10
1 EnquiryBased Primary Science Resource: Space Approach: the topic of space is more suited to shorter investigations, experiments and demonstrations This document contains ideas for science investigations (i.e. experiments) rather than demonstrations. The experiments are designed for older children (Year 5 and 6), but could be adapted for younger children. In addition, the experiments can be easily adapted for different ability groups. There are crossover opportunities with many other areas of the curriculum, for example; Area Topic Demonstration & link to space Science & maths States of matter Properties of the planets (rocky, gaseous) Shapes Orbits of the planets Gravity Effects of gravity on different planets Visible light & the electromagnetic spectrum Splitting of light by a prism, or a CD, to show colours (astronomers use these to investigate temperature and composition). Differences between bodies that emit light (e.g. the Sun) or reflect light (e.g. the Moon). Design & technology Design, engineering solutions Making a satellite, how we investigate the solar system through space missions Making models of the satellites Use the resources provided by ESA regarding Tim Peake’s Principia mission to the ISS (finished summer 2016) Art and dance Representation of the solar system Movement of the planets History The development of the scientific method Explore the lives and experiments of Copernicus, Brahe, Kepler, Galileo, Newton, etc. Any questions, comments or feedback: [email protected], Dr. J.A. Carter, Department of Physics and Astronomy, University of Leicester

primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  1  

Enquiry-­‐Based  Primary  Science  Resource:  Space    Approach:  the  topic  of  space  is  more  suited  to  shorter  investigations,  experiments  and  demonstrations      This  document  contains  ideas  for  science  investigations  (i.e.  experiments)  rather  than  demonstrations.  The  experiments  are  designed  for  older  children  (Year  5  and  6),  but  could  be  adapted  for  younger  children.  In  addition,  the  experiments  can  be  easily  adapted  for  different  ability  groups.  There  are  crossover  opportunities  with  many  other  areas  of  the  curriculum,  for  example;      Area   Topic   Demonstration  &  link  to  space  Science  &  maths  

States  of  matter   Properties  of  the  planets  (rocky,  gaseous)  Shapes   Orbits  of  the  planets  Gravity   Effects  of  gravity  on  different  planets  Visible  light  &  the  electromagnetic  spectrum    

Splitting  of  light  by  a  prism,  or  a  CD,  to  show  colours  (astronomers  use  these  to  investigate  temperature  and  composition).  Differences  between  bodies  that  emit  light  (e.g.  the  Sun)  or  reflect  light  (e.g.  the  Moon).  

Design  &  technology  

Design,  engineering  solutions   Making  a  satellite,  how  we  investigate  the  solar  system  through  space  missions  Making  models  of  the  satellites  Use  the  resources  provided  by  ESA  regarding  Tim  Peake’s  Principia  mission  to  the  ISS  (finished  summer  2016)  

Art  and  dance  

Representation  of  the  solar  system  

Movement  of  the  planets  

History   The  development  of  the  scientific  method    

Explore  the  lives  and  experiments  of  Copernicus,  Brahe,  Kepler,  Galileo,  Newton,  etc.  

 Any  questions,  comments  or  feedback:  [email protected],  Dr.  J.A.  Carter,  Department  of  Physics  and  Astronomy,  University  of  Leicester  

Page 2: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  2  

Space:  Why  is  it  so  hot  on  Venus?  

Curriculum  points:    • Venus  experiences  a  powerful  greenhouse  effect  • This  is  the  most  powerful  greenhouse  effect  in  the  Solar  System  

• Venus’  atmosphere  is  mainly  made  up  of  water  vapour,  carbon  dioxide  and  sulphuric  acid  

• The  average  temperature  on  the  surface  of  Venus  is  460  °C  • Venus  spins  in  the  opposite  sense  to  Earth  

Equipment:    • Transparent  jar  with  lid  • 2  small  thermometers,  that  fit  completely  within  the  jar  • 1  plate  • 2  pieces  of  chocolate  • Access  to  a  window  sill  receiving  direct  sunlight,  or  a  lamp  

The  experiment:    • Place  a  thermometer  and  a  piece  of  chocolate  in  the  jar  • Tightly  screw  the  lid  on  the  jar  • Place  the  other  thermometer  and  ice-­‐cube/chocolate  on  a  plat  

• Place  the  jar  and  plate  in  a  window  sill  in  direct  sunlight  (or  use  a  lamp)  

• Monitor  the  temperature  measured  by  each  thermometers  • Observe  what  happens  to  the  ice-­‐cube/chocolate    

Outcomes  and  adaptions:    • Link  to  climate  change  discussions  at  the  Earth  • Make  a  simple  graph  showing  temperature  versus  time    

Lines  of  enquiry:    • What  will  be  the  effect  of  keeping  the  lid  closed  on  the  jar?  • How  often  will  readings  of  the  thermometers  and  observations  of  the  ice-­‐cube/chocolate  be  taken?  

• Will  the  thermometers  show  different  temperatures?  • Which  is  the  independent  and  which  is  the  dependent  variable?    

Page 3: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  3  

Space:  Why  is  it  so  hot  on  Venus?      

         

   

Schematic  and  talking  points:    • If  using  a  lamp,  make  sure  the  light  source  illuminates  both  thermometers  

• The  chocolate  can  be  replaced  with  an  ice-­‐cube,  however,  care  should  be  taken  so  that  the  ice-­‐cube  doesn’t  come  in  contact  with  the  thermometer  as  this  will  greatly  effect  the  results  of  the  experiement  

• Consider  how  the  greenhouse  effect  compares  on  Earth    

Page 4: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  4  

Space:  Why  is  it  cold  at  the  Poles,  and  why  do  we  have  seasons?  

   

   

Lines  of  enquiry:    • What  effect  will  the  tilt  of  the  card  have  on  the  spot  of  light  as  seen  on  the  card?    

• Would  we  have  seasons  if  the  Earth  didn’t  have  a  tilt?  • Will  the  spot  be  bigger  or  smaller  when  the  card  is  tilted?  • What  happens  to  the  spot  if  you  tilt  the  card  even  more?    

The  experiment:    • (In  advance,  if  required,  dependent  on  your  light  source)  Make  a  shield  for  the  light  source  so  that  a  clear  spot  of  light  is  seen  on  a  large  piece  of  card  held  a  little  way  away  from  the  light    

• Another  person  holds  the  card  perpendicularly  to  the  beam  of  light  

• A  third  person  draws  a  circle  around  the  spot  of  light  as  projected  onto  the  card  using  one  of  the  marker  pens  

• Get  the  person  holding  the  card  to  tilt  the  card  away  from  the  light  source  

• Draw  around  the  shape  of  the  light  as  projected  on  the  card  using  the  other  coloured  marker  pen  

   

Equipment:    • A  table  lamp  or  torch  (an  easily  directed  light  source)  • 2  marker  pens  of  different  colours  • 1  large  piece  of  card  • A  football  or  beach  ball  • Black  card  • Sticking  tape  •  

Curriculum  points:    • The  Earth  is  tilted  at  23.5°  to  the  ecliptic  plane    • Sunlight  is  spread  over  a  bigger  area  at  the  poles  than  at  the  equator  

• Seasons  occur  because  of  the  tilt  towards  or  away  from  the  Sun  

• Different  planets  are  tilted  at  different  angles  to  the  ecliptic  planets,  so  seasons  are  different  (or  don’t  exist)  on  different  planets  (e.g.  Venus  has  almost  no  tilt  at  177.5°  and  Uranus  is  almost  side  on  at  97°)  

 

Outcomes  and  adaptions:    • The  tilt  of  the  card  could  be  quantified  (i.e.  in  degrees  from  vertical),  and  the  results  tabulated  or  presented  in  a  graph  

• This  experiment  could  lead  to  discussions  about  energy,  and  energy  from  the  Sun  in  general  

•  

Page 5: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  5  

Space:  Why  is  it  cold  at  the  Poles,  and  why  do  we  have  seasons?    

     

   

   

    Schematic  and  talking  points:    • Use  a  beach  ball  or  football  to  demonstrate  how  incident  sunlight  spreads  out  on  different  parts  of  the  surface  if  the  ball  is  tilted  

• Consider  what  would  happen  to  the  seasons  if  the  Earth  didn’t  have  a  tilt  

• Consider  what  the  seasons  are  like  on  other  planets,  and  if  other  planets  have  seasons  at  all  

 

 

Page 6: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  6  

Space:  How  does  the  surface  gravity  differ  between  the  planets?  

 

Curriculum  points:    • Weight  is  the  effect  of  the  force  of  gravity  on  a  mass  • Weight  is  therefore  different  depending  on  which  planet  you  are  standing  on  (and  how  far  you  are  from  the  centre  of  the  planet)  

• The  planets  in  the  Solar  System  have  very  different  masses  and  sizes  

Equipment:    • A  set  of  pots,  with  lids,  of  the  same  size  • Sand  or  pebbles  • Filler,  e.g.  cotton  wool  • Weighing  scales  • Labels  to  completely  cover  the  pots    

The  experiment:    •  (In  advance)  Put  enough  sand/pebbles,  and  filler  to  stop  the  heavier  weights  moving,  into  each  pot  in  the  proportions  as  given  below  (relative  weight  to  Earth/example  weight):  

Mercury:  0.38  /  144  g  Venus:  0.91  /  272  g  Earth:  1.00  /  300  g  Mars:  0.38  /  113  Jupiter:  2.36  /  710  Saturn:  0.92  /  275  Uranus:  0.89  /  267  Neptune  1.12  /  338  Moon:  0.17  /  50  

• (In  advance):  label  and  wrap  each  pot  so  the  contents  cannot  be  seen  

• Tell  the  pupils  that  each  pot  contains  the  same  amount  of  stuff  (mass),  but  that  they  are  ‘on’  a  different  planet  or  moon  

• How  can  the  pupils  determine  which  pot  is  where?  

Lines  of  enquiry:    • What  effect  will  the  tilt  of  the  card  have  on  the  spot  of  light  as  seen  on  the  card?    

• The  pupils  can  see  if  they  can  identify  each  pot  with  each  planet  

• The  pupils  will  need  to  weigh  each  pot  and  record  the  weights  

• Do  the  initial  predictions  for  each  pot  match  those  made after weighing?

•  

Outcomes  and  adaptions:    • Variations  on  this  experiment  could  see  pupils  filling  the  pots  themselves  to  the  correct  weights.  

Page 7: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  7  

Space:  How  does  the  surface  gravity  differ  between  the  planets?                                

Schematic  and  talking  points:    • Use  the  label  here  to  stick  on  each  pot,  and  make  sure  each  pot  is  completely  covered  so  that  the  sand  and  cotton  filler  cannot  be  seen  

• Be  sure  to  hide  a  small  label  (e.g.  on  the  inside  of  the  lid)  to  remember  which  pot  is  which  

 

Page 8: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  8  

Space:  Additional  demonstration  possibilities    Human  solar  system  model:  outside  space,  children  act  out  being  planets  and  orbit  the  Sun,  the  Sun,  and  comets.  This  demonstrates  the  order  and  distances  of  the  planets  (not  the  relative  sizes),  plus  you  could  talk  about  other  bodies  such  as  asteroids  and  comets.  Convert  the  distances  in  the  table  below  to  metres,  and  get  a  person  to  represent  each  planet  (e.g.  holding  a  balloon  or  sign)  to  stand  at  each  distance.  Children  representing  comets  could  come  into  the  solar  system  at  various  intervals  to  demonstrate  their  sporadic  nature,  and  also  how  passing  through  comets’  tails  gives  us  our  meteor  showers  here  on  Earth.                              Orbits:  movement  in  ellipses  as  a  physical  activity  (not  circular,  but  as  the  Sun  is  so  big,  the  orbits  are  very  nearly  circular)    Eclipses:  blocking  out  light,  moving  around  the  classroom  occulting  lamps  or  other  light  sources    

Solar  system  body   Distance  from  Sun  (AU,  relative  units)  Sun   0  Mercury   0.39  Venus   0.72  Earth   1.00  Mars   1.52  [Asteroid  belt]   2.2  –  3.2  Jupiter   5.20  Saturn   9.58  Uranus   19.2  Neptune   30.1  [Kuiper  belt,  Pluto]   30  -­‐  50  

Page 9: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  9  

Comet  ice-­‐cream:  make  a  ‘dirty  snowball’  ice-­‐cream,  using  crushed  up  biscuits  and  vanilla  ice-­‐cream    Design  your  own  space  mission:  after  learning  about  the  planets  and  moons  of  other  planets,  set  teams  of  pupils  the  challenge  to  design  a  mission  (which  planet/moon,  cameras  to  use,  features  to  include  on  the  spacecraft  etc.  Get  some  space  engineers  from  the  University  of  Leicester  to  come  in  a  judge  the  projects.    Light  and  colours:  splitting  of  visible  light  by  a  prism  to  demonstrate  parts  of  the  electromagnetic  spectrum,  with  connections  to  weather  (rainbows),  or  make  a  pinhole  camera  talk  about  the  formation  of  images    Planets  with  or  without  a  magnetic  field:  investigate  iron  filings  around  magnets      

Page 10: primary space handout - University of Leicester · ! 1! Enquiry(BasedPrimary.Science.Resource:.Space.! Approach:!the!topicof!space!ismoresuitedtoshorterinvestigations,experimentsanddemonstrations

  10  

 

Space:  Additional  resources      Spot  satellites,  the  International  Space  Station,  and  more!  http://spaceweather.com/flybys/  

Look  at  pictures  of  the  aurora,  atmospheric  phenomena,  and  the  state  of  the  Sun:  http://spaceweather.com/  

Meteor  showers:  http://earthsky.org/astronomy-­‐essentials/earthskys-­‐meteor-­‐shower-­‐guide  

Observing  the  Sun:  http://solar-­‐center.stanford.edu/observe/  

Planeterrella  (mini-­‐aurora)  http://www2.le.ac.uk/departments/physics/outreach/planeterrella  

University  of  Leicester  Physics  and  Astronomy  public  outreach:  http://www2.le.ac.uk/departments/physics/outreach  

European  Space  Agency  Outreach:  https://www.esa.int/esaKIDSen/  

Tim  Peake’s  mission:  http://www.esa.int/Our_Activities/Human_Spaceflight/Principia  

Scale  of  the  solar  system:  https://www.youtube.com/watch?v=pR5VJo5ifdE  

Look  out  for  public  lectures  or  event  days:  National  Space  Centre,  University  of  Leicester,  etc.