t a t i onhea t ra te and the opera to r who saw an upward t rend in t h i ss t a t i on hea t ra te was concerned not only because o f wastedfue l do l l a rs but also because it ind ica ted something unpleasan twas happening to h is p lan t .

    Theore t i ca l ly the computat ion o f a s t a t i on hea t ra te fo ra nuc lear genera t ing s t a t i on i s s impler than fo r a convent iona lp l an t . The reason i s t h a t no convent iona l p lan t opera to r knowsas much informat ion about h is hea t source as a nuc lear opera to rdoes. For reac to r con t ro l and r egu la t ion the prec i se powerl eve l in the reac to r must be known a t a l l t imes . For a reac to ropera t ing a t a cons tant power l eve l the number of k i lo jou leso f hea t ene rgy p roduced in an hour i s simply

    KJ 6--h = (Thermal MW power) (3.6 x 10 KJ/MW-hr.) 2.1r .The s t a t i on hea t r a t e , SR, can, the re fo re be eas i lvcomputed by the fol lowing formula:

    SR = KJKW-hr output 2.2I f a nucl ea r g ene ra ti ng p l an t produces 1743.5 MW o f thermalpower in the reac to r and 543 ~ v of e l e c t r i c a l ou tpu t , then thes t a t i on hea t ra te can eas i ly be computed as :

    September 1976- 1

  • 8/22/2019 principles turbine gen aux.pdf

    37/124

    SR =

    2 -

    134.00-2

    (Thermal MW power) (3 .6 x 10 6 KJ/MW-hr)Klv ou tpu t= (1743.5 MW) (3.6 x 10 6 KJ/MW-hr)(543,000 KW)= 11559.1 KJ/KW-hr

    It does no t r equ i r e any pa r t i c u l a r i n s igh t to r e a l i z et h a t if t h i s va lue i n c r e a se s to 11 ,609 .1 KJ/KW-hr, o r by about.4%, th en th e p l an t i s ope ra t ing l e s s e f f i c i e n t l y , fue l i s be ingwas ted , and p l an t components a re b ein g tax ed unnece s sa r i l y .

    The problem comes in th e f an t a s t i c a l l y i nexpens ive c o s to f nuc l e a r f ue l . The 1976 cos t o f CANDU nuc lea r f ue l i s onlyabout $ .07 to $ .12 per 1 ,000 ,000 KJ. This should be comparedto $ .60 to $ .90 fo r coa l and $1.80 to $2.20 fo r o i l . Althought h ese va lues wi l l undoubted ly change r ap i d l y , th e r e l a t i v es t and ing shou ld remain n ea rly c on sta nt . Thus over a yea r , th ei n e f f i c i e ncy desc r ibed above would cos t th e o i l f i r ed s t a t i onabout $450,000 , th e coa l f i r ed s t a t i o n abou t $ 17 0,00 0 an dth e n n c ~ e a r s t a t i on anont . ~ 2 ~ , ~ ~ ~ . It s n o u ~ a cOllie a s nosu rp r i s e t h a t you can g e t a l o t more exc i t ed about a .4%inc rease in s t a t i on hea t r a t e a t a conven t i ona l gene ra t i ngs t a t i on than a t a nuc l e a r gene ra t ing s t a t i o n .

    The obvious economic conc lus ion o f t h i s i s t h a t basedon fue l co s t s you cannot j u s t i f y th e expense o f va s t sums o fmoney t r ack ing down i n e f f i c i e n c i e s in a nuc lea r gene ra t i ngs t a t i o n . On th e o the r hand t h e r e i s ano the r im p lic at io n to ani n c r e a s i ng hea t r a t e . I f the s t a t i on hea t r a t e i s i n c r e a s i ngt hen someth ing i s no t working as it shou ld . As th e e f f i c i e ncyo f th e p l a n t decreases due to a g radua l de t e r i o r a t i on o fcomponent c ap ab i l i t i e s , th e p robab i l i t y o f a fo rced outagei n c r e a s e s . In th e even t th e p l a n t must be shutdown fo r r equ i r edmain tenance , th e cos t o f a l t e rna t e energy sources to r ep laceth e megawat t hour s o f lo s t e le c t r ic a l ou tpu t can be s t agge r i ng .At th e t ime o f t h i s wri t ing th e e st im a te d co s t fo r a l t e r n a t eenergy fo r a Picke r ing s i ze n u cl ea r g e ne ra ti ng s t a t i on i s onth e o rde r o f $5,000 pe r hour . This f igure depends on th e cos td i f f e r e n t i a l between conven t i ona l and nuc l e a r f ue l bu t it isdoub t f u l it w i l l decrease ove r th e f ore se ea ble fu t u r e .

    The t yp i ca l nuc l e a r s t a t i o n i s thus faced wi th a delemma,th e horns o f which a re a very marg ina l r a t e o f re tu rn ondo l l a r s inves ted fo r improvement in p la n t e f f ic ie n cy and a t r u l yt remendous co s t fo r an unplanned p l an t outage . It should bereasonab ly obvious t h a t th e t r a deo f f in do l l a r s between t h esetw o extremes i s a major cha l l enge .

    The p r a c t i c e o f assess ing steam p l a n t ope r a t i ona l performanceas a method o f de te rmin ing th e cond i t ion o f the un i t i s fundamentalto le ng th in g th e t ime be tw een ma jo r o ve rh au ls w h ile a vo id in g afo rced outage . However t h e r e a re seve ra l f a c t o r s which compl ica teth e assessment o f th e cond i t ion o f an opera t i ng t u r b ine un i twhich dese rve some a t t e n t i o n .

  • 8/22/2019 principles turbine gen aux.pdf

    38/124

    134.00-2

    Accuracy an d Adequ acy o f I ns tr umenta tio nOnce the ope ra to r has de tec ted a t ren d o f in crea s in g s t a t i ohea t r a t e he i s faced w ith th e dual problems o f f i r s t de t e r mining p rec i s e ly where th e problem l i e s and second decid ing

    whether th e problem j u s t i f i e s th e expendi tu re o f down t ime andmaintenance do l la r s to co r re c t it. The ab i l i t y to t r a ce ade t e r i o r a t i ng hea t r a t e to i t s ul t ima te cause requ i re s th eab i l i t y to determine accu ra te ly th e a ctu al cond i t ions a tvar ious loca t ions . This i s of t en d i f f i c u l t and occas iona l lyimpo ss ib le u si ng ex i s t i ng i n s t rumen t a t i on . For example, toassess the con dit ion o f th e t u rb ine un i t it i s des i rab leto determine th e hea t energy de l ive red to th e un i t pe rk il ow a tt -h o ur o f e l e c t r i c a l ou tpu t . The Turbine Heat Rate(THR) can be determined by th e formula:

    MI (h - h f ) + M2 (h 2 - hI)THR ,,; s w 2 3KWwhere: MI = s team flow through th e s top valve (KJ/hr)h = s team en tha lpy a t th e s top valve (KJ/Kg)h S = en tha lpy o f f i n a l feedwate r (KJ/Kg)M ~ w = s team flow through r ehea t e r (Kg/hr)h 2 = s team en tha lpy from r ehea t e r (KJ/Kg)hI = s team en tha lpy to reh ea te r (KJ/Kg)= t o t a l e l e c t r i c a l outpu t in KW

    In a na ly zin g t h i s t h eo r et ic a ll y r at he r s imple formula itbecomes obvious t h a t th e a cc ur ate d ete rm in atio n o f t u rb inehea t r a t e us ing t h i s formula requ i re s th e s team flow a ttwo poin t s as wel l as four s team e nt ha lp ie s t hr ee o f whichrequ i re s team qua l i t y dete rmina t ions . Before applying t h i sformula these quan t i t i e s must be known with s u f f i c i e n t accuracyto y ie ld an accura te t u rb ine hea t r a t e . I f th e s team flowscan only be determined wi th in 5%, then th e p robab i l i t y o fco r r ec t l y de tec t ing changing un i t e f f i c i ency i s r a t he rdoub t fu l . While n e ce ss ar y p ar ame te rs can of t en be es t imatedo r der ived from othe r parameters , t h i s i s a t be s t of t end i f f i c u l t and the i n s t a l l a t i on o f permanent o r por t ab lea c cu ra te i ns tr ument at io n may wel l be th e only way to assessun i t performance p rope r l y .R e p ro d uc ib il ity o f I n i t i a l Condi t ions

    Although a va r i e ty o f c on clu sio ns can be drawn from anin cr ea sin g n et s t a t i on hea t r a t e , one has to be ca r e fu l not tobe chas ing a wi l l -o ' - t h e -w i sp . A l a rge number o f fac to rs cane f f e c t th e n e t s t a t i on hea t r a t e which have little o r noth ingto do with a de t e r i o r a t i on o f the tu rb ine o r s team/feedwatersystem performance . Whenever a hea t r a t e i s conducted it i sabsolute ly e s sen t i a l t h a t uniform initial cond i t ions beu t i l i z e d on which to base compar isons . Normal va r i a t i on s incondenser vacuum, makeup water f low, s team pre ssure , s teamgene ra to r le ve l, a d ju ste r ro d motio n, xenon inven to rv ,

    -

  • 8/22/2019 principles turbine gen aux.pdf

    39/124

    4 -

    .LJ"':I:.VV-L.

    genera tor hydrogen pur i ty and hea t t ranspor t temperature can r e su l tin hours of searching fo r nonex i s t en t problems.The method o f turb ine un i t ana lys i s which can y ie ld th emost product ive r e su l t s i s based on i n i t i a l condi t ions which arereasonably easy to reproduce. Ful l power with the steam andfeedwater system in a "normal l ineup" wi l l probably r e su l t inthe fewest induced e r ro r s . In a dd it io n th ese c on ditio ns should be

    h eld c on sta nt fo r some t ime i n t e rva l - say f ive o r ten minutes- p rio r to t ak ing th e hea t ra t e da ta .The fol lowing i s a pa r t i a l list o f condi t ions which shouldbe met p r i o r to conducting a hea t ra te dete rmina t ion .(1 ) genera tor producing approximatl ly 100% of r a ted grossoutput(2 ) steam flow from steam genera tors equa l(3 ) feed flow to steam genera tors equal(4 ) xenon a t 100% ~ q u i l i b r i u m(5) steam genera tor l eve l s cons tant(6) condenser vacuum a t some re fe rence l eve l(7) reac to r r e ac t iv i t y a t equ il ib r ium condi ti on(8 ) genera tor hydrogen puri ty a t some re fe rence l eve l(9) hea t t ranspor t temperature cons tant

    (10) steam p re ss ur e c on st an t(11) no steam genera tor blowdown in progress(12) no steam flow to bulk steam p lan t or through r e j e c tsystemThe precise i n i t i a l condi t ions and acceptable range of parameterEshould be spec i f i ed fo r a ne t s t a t i on hea t r a t e . In add i t ion , ifthese condi t ions cannot be met the qua l i ty of the hea t ra te w il l bedowngraded.

    Frequency of Heat Rate Determinat ionA deta i led determinat ion of hea t ra te s on the var ious comp-onents of a generat ing s ta t ion i s the most accura te method ofmeasuring turb ine un i t performance and a ss es sin g th e properopera t ion of the turb ine and i t s aux i l i a r i e s . However, t h i s can beexpensive in both t ime and manpower. For th i s reason it i s

  • 8/22/2019 principles turbine gen aux.pdf

    40/124

    134 .00 -2

    genera l ly considered good prac t i ce to ca rry ou t such t e s t sonly once per year and during pre - and post -overhaul t e s t s .On the o ther hand, when hea t ra te s are computed in f requen t lyit i s l ik e ly th at comparabi l i ty of r e su l t s su f f e r s . Whatprobably represents the bes t compromise i s f requent ca l cu la l ions of ne t s t a t i on hea t ra te using equat ion 3 .1 toi nsu re rep roduc ib i l i ty o f r e su l t s and to de tec t any majorchanges , and to conduct a de ta i l ed hea t r a te a t annuali n t e rva l s . The ne t s t a t i on hea t ra te conducted a t th e t imeo f the de ta i l ed ana lys i s cou ld then be used to check reproduc i b i l i t y .Turbine Heat Rate

    Once a change has occurred in s t a t i on hea t r a t e , itbecomes necessary to make a dete rmina t ion o f the impl i ca t ionof the change. General ly t h i s impl ica t ion can f a l l i n to th efo l lowing four ca tegor ies :

    (a) i n s ign i f i c an t(b) co r rec t th e problem withou t shu t t ing down thetu rb ine(c) co r rec t th e problem inc luding shu t t ing down theturb ine(d) cor rec t th e problem dur ing the next scheduledturb ine outage .

    The c l a s s i f i ca t i on in to one of these categor ies can log ica l lyoccur on ly by knowing what i s caus ing th e change in hea t r a t e .Since s t a t i on hea t ra te i s ef fec ted by a wide var i e ty o fth ings from th e reac to r to the g en era to r, th e problem becomesone o f loca l iza t ion of cause .Turbine hea t ra te i s def ined as the number o f Kilojoulespe r hour del ivered to the turb ine un i t pe r Kilowat t ofgenera tor e l e c t r i c a l outpu t . As such it i s sen s i t i v e onlyto changes occur ing in the s teamj feedwater system and i sindependant o f problems associa ted with the r e ac to r , hea tt ranspor t system and steam gene ra to rs .

    THR =Turbine hea t

    MI (h sra te i s computed from equat ion 2 .3 .- h fw ) + M2 (h 2 - hI)

    KW

    -

  • 8/22/2019 principles turbine gen aux.pdf

    41/124

  • 8/22/2019 principles turbine gen aux.pdf

    42/124

    134.00-2

    where: = steam flow through th e s top va lve (Kg/hr)= steam entha lpy a t th e s top valve (KJ/Kg)= enthalpy o f f i na l feedwater (KJ/Kg)= steam flow through r ehea te r (Kg/hr)= steam enthalpy from r ehea t e r (KJ/Kg)= steam enthalpy to reh ea te r (KJ/Kg)= t o t a l e l e c t r i c a l output in KWRefer r ing to th e diagram 2 .1 you wi l l not ice t h a t TurbineHeat Rate would be computed as :

    THR = (108 0) (3600) (2793. 39 - 72 6 2 3 ) + (8 8 352) (3600) (2793. 39 - 11790699=

    =

    8.0645 X 10 9 + .5373 X 10 97906998.6018 x 10 9790699

    = 10878.7 KJ/KW-hrIn l i eu of equat ion 2.3 tu rb ine hea t ra te can be computed fromthe fol lowing:

    2.4KW

    where: M3hM ~hM ~ wh rhdKW

    = stearn flow from stearn genera tor (Kg/hr)= stearn entha lpy from steam genera tor (KJ/Kg)= feedwater flow (Kg/hr)= entha lpy of f i na l feedwater (KJ/kg)= r eh ea te r d ra in flow (Kg/hr)= enthalpy of r ehea t e r dra ins (KJ/Kg)= t o t a l e l ec r i ca l output in KW.

    The choice ' o f equat ion 2.3 o r 2.4 wi l l depend l a rge ly on theaccuracy to which the parameters used in the equa t ions canbe determined. In e i t he r case , the accu ra te determinat ion o fflow r a t e s i s probably th e most l im i tin g f ac to r. From anopera t iona l s t andpo in t equat ion 2.4 i s probably the mostconvenient and can be fu r the r s impl i f i ed by making someassumptions .

    2.5HR =

    Since l i qu id flow can genera l ly be determined moreaccurate ly than vapor flow it i s of ten eas ie r to approximateM3 as th e sum of M4 and Ms. In add i t ion s ince the entha lpyo f sa tu ra ted steam a t steam gene ra to r pres su re , it can of tenbe t rea ted as a cons tan t Equat ion 2.4 , t he re fo re , becomes:

    M4(hs - h fw ) + Ms(h s - h rhd )

    where: h sKl']

    = steam enthalpy of sa tu ra ted steam a t th edesign steam genera tor p re ssure . (KJ/Kg).-

  • 8/22/2019 principles turbine gen aux.pdf

    43/124

    8 -

    134.00-2

    Since th e major i ty o f th e hea t energy l os s (roughly 90%)occurs in th e s tearn /feedwater system, a change in tu rb ine hea tra te i s r e f l e c t ed v i r tua l ly one to one in s t a t i on hea t r a t e .This means if tu rb in e h ea t r a t e inc reases by;;5% we wouldexpect an inc rease o f about .5% in s ta t ion hea t r a t e .

    Once th e cause fo r inc reas ing s t a t i on hea t r a t e has beent racked to th e s team/feedwater system, th e problem i s "simply"one o f t racking down the pa r t i cu l a r offend ing component.Condenser BackpressureI f the condenser back pressure inc reases , the tu rb in eoutpu t wi l l decrease and tuvb ine hea t ra te w il l inc rease .

    Figure 2.2 shows t h i s e f f e c t . The r e su l t has such a g rea timpact on tu rb in e h ea t r a t e , t h a t two otherwise comparabletu rb in e h ea t r a t e determinat ions with d i f fe r ing condenservacuums wi l l y ie ld widely d i f f e r en t r e su l t s .At a cons tan t power l eve l an i nc rea se in condenser backpre ssure can be caused by only four th ings :(a) inc rease in the average t empera tu re of the condensercool ing water in th e tubes

    (b) f looding of th e condenser tube surfaces due to highhotwel l l eve l(c) a i r leakage in to the s he l l of the condenser"(d ) a decrease in th e ove r a l l hea t t ra n s fe r c o ef fi cie n to f th e tubes .The cool ing water temperature wi l l vary considerablybetween summer and winte r . Under normal cond i t ions , however,the t empera tu re r i se across the condenser i s reasonably cons t a n t . This can be seen from th e formula e xp re ss in g th e hea t

    r e jec ted to th e condenser c oo lin g wa te r:Q = m Cp liT 2 .5where: Q = th e h ea t re je cte d to th e ccw (KJ/sec)m = ccw f low (Kg/sec)Cp = th e co ns tan t pressure spec i f i c hea t capac i tyof water (KJ/KgOC)liT = th e temperature r i se in ccw across th e con-denser (OC)

  • 8/22/2019 principles turbine gen aux.pdf

    44/124

    2 4 6 8 10 12 14 16CWo INLET TEMPERATURE IN C

    6.51.9

    G < O ' " , ~ 1.8Ii'.

  • 8/22/2019 principles turbine gen aux.pdf

    45/124

    134.00-2

    I f th e r a t e a t which hea t i s re j ec t ed and th e cew flow r a t eremain cons tan t , th e ccw ~ T wi l l remain cons t an t . At a cons t a n t gene ra to r power, th e r a t e a t which hea t i s r e j ec t ed toth e ccw i s reasonab ly cons tan t fo r smal l changes in condense rvacuum. This impl ies t h a t if vacuum i s decreas ing and condense r ~ T i s r emain ing cons t an t , then th e cause i s poss ib lyan i n c rease in th e t empera tu re o f wate r e nte rin g th e ccwsystem from th e l ake . This can be eas i l y checked by moni tor ingccw i n l e t t empera tu re .

    A change in l ake wa te r tempe ra tu re usua l ly occurs due toseasonal o r d iu rna l f luc tua t ions . Occas ional ly , however , ahigh wind has produced a su f f i c i e n t cu r r en t to r e t u rn th e wate ra t th e condense r ou t l e t back in to th e ccw in take with ar e su l t i ng ra pid in cr ea se in ccw t empera tu re .

    Other fac to rs which i n c rease th e average t empera tu re o fth e condenser cool ing wate r in the t ubes a re u su a lly a ss o ci ate dwith a decrease in ccw flow from such causes as cav i t a t i on o ra i r bind ing o f the ccw pumps, marine growth in th e condensert ubes , sand in th e condense r t ubes , b lo ck age of th e screenso r t ubes with deb r i s , and a i r bind ing o f the t ubes o r wate rboxes.

    Returning to equat ion 2.5 you wi l l not i ce t h a t if th e ccwf low r a t e decreases whi le a n ea rly c on sta nt ra t e o f h ea tr e j ec t i on i s mainta ined then th e ccw ~ T wi l l i nc rea se .~oQ + t= m Cp ~ T

    The impl ica t ion i s t h a t if vacuum i s decreas ing and ccw ~ T i sincreas ing then t he re i s a decrease in ccw f low. A dec reasein ccw flow can be pa r t i cu l a r l y t roublesome if it r e su l t s ina pa r t i a l blockage o f some tubes . This wi l l in cre ase th eccw flow th rough th e remaining c l e a r tubes wi th pos s ib l e tubecav i t a t i on and f a i l u re r e su l t i ng .A ir in leakage to th e condenser wi l l lower th e condenservacuum ( increase t he b a ck p re ss ur e) . However, s ince th e increasein backpressure i s a t t r i bu t ab l e to a i r pressure as opposed tosteam pre ssure , th e t empera tu re of th e condensing steam(condensate tempera ture) wi l l not r i s e app rec i ab ly as thebackpressure i nc rea se s .A good measure o f th e t i gh t ne s s o f th e condense r andas soc i a t ed subatmospher ic sys tems i s th e disso lved O2 l e ve l inth e condensa te leav ing the ho tw ell . I f t h i s l eve l i s r i s i ngthen rega rd le s s of what i s happening to condense r vacuum a i r i s

    ge t t i ng i n to th e sys tem. This add i t i ona l a i r ingress can occure i t h e r from increased l eaks o r decreased a i r ex t rac t ioncapab i l i t y . In e i t h e r case th e cause of the problem must be10 -

  • 8/22/2019 principles turbine gen aux.pdf

    46/124

    134.00-2

    found and cor rec t ed no t only to e l imina te th e i n e f f i c i enc i e scaused by increased backpressure bu t because th e long terme f f e c t s of g en era l and loca l i zed corros ion on the condensate ,feedwater and steam genera tor wi l l eventua l ly produce s ign i -f i c an t problems.I f th e ove ra l l hea t t r ans f e r coe f f i c i en t o f the tubesdecreases due to cor ros ion , sca lin g o r fou l ing of the tubesu r faces , th e e f f e c t i s qu i t e s im ila r to a i r ing res s . Condenser Cooling Water ~ T remains cons tan t and backpressureinc reases . However, s in ce the in crea se in backpressure i sa t t r i bu t ab l e to steam pressure as opposed to a i r pres su re , th econdensate temperature wi l l r i se corresponding to th e sa tu ra t iontemperature fo r the condenser backpressure . In add i t ion , thecondensate dissolved O2 wi l l not change if th e cause of th evacuum decrease i s not a i r .The below t ab l e summarizes the type of parameter changesfo r var ious condi t ions a f fec t ing vacuum:

    CAUSES OF POOR PERFORMANCE OF CONDENSER

    SATURATIONTEMPERATURE

    CCW CORRESPOND- CONDEN-BACK- ING TO BACK- SATE

    INLET OUTLET toT PRESSURE PRESSURE TEMP.SITUATION C C C KPa(a) C C

    NormalOperation 15 .0 25.0 10.0 4.50 31. 0 31.0Decrease inccw Flow 15.0 30.0 15.0 5.17 33.5 33.5Increase inccw I n l e tTemp. 20.0 30.0 10.0 5 .94 36.0 36.0Air Leak-age 15.0 25.0 10.0 6.27 37.0 31. 5Tube Sur-face Foul-ing 15.0 25.0 10.0 1 5.17 3.3 .5 33.5

    Feedwater Heat ing SystemThe feedwater hea t ing system can be the source o f as ign i f i c an t inc rease in turb ine hea t r a t e . Turbine hea t r a t ei s pa r t i cu l a r ly s en si t iv e to f i n a l feedwater temperature and

    a 3C change in f i n a l feedwater temperature can a f f e c tturb ine hea t ra te by as much as .2%. General ly th e performance

    - 1

  • 8/22/2019 principles turbine gen aux.pdf

    47/124

    134.00-2

    o f th e feedheat ing system can be m onitored by watching:(a) the f i na l temperature o f feedwater leaving eachfeedhea te r , and(b ) the t e rmina l t empera tu re di f fe rence between ex t rac t ion

    steam and feedwater le av in g th e hea t e r .I f these parameters remain c lose to those o f the design hea tbalance then t he re cannot be too much wrong with th e sys tem.

    When one feedhea te r does not r a i s e the feedwater a t th eou t l e t to the design value , then th e nex t feedhea te r wi l lrequ i re more ex t rac t ion steam if t h i s t empera tu re lo s s i s tobe rega ined . Because t h i s a d di ti on a l e x tr ac ti on steam i st aken from a poin t nea re r the steam genera tor , energy whichi s normally u t i l i z ed in th e tu rb in e i s bled o ff as ex t rac t ions team. For a cons tan t load outpu t under these condi t ions ,add i t iona l steam to th e high pressure t u rb ine i s requ i redand t u rb ine hea t ra te i nc rea se s .

    The fo l lowing problems a re l i ke ly to encompass them ajo ri ty o f feedheat ing system de f i c i enc i e s :(al Long term contaminat ion o f f ee dh ea tin g su r faces .This can occur due to o i l ingress from thetu rb ine o r bu ildup o f c o rr os io n p ro duc ts .(b ) Extrac t ion steam valves no t fu l ly open.(c) In su f f i c i en t ven t ing of th e fe ed he ate r s he l l . Thiscan be caused by fu l ly o r par t i a l l y shu t valves inth e ven t l i ne s .(d ) Increased l eve l in th e fe ed he ate r she l l . This f loodsou t some o f the tubes and reduces the hea t t r an s fe rarea .(e ) Tube blockage due to fo re ign mate r i a l in th e feed-l i ne s .( f l Changes in e xtra ct io n steam p ressu re o r qua l i ty dueto problems in th e tu rb ines . I f th e en tha lpy o f theex t r ac t i on steam decreases then th e flow o f ex t r ac t -

    ion steam wi l l i nc rea se .By ca r e fu l l y analyz ing th e feedwater 6T and 6p, th e t e rmina lt empera tu re d i f fe rence , th e fe ed he ate r she l l pre ssure , andth e she l l dra in temperature and comparing these parameterswith design values , the cause o f th e d ef ic ie nc y in feedhea te rperformance can be l o ca l i z ed .

    12 -

  • 8/22/2019 principles turbine gen aux.pdf

    48/124

    134.00-2

    TUrb i r l ' e In te rna l Ef:fi:ciencyThe p rim ary c au se s o f a reduc t ion in i n t e rna l e f f i c i encya re :(a) chemical depos i t ion on tu rb ine blades ,(b) i nc rea se in blade t i p c learances due to e ros ion o rp hy sic al c on ta ct between f ixed and moving pa r t s ,(c) changes in blade su r face .Because o f wet steam cond i t ions in th e high pre ssuretu rb ine , low steam g en er ato r p re ss u re (and, t h e re fo re ,t empera tu re) , and th e s h i f t to vo l a t i l e steam gene ra to r

    chemis t ry , chemical depos i t ion on t u rb ine blad ing i s no tf requent ly a cause of lo ss o f tu rb in e e f f i c i ency on nuc learsteam t u rb ine s . There have been cases of chemical corros ionof blad ing due to s team genera tor car ryover in p lan t s us ingso l i d steam genera tor chemistry and, t h e r e fo r e , th e e f f e c t so f p oss ib le chemical a t tack cannot be complete ly ignored .

    Tip rubbing can b e m in im ize d by ca r e fu l adherence torun-up and load ing procedures and avoidance o f cond i t ionsl i ke ly to produce excess ive d i f f e r en t i a l ax i a l and r ad i a lexpansion between th e cas ing and ro t o r . Contro l o f excess iveblade eros ion due to wet steam o r s tand ing water cond i t ionsi s l a rge ly a des ign problem r e l a t ed to adequate mois tu reremoval from each s tage . However, e r ro r s in des ign suchas improper s iz ing o f s tage dra ins and inadequate ab i l i t y toremove mois tu re from moving blades can cause s ign i f i c an tdecreases in e ff ic ie nc y due to e ros ion .with th e wet steam cond i t ions which ex i s t in a nuc lea rs team t u rb ine , th e b lades wi l l gradua l ly be eroded due to

    mois tu re impengement. This damage i s usua l ly most severe inth e high pressure t u rb ine and l a t t e r s t ages of th e low pre ssuretu rb ine and usua l ly f i r s t a f f ec t s the t r a i l i ng edge of th e f r on ts ide of f ixed blades and th e l ead ing edge o f the back s ideo f moving blades . The r e su l t o f t h i s eros ion i s t h a t th epro f i l e and su r face o f the blade wi l l change w ith tim e. I fth e wear becomes ex tens ive , th e b lades may change to th eex t en t t ha t s tage e f f i c i ency i s reduced. It i s very d i f f i c u l tto de t ec t such blade wear withou t shu t t ing down th e tu rb in eand examining it i n t e rna l ly . However, ca r e fu l observa t ion o fth e pre ssure drops across a s tage o r group o f s tages maymake th e change apparen t .

    It i s more l i ke ly in p rac t i c e t h a t if th e blade wear i ssuch t ha t t h e r e i s a no ti ce ab le in c re as e in steam consumption ,it wi l l show up in th e form o f excess ive v ib ra t ion due to theou t -o f -ba lance of the blade wheels .

    - 1

  • 8/22/2019 principles turbine gen aux.pdf

    49/124

    134.00-2

    Steam Genera to r - Water ChemistryRemoval o f impur i t i e s in th e steam genera to rs can havean e f f e c t on s t a t i on hea t ra te because hot water l o s t throughblowdown must be rep laced through cold makeup water . I fthe amount o f blowdown i s s ign i f i c an t , t he re may be a no t ice ab le e f f e c t on s t a t i on hea t r a t e , however , th is e ff e c t i s

    fa r ou t weighed by th e consequences o f running with ou t -o f spec i f i c a t i on steam genera to r chemis t ry .The long term e f f e c t on hea t r a t e through tube fou l ing ,t u rb ine blade depos i t s o r d era tin g fa r exceeds the advantagegained by minimizing blowdown. Each ou t -o f - spec i f i c a t i oncond i t ion i s s i gn i f i c an t and the ca use s ho uld be rap id lyc orre cted to av oid b oth th e sho r t and long term e f f e c t s .

    Gland S te am Consump tionProblems in th e gland s ea l system are usua l ly not

    s u f f i c i e n t to cause a no tic ea b le i nc re as e in t u rb ine hea tr a t e . Since only about.08% o f the steam flow from the steamgenera to rs i s used to se a l th e tu rb in e glands , the e f f e c t onhea t ra te i s minimal. However, steam flow to th e glands i sa good i nd i ca to r o f the bas i c cond i t ion o f the gland and fo rt h i s reason can be valuab le in diagnos i s o f gland problems.Dete rio ra tio n o f tu rb in e la by rin th glands usua l ly occursfrom thermal bending o f the sha f t o r r ad i a l rubbing in th eglands dur ing s t a r t up . These problems can cause s i gn i f i c an tvib ra t ions on s t a r tup bu t tend to become s e l f l imi t ing as th eun i t speed i s increased above th e c r i t i c a l speed and the un i twarms up. This i s pa r t i cu l a r ly t rue o f r ad i a l rubbing andas a r e s u l t gland de te r io ra t ion can occur withou t th e ope ra to rbeing fu l ly aware o f th e problem.The problems can be l a rge ly e l imina ted by:(a) co r r ec t ope ra to r i n t e rp re t a t i on o f v ib ra t ion ons t a r t up ,(b ) co r r ec t s team to ro to r and steam to cas ing d i f f e r en t i a l t empera tu res ,(c) avoidance o f low bear ing o i l temperature ,(d) avoidance o f prolonged low speed ope ra t ion , and(e) proper a l ignment o f r o to r and cas ing during overhau l .Providing th e t u rb ine un i t i s reasonably f ree o f a i rl e aks , th e l eve l o f dissolved oxygen in th e condensate , th el eng th o f t ime to draw a vacuum, and th e length o f t ime to

    lose vacuum when th e a i r ex t rac t ion system i s shutdown a regood measures o f th e cond i t ion o f the gland.14 -

  • 8/22/2019 principles turbine gen aux.pdf

    50/124

    134.00-2

    Derat ingDerat ing o f a g e n e r a t i n g s t a t i o n i s t h e process o fr e s t r i c t i n g g e n e r a t o r o u t p u t below f u l l power because of someabnormali ty i n t h e system. Because t h e g e n e r at i n g s t a t i o n i s

    forced t o run a t l e s s than i t s design c a p a b i l i t y , d e r a t i n gcan have a s i g n i f ic a n t e f fe c t on s t a t i o n h e a t r a t e .The u l t i m a t e d e r a t i n g occurs when t h e h e a t source systemi s no longer capable o f producing s a f e l y t h e number o f k i l o -j o u l e s per hour r e q ui r e d t o produce t h e g e n e r at o r design o u t p u t .I n t h e case o f a r e a c t o r t h e r e i s an a b s o l u t e upper l i m i t t opower o u t p u t . Although t h e g e n e r a t i n g s t a t i o n i s designedt o allow some i n c r e a s e i n s t a t i o n h e a t r a t e b e f o r e reachingt h i s upper l i m i t , a d e c r e a s i n g s t a t i o n e f f i c i e n c y w i l le v e n t u a l l y reach the p o i n t where the r e a c t o r p l a n t reachesi t s l i m i t b e f o r e t h e g e n e r a to r g e t s t o 100% o f i t s des igno u t p u t .When t h i s occurs t h e r e a r e only two p o s s i b l e a l t e r n a t i v e s :(a) i n c r e a s e t h e design c a p a b i l i t y of t h e r e a c t o r , andthereby allow the r e a c t o r t o produce more powerby lowering the s a f e t y margin. T h i s , of c o u r s e ,would r eq u ir e c o n s u lt at io n with t h e r e a c t o r d e s i g n e rand with t h e AECB t o o b t a i n consensus t h a t t h e r e a c t o rp l a n t was overdesigned i n t h e f i r s t p l a c e .(b ) f i n d and c o r r e c t t h e cause o f t h e i n c r e a s i n g s t a t i o nh e a t r a t e so t h a t t h e r e a c t o r can once more produce

    design g e n e r a to r o u t p u t w i t h in design r e a c t o rs p e c i f i c a t i o n s .Dera t ings o f a more temporary n a t u r e may occur when t h eg e n e r a t i n g s t a t i o n cannot be s a f e l y o p e r a t e d a t 100% o f design

    g e n e r a t or o u tp u t . While the problems i n t h e c o n v e n t i o n a l endo f a n u c l e a r s t a t i o n which may r e s u l t i n d e r a ti n g a re almoste n d l e s s , t h e fol lowing have been o c c a s i o n a l sources o f d e r a t i n g s .Condenser C i r c u l a t i n g Water ~ T

    To l i m i t a l g a e growth i n the v i c i n i t y o f t h e o u t f l o w ,environmental a u t h o r i t i e s have imposed a l i m i t a t i o n o f 10Con t h e temperature d i f f e r e n t i a l of t h e CCW a c r o s s t h e condenser .I n a b i l i t y t o meet t h i s l i m i t a t f u l l power n e c e s s i t a t e s ad e r a t i n g u n t i l t h e temperature r i s e i s w it h i n t h e l i m i t . I nt h e case o f some o l d e r s t a t i o n s , t h e l i m i t was imposed a f t e rt h e s t a t i o n was b u i l t and has r e su lt e d i n what amounts t o p e r -manent d e r a t i n g .

    - 1

  • 8/22/2019 principles turbine gen aux.pdf

    51/124

    134.00-2

    Genera tor Hydrogen Pres su reLoss o f hydrogen from th e g en er ato r r e su lt s in a decreasein e ffe ct iv