24
Principles of NMR spectroscopy Atomic nuclei have spin angular momentum (spin) characterized by spin quantum number ℏ 1 1 2 gyromagnetic ratio Nuclei with spin have magnetic dipole moment: β„Ž 2 1.055 βˆ— 10 βˆ’34 Planck constant β€’ Odd mass number: half-integer spins β€’ Even mass number, even atomic number: spin=0 β€’ Even mass number, odd atomic number: integer spin Nuclei with spin > Β½ also have electric quadrupole moment: faster relaxation, broad signals, not so good for NMR

Principles of NMR spectroscopy

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Principles of NMR spectroscopy

Principles of NMR spectroscopy Atomic nuclei have spin angular momentum (spin) 𝑰𝑰 characterized by spin quantum number 𝐼𝐼

𝑰𝑰 = ℏ [𝐼𝐼 𝐼𝐼 + 1 ]12

gyromagnetic ratio

Nuclei with spin have magnetic dipole moment: 𝝁𝝁 = 𝛾𝛾 𝑰𝑰

=β„Ž

2πœ‹πœ‹= 1.055 βˆ— 10βˆ’34 𝐽𝐽𝐽𝐽 Planck constant

β€’ Odd mass number: half-integer spins β€’ Even mass number, even atomic number: spin=0 β€’ Even mass number, odd atomic number: integer spin

Nuclei with spin > Β½ also have electric quadrupole moment: faster relaxation, broad signals, not so good for NMR

Page 2: Principles of NMR spectroscopy

Cavanagh, J., Fairbrother, W.J., Palmer, A.G.III, Rance, M., Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice, 2nd edition, 2007, Academic Press

Page 3: Principles of NMR spectroscopy

x

y

z

Nucleus with spin ½ in external magnetic field 𝐡𝐡0 along z

𝐡𝐡0 Two possible states: 𝐼𝐼𝑧𝑧 = ℏ π‘šπ‘š 𝐼𝐼𝑧𝑧 =

ℏ2

magnetic quantum number π‘šπ‘š = βˆ’πΌπΌ,βˆ’πΌπΌ + 1, … , 𝐼𝐼 for 𝐼𝐼 = 1

2:π‘šπ‘š = βˆ’1

2, + 1

2

𝐼𝐼𝑧𝑧 = βˆ’β„2

𝐸𝐸 = βˆ’ππ βˆ™ 𝑩𝑩 = βˆ’πππ’›π’›π‘©π‘© = βˆ’π›Ύπ›Ύ β„π‘šπ‘š 𝐡𝐡

𝝁𝝁 = 𝛾𝛾 𝑰𝑰 πœ‡πœ‡π‘§π‘§ = 𝛾𝛾 𝐼𝐼𝑧𝑧 = 𝛾𝛾 β„π‘šπ‘š

Energy of a magnetic dipole in external magnetic field

Page 4: Principles of NMR spectroscopy

Energy of a magnetic dipole in external magnetic field

𝐡𝐡

𝐸𝐸 = βˆ’ππ βˆ™ 𝑩𝑩 = βˆ’πœ‡πœ‡π‘§π‘§π΅π΅ = βˆ’π›Ύπ›Ύ ℏ π‘šπ‘š 𝐡𝐡

𝝁𝝁 = 𝛾𝛾 𝑰𝑰 πœ‡πœ‡π‘§π‘§ = 𝛾𝛾 𝐼𝐼𝑧𝑧 = 𝛾𝛾 β„π‘šπ‘š

𝐸𝐸 π‘šπ‘š = - Β½ 𝐸𝐸 = + 𝛾𝛾ℏ𝛾𝛾

2 (𝛾𝛾 > 0)

π‘šπ‘š = + Β½ 𝐸𝐸 = βˆ’π›Ύπ›Ύβ„π›Ύπ›Ύ2

βˆ†πΈπΈ βˆ†πΈπΈ = 𝛾𝛾 ℏ βˆ†π‘šπ‘š 𝐡𝐡 = 𝛾𝛾 ℏ 𝐡𝐡

Page 5: Principles of NMR spectroscopy

βˆ†πΈπΈ = 𝛾𝛾 ℏ βˆ†π‘šπ‘š 𝐡𝐡 = 𝛾𝛾 ℏ 𝐡𝐡

𝐸𝐸 = β„Ž 𝜈𝜈 =β„Ž2πœ‹πœ‹

2πœ‹πœ‹πœˆπœˆ = ℏ πœ”πœ”

frequency in s-1=Hz πœ”πœ” = 2πœ‹πœ‹πœˆπœˆ angular velocity (angular frequency) in radians/s

Energy difference between spin states

Energy of a photon

ℏ πœ”πœ” = 𝛾𝛾 ℏ 𝐡𝐡

𝜈𝜈 =πœ”πœ”2πœ‹πœ‹

=𝛾𝛾𝐡𝐡2πœ‹πœ‹

πœ”πœ” = 𝛾𝛾𝐡𝐡 Larmor frequency

βˆ†πΈπΈ (and πœ”πœ”) can be tuned as a function of 𝐡𝐡 βˆ†πΈπΈ is rather small β†’ πœ”πœ” is radiofrequency

Page 6: Principles of NMR spectroscopy

Populations (Boltzmann distribution) of nuclei with π‘šπ‘š = Β± 12

𝜈𝜈(1H)=500 MHz: 𝐡𝐡 = 2πœ‹πœ‹πœ‹πœ‹π›Ύπ›Ύ

= (2πœ‹πœ‹)(500βˆ—106π‘ π‘ βˆ’1)2.6752βˆ—108π‘‡π‘‡βˆ’1π‘ π‘ βˆ’1

= 11.74 𝑇𝑇 Earth magnetic field ~ 30-60 ΞΌT

π‘π‘π‘šπ‘šπ‘π‘

=π‘’π‘’βˆ’

πΈπΈπ‘šπ‘šπ‘˜π‘˜π΅π΅π‘‡π‘‡

βˆ‘ π‘’π‘’βˆ’πΈπΈπ‘šπ‘šπ‘˜π‘˜π΅π΅π‘‡π‘‡π‘šπ‘š

=π‘’π‘’π›Ύπ›Ύβ„π‘šπ‘šπ›Ύπ›Ύπ‘˜π‘˜π΅π΅π‘‡π‘‡

βˆ‘ π‘’π‘’π›Ύπ›Ύβ„π‘šπ‘šπ›Ύπ›Ύπ‘˜π‘˜π΅π΅π‘‡π‘‡π‘šπ‘š

β‰ˆ1 + π›Ύπ›Ύβ„π‘šπ‘šπ΅π΅

π‘˜π‘˜π›Ύπ›Ύπ‘‡π‘‡

βˆ‘ 1 + π›Ύπ›Ύβ„π‘šπ‘šπ΅π΅π‘˜π‘˜π›Ύπ›Ύπ‘‡π‘‡π‘šπ‘š

=1 + π›Ύπ›Ύβ„π‘šπ‘šπ΅π΅

π‘˜π‘˜π›Ύπ›Ύπ‘‡π‘‡2

=12

±𝛾𝛾ℏ𝐡𝐡

4π‘˜π‘˜π›Ύπ›Ύπ‘‡π‘‡

Boltzmann constant π‘˜π‘˜π›Ύπ›Ύ = 1.381 βˆ— 10βˆ’23π½π½πΎπΎβˆ’1

~2 βˆ— 10βˆ’5 for 𝜈𝜈(1H)=500 MHz and 25℃

Taylor expansion

Page 7: Principles of NMR spectroscopy

1H at 500 MHz and 25℃

π‘šπ‘š = - Β½: populationβ‰ˆ 0.49998 (49.998 %)

π‘šπ‘š = Β½: populationβ‰ˆ 0.50002 (50.002 %)

β€’ Population difference β†’ sample has bulk magnetic dipolar moment along z

β€’ Population difference is very small β†’ the magnetic moment is very small β†’ low sensitivity

β€’ Population difference β‰ˆ 𝛾𝛾ℏ𝛾𝛾 2π‘˜π‘˜π΅π΅π‘‡π‘‡

(proportional to 𝛾𝛾 and 𝐡𝐡)

x

y

z 𝐡𝐡0

𝐼𝐼𝑧𝑧 =ℏ2

𝐼𝐼𝑧𝑧 = βˆ’β„2

Page 8: Principles of NMR spectroscopy

Chemical shift β€’ Electrons surrounding the nucleus move under the influence of the applied

magnetic field β€’ This movement of electrons generates additional magnetic field that usually

opposes the externally applied magnetic field (β€œshielding”)

𝐡𝐡 = (1 βˆ’ 𝜎𝜎) 𝐡𝐡0 actual magnetic field perceived at the nucleus

external magnetic field

nuclear shielding

πœ”πœ” = 𝛾𝛾𝐡𝐡 = 𝛾𝛾(1 βˆ’ 𝜎𝜎) 𝐡𝐡0

Larmor frequency (πœ”πœ”) of each nucleus is unique and very sensitive to local electronic environment β€’ Covalent bonds β€’ Conformation β€’ 3D structure, in particular ring currents, charges, hydrogen bonding...

Page 9: Principles of NMR spectroscopy

Chemical shift (continued)

𝛿𝛿 =𝜈𝜈 βˆ’ 𝜈𝜈0𝜈𝜈0

βˆ— 106

chemical shift units: ppm (parts per million)

Reference frequency = frequency of a reference compound: tetramethylsilane (TMS) in organic solvents trimethylsilylpropanesulfonate = 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) in aqueous solutions

πœ”πœ” = 𝛾𝛾(1 βˆ’ 𝜎𝜎) 𝐡𝐡0

𝜈𝜈(1H)=500 MHz (11.74T): 1 ppm = 500 𝑀𝑀𝑀𝑀𝑧𝑧106

= 500 βˆ—106 𝑀𝑀𝑧𝑧106

= 500 𝐻𝐻𝐻𝐻

𝜈𝜈(1H)=600 MHz (14.09T): 1 ppm = 600 𝑀𝑀𝑀𝑀𝑧𝑧106

= 600 βˆ—106 𝑀𝑀𝑧𝑧106

= 600 𝐻𝐻𝐻𝐻

Page 10: Principles of NMR spectroscopy

J-coupling (scalar coupling) Interaction between nuclear spins mediated by electrons that form the bond(s) between the nuclei β€’ occurs over 1-4 bonds β€’ 3-bond J-coupling depends on conformation

(dihedral angle)

𝐸𝐸 = β„πœ”πœ”πΌπΌπ‘šπ‘šπΌπΌ + β„πœ”πœ”π‘†π‘†π‘šπ‘šπ‘†π‘† + 2πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆 π‘šπ‘šπΌπΌπ‘šπ‘šπ‘†π‘† scalar coupling constant

π‘šπ‘šπ‘†π‘†= +12

: βˆ†πΈπΈπΌπΌ= β„πœ”πœ”πΌπΌ + 2πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆12

= β„πœ”πœ”πΌπΌ + πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆

π‘šπ‘šπ‘†π‘†= βˆ’12

: βˆ†πΈπΈπΌπΌ= β„πœ”πœ”πΌπΌ + 2πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆 βˆ’12

= β„πœ”πœ”πΌπΌ βˆ’ πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆

βˆ†πΈπΈπΌπΌ depends on spin S: Β±πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆 = Β± 12β„Ž 𝐽𝐽𝐼𝐼𝑆𝑆

Page 11: Principles of NMR spectroscopy

J-coupling (scalar coupling)

𝐸𝐸 = β„πœ”πœ”πΌπΌπ‘šπ‘šπΌπΌ + β„πœ”πœ”π‘†π‘†π‘šπ‘šπ‘†π‘† + 2πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆 π‘šπ‘šπΌπΌπ‘šπ‘šπ‘†π‘† scalar coupling constant

π‘šπ‘šπΌπΌ= +12

: βˆ†πΈπΈπ‘†π‘†= β„πœ”πœ”π‘†π‘† + 2πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆12

= β„πœ”πœ”π‘†π‘† + πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆

π‘šπ‘šπΌπΌ= βˆ’12

: βˆ†πΈπΈπ‘†π‘†= β„πœ”πœ”π‘†π‘† + 2πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆 βˆ’12

= β„πœ”πœ”π‘†π‘† βˆ’ πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆

βˆ†πΈπΈπ‘†π‘† depends on spin I: Β±πœ‹πœ‹β„ 𝐽𝐽𝐼𝐼𝑆𝑆 Same splitting as for βˆ†πΈπΈπΌπΌ

Does not depend on magnetic field!

Page 12: Principles of NMR spectroscopy

Rule, G.S. and Hitchens, T.K. Fundamentals of Protein NMR Spectroscopy, 2006, Springer

Page 13: Principles of NMR spectroscopy

Cavanagh, J., Fairbrother, W.J., Palmer, A.G.III, Rance, M., Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice, 2nd edition, 2007, Academic Press

- (upfield) + (downfield)

H2O

NMR spectrum of ubiquitin (76 amino acid residues, MW=8,565 Da)

Page 14: Principles of NMR spectroscopy

Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67-81.

Page 15: Principles of NMR spectroscopy

Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67-81.

Page 16: Principles of NMR spectroscopy

Semi-classical model (Bloch equations) Magnetic dipole 𝝁𝝁 experiences torque in magnetic field:

𝝁𝝁 𝑑𝑑 Γ— 𝐁𝐁 =𝑑𝑑𝑰𝑰 𝑑𝑑𝑑𝑑𝑑𝑑

=1𝛾𝛾𝑑𝑑𝝁𝝁(𝑑𝑑)𝑑𝑑𝑑𝑑

torque

𝝁𝝁 = 𝛾𝛾 𝑰𝑰

𝑑𝑑𝝁𝝁(𝑑𝑑)𝑑𝑑𝑑𝑑

= 𝝁𝝁 𝑑𝑑 Γ— 𝛾𝛾𝐁𝐁 = βˆ’π›Ύπ›Ύπ‘©π‘© Γ— 𝝁𝝁(𝑑𝑑) 𝝎𝝎

𝝁𝝁(𝑑𝑑) rotates (precesses) with angular velocity 𝝎𝝎 = βˆ’π›Ύπ›Ύπ‘©π‘© Larmor frequency

Page 17: Principles of NMR spectroscopy

x

y

z π‘©π‘©πŸŽπŸŽ πœ”πœ”

x

y

z π‘©π‘©πŸŽπŸŽ

πœ”πœ”

Rotation not observable

𝝁𝝁 𝝁𝝁

Page 18: Principles of NMR spectroscopy

Application of perpendicular (horizontal) magnetic field π‘©π‘©πŸπŸ(𝑑𝑑) that oscillates with angular velocity πœ”πœ” = βˆ’π›Ύπ›Ύπ΅π΅:

𝑑𝑑𝝁𝝁(𝑑𝑑)𝑑𝑑𝑑𝑑

= βˆ’π›Ύπ›Ύ(𝑩𝑩 + π‘©π‘©πŸπŸ 𝑑𝑑 ) Γ— 𝝁𝝁(𝑑𝑑)

Switch to a coordinate frame that rotates with angular velocity πœ”πœ” = βˆ’π›Ύπ›Ύπ΅π΅:

𝑑𝑑𝝁𝝁(𝑑𝑑)𝑑𝑑𝑑𝑑

= βˆ’π›Ύπ›Ύπ‘©π‘©πŸπŸ Γ— 𝝁𝝁(𝑑𝑑)

𝝁𝝁(𝑑𝑑) rotates with angular velocity 𝝎𝝎𝟏𝟏 = βˆ’π›Ύπ›Ύπ‘©π‘©1 around 𝑩𝑩1 in the rotating frame!

Page 19: Principles of NMR spectroscopy

x

y

z π‘©π‘©πŸŽπŸŽ

Rotating frame (angular velocity 𝝎𝝎 = βˆ’π›Ύπ›Ύπ‘©π‘©):

π‘©π‘©πŸπŸ

πœ”πœ”1

π‘©π‘©πŸπŸ along x: Rotation in the y-z plane with angular velocity 𝝎𝝎𝟏𝟏 𝛼𝛼 = πœ”πœ”1 𝑑𝑑

𝛼𝛼

x

y

z π‘©π‘©πŸŽπŸŽ

π‘©π‘©πŸπŸ

πœ”πœ”1

90Β° pulse: 𝛼𝛼 = πœ”πœ”1𝑑𝑑 =πœ‹πœ‹2

𝑀𝑀𝑧𝑧 = 𝑀𝑀0 β†’ βˆ’π‘€π‘€π‘¦π‘¦ = 𝑀𝑀0

𝛼𝛼 𝝁𝝁 𝝁𝝁

Page 20: Principles of NMR spectroscopy

Rotating frame (angular velocity 𝝎𝝎 = βˆ’π›Ύπ›Ύπ‘©π‘©):

x

y

z π‘©π‘©πŸŽπŸŽ

π‘©π‘©πŸπŸ

πœ”πœ”1

180Β° pulse: 𝛼𝛼 = πœ”πœ”1𝑑𝑑 = πœ‹πœ‹ 𝑀𝑀𝑧𝑧 = 𝑀𝑀0 β†’ βˆ’π‘€π‘€π‘§π‘§ = 𝑀𝑀0

𝛼𝛼 𝝁𝝁

Page 21: Principles of NMR spectroscopy

Rotating frame (angular velocity 𝝎𝝎 = βˆ’π›Ύπ›Ύπ‘©π‘©):

x

y

z π‘©π‘©πŸŽπŸŽ

π‘©π‘©πŸπŸ

πœ”πœ”1

𝛼𝛼

π‘©π‘©πŸπŸ along y: Rotation in the x-z plane with angular velocity 𝝎𝝎𝟏𝟏 𝛼𝛼 = πœ”πœ”1 𝑑𝑑

x

y

z π‘©π‘©πŸŽπŸŽ

π‘©π‘©πŸπŸ

πœ”πœ”1

𝛼𝛼

90Β° pulse: 𝛼𝛼 = πœ”πœ”1𝑑𝑑 =πœ‹πœ‹2

𝑀𝑀𝑧𝑧 = 𝑀𝑀0 β†’ 𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0

𝝁𝝁 𝝁𝝁

Page 22: Principles of NMR spectroscopy

When the angular velocity πŽπŽπ’“π’“π’“π’“ of the perpendicular magnetic field π‘©π‘©πŸπŸ(𝑑𝑑) differs (somewhat) from Larmor frequency 𝝎𝝎 = βˆ’π›Ύπ›Ύπ‘©π‘©: Pulses still work as long as |π›Ύπ›Ύπ‘©π‘©πŸπŸ| ≫|πŽπŽβˆ’πŽπŽπ’“π’“π’“π’“|

Rotating frame (angular velocity πŽπŽπ’“π’“π’“π’“): 𝑑𝑑𝝁𝝁(𝑑𝑑)𝑑𝑑𝑑𝑑

= βˆ’π›Ύπ›Ύ 𝑩𝑩 + π‘©π‘©πŸπŸ Γ— 𝝁𝝁 𝑑𝑑 βˆ’ πŽπŽπ’“π’“π’“π’“ Γ— 𝝁𝝁(𝑑𝑑)

= βˆ’π›Ύπ›Ύπ‘©π‘© βˆ’πŽπŽπ’“π’“π’“π’“ βˆ’ π›Ύπ›Ύπ‘©π‘©πŸπŸ Γ— 𝝁𝝁 𝑑𝑑 𝝎𝝎 𝝎𝝎𝟏𝟏

Rotation around 𝑩𝑩 with Larmor frequency

Rotation around 𝐡𝐡1 (stationary in the rotating frame)

Correction for rotation of the rotating frame

Page 23: Principles of NMR spectroscopy

Rotating frame (angular velocity πŽπŽπ’“π’“π’“π’“):

Rotation around a tilted axis πŽπŽπ’†π’†π’“π’“π’“π’“ = 𝛀𝛀 + 𝝎𝝎𝟏𝟏

𝑑𝑑𝝁𝝁(𝑑𝑑)𝑑𝑑𝑑𝑑

= πŽπŽβˆ’πŽπŽπ’“π’“π’“π’“ + 𝝎𝝎𝟏𝟏 Γ— 𝝁𝝁 𝑑𝑑

𝜴𝜴 (offset)

x

y

z π‘©π‘©πŸŽπŸŽ

𝝎𝝎𝟏𝟏

πŽπŽπ’†π’†π’“π’“π’“π’“ = 𝛀𝛀 + 𝝎𝝎𝟏𝟏

𝜴𝜴

𝝁𝝁

When |𝝎𝝎𝟏𝟏| ≫|𝛀𝛀| πŽπŽπ’†π’†π’“π’“π’“π’“ β‰ˆ 𝝎𝝎𝟏𝟏 Rotation around axis in a horizontal plane

Page 24: Principles of NMR spectroscopy

Another way to look at it: Rotating frame (angular velocity πŽπŽπ’“π’“π’“π’“): 𝑑𝑑𝝁𝝁(𝑑𝑑)𝑑𝑑𝑑𝑑

= βˆ’π›Ύπ›Ύ 𝑩𝑩 + π‘©π‘©πŸπŸ Γ— 𝝁𝝁 𝑑𝑑 βˆ’ πŽπŽπ’“π’“π’“π’“ Γ— 𝝁𝝁(𝑑𝑑)

= βˆ’π›Ύπ›Ύ 𝑩𝑩 +πŽπŽπ’“π’“π’“π’“

𝛾𝛾 + π‘©π‘©πŸπŸ Γ— 𝝁𝝁 𝑑𝑑

βˆ†π‘©π‘© (residual vertical magnetic field in the rotating frame)

x

y

z π‘©π‘©πŸŽπŸŽ

π‘©π‘©πŸπŸ

𝑩𝑩𝒆𝒆𝒓𝒓𝒓𝒓 = βˆ†π‘©π‘© + π‘©π‘©πŸπŸ

βˆ†π‘©π‘©

𝝁𝝁

Rotation around 𝑩𝑩𝒆𝒆𝒓𝒓𝒓𝒓 with angular velocity πŽπŽπ’†π’†π’“π’“π’“π’“ = βˆ’π›Ύπ›Ύπ‘©π‘©π’†π’†π’“π’“π’“π’“