65
Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 10, 2005

Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd Edition

  • Upload
    doli

  • View
    47

  • Download
    5

Embed Size (px)

DESCRIPTION

Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 10, 2005. ODEs and PDEs. Ordinary differential equation (ODE) - PowerPoint PPT Presentation

Citation preview

Page 1: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 6of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 10, 2005

Page 2: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Ordinary differential equation (ODE)Equation with one independent variable

ODEs and PDEs

Partial differential equation (PDE)Equation with more than one independent variable

OrderHighest derivative of an equation

DegreeHighest polynomial value of the highest derivative

Initial value problemConditions are known at one end of domain but not other

Boundary value problemConditions are known at both ends of domain

Page 3: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

ODEs and PDEs

Page 4: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Operator Splitting Scheme

Fig. 6.1

Dynamics

Transport

Gas chemistry

Time interval 1

Dynamics

Transport

Gas chemistry

Time interval 2

Page 5: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Operator-split advection-diffusion equations (6.1-6.3)

Operator Splitting

Operator-split external source/sink terms (6.4)

∂N∂t

+∂ uN( )

∂x−

∂∂x

Kh,xx∂N∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =0

∂N∂t

+∂ vN( )

∂y−

∂∂y

Kh,yy∂N∂y

⎝ ⎜

⎠ ⎟ =0

∂N∂t

+∂ wN( )

∂z−

∂∂z

Kh,zz∂N∂z

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =0

∂N∂t

= Rnn=1

Ne,t

Page 6: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Replacement of continuous differential operator (d) with discrete difference analog () written in terms of a finite number of values along a temporal or spatial direction.

Examples:

Finite-Difference Approximation

dNdt

→ΔNΔt

∂N∂x

→ΔNΔx

∂u∂x

→ΔuΔx

Page 7: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Difference Example

Fig. 6.2

First, replace continuous function ux with a finite number of values in the x direction.

ux

u

x

i-1 i i+1

ui-1 ui ui+1 ui+2

xi-1 xi xi+1 xi+2

Page 8: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Difference ApproximationSecond, define differences of du at point xi

-->

-->

-->

Δui =ui+1−ui−1

Δui =ui+1−ui

Δui =ui −ui−1 backward difference

forward difference

central difference

Central difference approximation to tangent slope at xi (6.10)

∂u∂x

≈ΔuiΔxi

=ui+1−ui−1xi+1−xi−1

ux

u

x

i-1 i i+1

ui-1 ui ui+1 ui+2

xi-1 xi xi+1 xi+2

Page 9: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite-Difference Approximations

Fig. 6.3

Central (AC), forward (BC), and backward (AB) approximations to slope of tangent at point B

Nx

N

x

xi-1 xi xi+1

A

B

C

x- x x x+x

x x

Page 10: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Taylor series expansion at point x+x (6.11)

Taylor Series Expansion

Taylor series expansion at point x-x (6.12)

Nx+Δx =Nx +Δx∂Nx∂x

+12

Δx2∂2Nx∂x2 +

16

Δx3∂3Nx∂x3

+124

Δx4∂4Nx∂x4

+...

Nx−Δx =Nx −Δx∂Nx∂x

+12

Δx2∂2Nx∂x2

−16

Δx3∂3Nx∂x3

+124

Δx4∂4Nx∂x4

−...

Nx

N

x

xi-1 xi xi+1

A

B

C

x- x x x+x

x x

Page 11: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Sum the Taylor series expansions (6.13)

Finite Difference Approximations

Rearrange (6.14)

Truncation error (neglect 2nd-order terms and higher) (6.15)

2nd-order central difference approx. of 2nd derivative (6.16)

Nx+Δx +Nx−Δx =2Nx+Δx2 ∂2Nx∂x2 +

112

Δx4∂4Nx∂x4 +...

∂2Nx∂x2

=Nx+Δx−2Nx+Nx−Δx

Δx2+O Δx2( )

O Δx2( ) =−112

Δx2∂4Nx∂x4

−...

∂2Nx∂x2

≈Nx+Δx−2Nx+Nx−Δx

Δx2

Page 12: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Subtract the Taylor series expansions (6.17)

Finite Difference Approximations

Rearrange (6.18)

Truncation error (6.19)

2nd-order central difference approx. of 1st derivative (6.20)

Nx+Δx −Nx−Δx =2Δx∂Nx∂x

+13

Δx3∂3Nx∂x3

+...

∂Nx∂x

=Nx+Δx−Nx−Δx

2Δx+O Δx2( )

O Δx2( ) =−16

Δx2∂3Nx∂x3

−...

∂Nx∂x

≈Nx+Δx−Nx−Δx

2Δx=Ni+1−Ni−1

2Δx

Page 13: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Difference Approximations

1st-order backward difference approx. of 1st derivative (6.22)

First two terms of Taylor series

1st-order forward difference approx. of 1st derivative (6.21)

∂Nx∂x

≈Nx+Δx−Nx

Δx=Ni+1−Ni

Δx

∂Nx∂x

≈Nx −Nx−Δx

Δx=Ni −Ni−1

Δx

Page 14: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Differencing Time Derivative

Central, forward, backward difference approximations (6.23)

∂Nt∂t

≈Nt+h −Nt−h

2h

∂Nt∂t

≈Nt+h −Nt

h

∂Nt∂t

≈Nt −Nt−h

h

Page 15: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Convergence of finite difference analog (6.6)

Consistency, Convergence

Consistency of finite difference analog (6.7)

Convergence of overall solution (6.8)

∂N∂x

= limΔx→ 0

ΔNΔx

limΔx→ 0

T.E.ΔNΔx

⎛ ⎝ ⎜ ⎞

⎠ ⎟ =0

limΔx,Δt→ 0

Ne,x,t −Nf,x,t =0

Page 16: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

StabilityStability (6.9)lim

t→ ∞Ne,x,t −Nf,x,t ≤C

Conditionally stable: Stable for limited time-step rangeUnconditionally stable: Stable for all time stepsUnconditionally unstable: Unstable for all time steps

An unconditionally unstable scheme cannot be convergent overall, but individual finite-difference analogs in an unstable scheme may converge and may be consistent.

In other words, consistency and convergence of individual analogs do not guarantee stability.

Stability is guaranteed if a scheme is convergent overall and its finite-difference analogs are convergent and consistent.

Page 17: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Numerical Diffusion, DispersionNumerically diffusive scheme:

Peaks spread artificially across grid cells

Numerically dispersive (oscillatory) scheme: Waves appear ahead of or behind peaks

Unbounded scheme: Transported values artificially rise above the largest existing value or fall below the smallest existing value in domain.

Nonmonotonic scheme: Gradients are not preserved during transport

Page 18: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

High Order Approximations

Finite difference approximation of ∂mN/∂xm

• Order of derivative = m• Approximation expanded across q discrete nodes• Minimum number of nodes = m + 1• Maximum order of approximation = q - m

ExampleOrder of derivative: m = 1Number of nodes: q = 5

--> Order of approximation: q - m = 4

Page 19: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

High Order Approximations

Grid spacing where q=5. Derivative is taken at x3. Fig. 6.4

Distance between two nodes

Approximation to the mth derivative across q nodes (6.24)

x

x1 x2 x3 x4 x5

*

Δxi =xi+1−xi

∂mN

∂xm≈ γiNii=1

q

∑ =γ1N1+γ2N2 +...+γqNq

Page 20: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

High Order Approximations

Taylor series expansion for each node about point x* (6.25)

Combine (6.24) with (6.25) and gather terms (6.26)

Redefine (6.27)

Ni =N* + xi −x*( )∂N*∂x

+12xi −x*( )

2 ∂2N*∂x2 +

16xi −x*( )

3 ∂3N*∂x3

+...

∂mN

∂xm≈ γiNii=1

q

∑ = γiN*i=1

q

∑ + γi xi −x*( )∂N*∂x

i=1

q

∑ + γi12xi −x*( )

2 ∂2N*∂x2

i=1

q

∑ +...

γiNii=1

q

∑ =B0N* +B1∂N*∂x

+B2∂2N*∂x2

+...

Approximation to the mth derivative across q nodes (6.24)

∂mN

∂xm≈ γiNii=1

q

Bn = γi1n!

xi −x*( )n

i=1

q

Page 21: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

High Order Approximations

for n = 0…q - 1 (6.28)

• Set Bn=0 for all n, except n = m• Set Bn=1 when n = m

Multiply (6.28) through by n! and set matrix (6.29)

Bn = γi1n!

xi −x*( )n

i=1

q

1 1 1 ... 1

x1−x*( ) x2 −x*( ) x3−x*( ) ... xq −x*( )

x1−x*( )2 x2 −x*( )

2 x3−x*( )2 ... xq −x*( )

2

: : : :

x1−x*( )q−1 x2−x*( )

q−1 x3 −x*( )q−1 ... xq −x*( )

q−1

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

γ1γ2γ3:

γq

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=

0!B01!B12!B2

:

q−1( )!Bq−1

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

Page 22: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

2nd-Order Central Diff. Approx.

Find second-order central difference approx. to ∂N/∂x

Order of derivative: m = 1Order of approximation: q - m = 2

--> Number of nodes: q = 3

Example

Set matrix(6.32)

1 1 1

−Δx 0 Δx

−Δx( )2 0 Δx( )2

⎢ ⎢ ⎢

⎥ ⎥ ⎥

γi−1γi

γi+1

⎢ ⎢ ⎢

⎥ ⎥ ⎥

=

0

1

0

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Page 23: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

2nd-Order Central Diff. Approx.

Apply the 's to (6.24)

Substitute 's to obtain central difference approx. Table 6.2 (c)

∂N∂x

≈γ1N1+γ2N2 +γ3N3 =γi−1Ni−1+γiNi +γi+1Ni+1

∂N∂x

≈Ni+1−Ni−1

2Δx

γi+1 =1

2Δxγi−1=−

12Δx

γi =0

Solve matrix

Page 24: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

1st-Order Backward Diff. Approx.

Find first-order backward difference approx. to ∂N/∂x

Order of derivative: m = 1Order of approximation: q - m = 1

--> Number of nodes: q = 2

Example

Set matrix(6.30)

1 1

−Δx 0⎡

⎣ ⎢ ⎤

⎦ ⎥ γi−1γi

⎣ ⎢ ⎤

⎦ ⎥ =0

1⎡

⎣ ⎢ ⎤

⎦ ⎥

Page 25: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

1st-Order Backward Diff. Approx.

Apply the 's to (6.24)

Substitute 's to obtain backward difference approx. Table 6.2 (a)

Solve matrix

γi−1=−1Δx

γi =1Δx

∂N∂x

≈γi−1Ni−1+γiNi

∂N∂x

≈Ni −Ni−1

Δx

Page 26: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

2nd-Order Backward Diff. Approx.

Find second-order backward difference approx. to ∂N/∂x

Order of derivative: m = 1Order of approximation: q - m = 2

--> Number of nodes: q = 3

Example

Set matrix (6.32)1 1 1

−2Δx −Δx 0

−2Δx( )2 −Δx( )2 0

⎢ ⎢ ⎢

⎥ ⎥ ⎥

γi−2γi−1γi

⎢ ⎢ ⎢

⎥ ⎥ ⎥ =

0

1

0

⎢ ⎢ ⎢

⎥ ⎥ ⎥

∂N∂x

≈Ni−2 −4Ni−1+3Ni

2Δx

Solve (Table 6.2d)

Page 27: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Higher-Order Approximations

Third-order forward difference (m = 1, q = 4) Table 6.2 (g)

Fourth-order backward difference (m = 1, q = 5) Table 6.2 (i)

Third-order backward difference (m = 1, q = 4) Table 6.2 (f)

Fourth-order forward difference (m = 1, q = 5) Table 6.2 (j)

∂N∂x

≈Ni−2 −6Ni−1+3Ni +2Ni+1

6Δx

∂N∂x

≈−2Ni−1−3Ni +6Ni+1−Ni+2

6Δx

∂N∂x

≈−Ni−3+6Ni−2 −18Ni−1+10Ni +3Ni+1

12Δx

∂N∂x

≈−3Ni−1−10Ni +18Ni+1−6Ni+2 +Ni+3

12Δx

Page 28: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fourth-Order Approximations

Fourth-order backward diff. scheme (m = 1, q = 5) Table 6.2 (k)

Discretize around furthest cell

Fourth-order forward difference (m = 1, q = 5) Table 6.2 (l)

1 1 1 1 1

−4Δx −3Δx −2Δx −Δx 0

−4Δx( )2 −3Δx( )2 −2Δx( )2 −Δx( )2 0

−4Δx( )3 −3Δx( )3 −2Δx( )3 −Δx( )3 0

−4Δx( )4 −3Δx( )4 −2Δx( )4 −Δx( )4 0

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

γi−4γi−3γi−2γi−1γi

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=

0

1

0

0

0

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

∂N∂x

≈−3Ni−4+16Ni−3 −36Ni−2 +48Ni−1−25Ni

12Δx

∂N∂x

≈25Ni −48Ni+1+36Ni+2 −16Ni+3+3Ni+4

12Δx

Page 29: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fourth-Order Central Diff. Approx.

Fourth-order central difference of ∂N/∂x (m = 1, q = 5) (6.33)

Table 6.2 (h)

1 1 1 1 1

−2Δx −Δx 0 Δx 2Δx

−2Δx( )2 −Δx( )2 0 Δx( )2 2Δx( )2

−2Δx( )3 −Δx( )3 0 Δx( )3 2Δx( )3

−2Δx( )4 −Δx( )4 0 Δx( )4 2Δx( )4

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

γi−2γi−1γi

γi+1γi+2

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=

0

1

0

0

0

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

∂N∂x

≈Ni−2 −8Ni−1+8Ni+1−Ni+2

12Δx

Page 30: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fourth-Order Central Diff. Approx.

Fourth-order central difference of ∂2N/∂x2 (m = 2, q = 5)

Table 6.2 (n)

1 1 1 1 1

−2Δx −Δx 0 Δx 2Δx

−2Δx( )2 −Δx( )2 0 Δx( )2 2Δx( )2

−2Δx( )3 −Δx( )3 0 Δx( )3 2Δx( )3

−2Δx( )4 −Δx( )4 0 Δx( )4 2Δx( )4

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

γi−2γi−1γi

γi+1γi+2

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=

0

0

2

0

0

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

∂2N

∂x2 ≈−Ni−2 +16Ni−1−30Ni +16Ni+1−Ni+2

12Δx2

Page 31: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Advection-Diffusion Eqn. SolutionsSpecies continuity equation in west-east direction (6.1)

CFL stability criterion for advection

Stability criterion for diffusion

∂N∂t

+∂ uN( )

∂x−

∂∂x

Kh,xx∂N∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =0

h<Δxmin umax

h<Δxmin2 Kmax

Example:xmin=5 km, |umax|=20 m/s --> h=250 s (Hydrostatic model)xmin=5 km, |umax|=346 m/s --> h=14.5 s (Nonhydrostatic model)

Example:zmin=20 m, Kmax=50 m2/s --> h=8 s (in the vertical)

Page 32: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

FTCS SolutionForward in time, centered in space (FTCS) solution (6.35)

1st-order approximation in time

Unconditionally unstable for K=0, large K; otherwise conditionally stable

Ni,t −Ni,t−hh

+uN( )i+1,t−h − uN( )i−1,t−h

2Δx

−KNi+1,t−h −2Ni,t−h +Ni−1,t−h

Δx2 =0

Page 33: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Advection-Diffusion Eqn. SolutionsImplicit solution: 1st-order approximation in time (6.36)

Unconditionally stable for all u, K

Rearrange and write in tridiagonal matrix form (6.37)

Ai =−hu

2Δx+

K

Δx2⎛

⎝ ⎜

⎠ ⎟ i−1

Bi =1+h2K

Δx2⎛

⎝ ⎜

⎠ ⎟ i

Di =hu

2Δx−

K

Δx2⎛

⎝ ⎜

⎠ ⎟ i+1

(6.38)

Ni,t −Ni,t−hh

+uN( )i+1,t − uN( )i−1,t

2Δx−K

Ni+1,t −2Ni,t +Ni−1,t

Δx2=0

AiNi−1,t +BiNi,t +DiNi+1,t =Ni,t−h

Page 34: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Advection-Diffusion Eqn. SolutionsRearrange and write in tridiagonal matrix form (6.39)

B1 D1 0 0 ... 0 0 0

A2 B2 D2 0 ... 0 0 0

0 A3 B3 D3 ... 0 0 0

0 0 A4 B4 ... 0 0 0

: : : : : : :

0 0 0 0 ... BI−2 DI−2 0

0 0 0 0 ... AI−1 BI−1 DI−10 0 0 0 ... 0 AI BI

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

N1,tN2,tN3,tN4,t

:

NI −2,tNI−1,tNI,t

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=

N1,t−hN2,t−hN3,t−hN4,t−h

:

NI−2,t−hNI−1,t−hNI ,t−h

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

A1N0,t0

0

0

:

0

0

DINI+1,t

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

Page 35: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Tridiagonal Matrix SolutionMatrix decomposition: (6.40)

i = 2..I

i = 2..I

Matrix backsubstitution: (6.41)

i = I -1..1, -1

γ1 =−D1B1

γi =−Di

Bi +Aiγi−1

α1 =R1B1

αi =Ri −Aiαi−1Bi +Aiγi−1

NI ,t =α I Ni,t =αi +γiNi+1,t

Page 36: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Tridiagonal Matrix SolutionMatrix for solution for periodic boundary conditions (6.42)

B1 D1 0 0 ... 0 0 A1A2 B2 D2 0 ... 0 0 0

0 A3 B3 D3 ... 0 0 0

0 0 A4 B4 ... 0 0 0

: : : : : : :

0 0 0 0 ... BI−2 DI−2 0

0 0 0 0 ... AI−1 BI −1 DI −1DI 0 0 0 ... 0 AI BI

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

N1,tN2,tN3,tN4,t

:

NI−2,tNI −1,tNI ,t

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=

N1,t−hN2,t−hN3,t−hN4,t−h

:

NI−2,t−hNI−1,t−hNI,t−h

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

Values at node I are adjacent to those at node 1

Page 37: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Crank-Nicolson SchemeCrank-Nicolson form (6.44)

c = Crank-Nicolson parameter= 0.5 --> Crank-Nicolson solution (unconditionally stable all u, K)

2nd-order approximation in time = 0. --> explicit (FTCS) solution= 1 --> implicit solution

Ni,t −Ni,t−hh

+ μcuN( )i+1,t − uN( )i−1,t

2Δx+ 1−μc( )

uN( )i+1,t−h− uN( )i−1,t−h2Δx

⎣ ⎢

⎦ ⎥

−K μcNi+1,t −2Ni,t +Ni−1,t

Δx2+ 1−μc( )

Ni+1,t−h −2Ni,t−h +Ni−1,t−h

Δx2⎡

⎣ ⎢ ⎤

⎦ ⎥ =0

Page 38: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Crank-Nicolson SchemeTridiagonal form (6.45)

Ai =−μchu

2Δx+

K

Δx2⎛

⎝ ⎜

⎠ ⎟ i−1

Ei = 1−μc( )hu

2Δx+

K

Δx2⎛

⎝ ⎜

⎠ ⎟ i−1

Bi =1+μch2K

Δx2⎛

⎝ ⎜

⎠ ⎟ i

Fi =1− 1−μc( )h2K

Δx2⎛

⎝ ⎜

⎠ ⎟ i

Di =μchu

2Δx−

K

Δx2⎛

⎝ ⎜

⎠ ⎟ i+1

Gi =−1−μc( )hu

2Δx−

K

Δx2⎛

⎝ ⎜

⎠ ⎟ i+1

AiNi−1,t +BiNi,t +DiNi+1,t =EiNi−1,t−h +FiNi,t−h+GiNi+1,t−h

Page 39: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Leapfrog Scheme2nd-order approximation in time (6.48)

Unconditionally unstable for all nonzero K; conditionally stable for linear equations when K=0; unstable for nonlinear equations

Ni,t −Ni,t−2h2h

+uN( )i+1,t−h − uN( )i−1,t−h

2Δx−K

Ni+1,t−h −2Ni,t−h +Ni−1,t−h

Δx2=0

Page 40: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Matsuno Scheme

Prediction step (6.49)

Correction step (6.49)

Ni,est−Ni,t−hh

+uN( )i+1,t−h −uN( )i−1,t−h

2Δx−K

Ni+1,t−h−2Ni,t−h+Ni−1,t−h

Δx2=0

Ni,t −Ni,t−hh

+uN( )i+1,est− uN( )i−1,est

2Δx−K

Ni+1,est−2Ni,est+Ni−1,est

Δx2=0

1st-order approximation in time

Conditionally stable for all u when K=0 or small; unconditionally unstable for large K

Page 41: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Heun Scheme2nd-order approximation in time (6.51)

Unconditionally unstable for all u when K=0 and K large; conditionally stable for other values of K

Ni,t −Ni,t−hh

+12

uN( )i+1,est− uN( )i−1,est2Δx

−K2

Ni+1,est−2Ni,est+Ni−1,est

Δx2

+12

uN( )i+1,t−h − uN( )i−1,t−h2Δx

−K2

Ni+1,t−h −2Ni,t−h +Ni−1,t−h

Δx2 =0

Prediction step same as first Matsuno step

Page 42: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Adams-Bashforth Scheme2nd-order approximation in time (6.52)

Unconditionally unstable for all u when K=0 and K large; conditionally stable for other values of K.

Ni,t −Ni,t−hh

+32

uN( )i+1,t−h −uN( )i−1,t−h2Δx

−32KNi+1,t−h −2Ni,t−h +Ni−1,t−h

Δx2

−12

uN( )i+1,t−2h − uN( )i−1,t−2h2Δx

+12KNi+1,t−2h −2Ni,t−2h +Ni−1,t−2h

Δx2=0

Page 43: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fourth-Order Runge-Kutta SchemeConditionally stable (6.53-5)

Ni,t =Ni,t−h+k16

+k23

+k33

+k46

k1 =h −uN( )i+1,t−h− uN( )i−1,t−h

2Δx+K

Ni+1,t−h−2Ni,t−h+Ni−1,t−h

Δx2⎡

⎣ ⎢

⎦ ⎥

k2 =h −ut−hNest1( )i+1−ut−hNest1( )i−1

2Δx+K

Ni+1,est1−2Ni,est1+Ni−1,est1

Δx2⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Ni,est1=Ni,t−h +k12

Ni , est 2

= Ni , t − h

+

k2

2

Page 44: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fourth-Order Runge-Kutta Scheme

Ni,est3 =Ni,t−h +k3

k4 =h −ut−hNest3( )i+1−ut−hNest3( )i−1

2Δx+K

Ni+1,est3−2Ni,est3+Ni−1,est3

Δx2⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

k3=h −ut−hNest2( )i+1−ut−hNest2( )i−1

2Δx+K

Ni+1,est2 −2Ni,est2+Ni−1,est2

Δx2⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 45: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Convergence of Four Schemes

(Ketefian and Jacobson 2004b) Fig. 6.5

10

-11

10

-9

10

-7

10

-5

10

-3

10

-1

0.1 1 10

Runge-Kutta

Adams-Bashforth

Matsuno

Forward Euler

Error

Time step (s)

1

st

-order

5

th

-6

th

order

2

nd

-order

Err

or

Page 46: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Fourth-Order in Space SolutionCentral difference implicit solution (6.56)

Write in Crank-Nicolson and pentadiagonal form

Ni,t −Ni,t−hh

+uN( )i−2,t −8uN( )i−1,t +8uN( )i+1,t − uN( )i+2,t

12Δx

−K−Ni−2,t +16Ni−1,t −30Ni,t +16Ni+1,t −Ni+2,t

12Δx2 =0

AiNi−2,t+BiNi−1,t +DiNi,t +EiNi+1,t +FiNi+2,t

=PiNi−2,t−h+QiNi−1,t−h +SiNi,t−h+TiNi+1,t−h +UiNi+2,t−h

Page 47: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Variable Grid Spacing, WindsSecond-order central difference of advection term (6.57)

Solve matrix equation to obtain coefficients (6.58)

∂ uN( )∂x

=γa,i−1 uN( )i−1+γa,i uN( )i +γa,i+1 uN( )i+1

1 1 1

−xi −xi−1( ) 0 xi+1−xi( )

xi −xi−1( )2 0 xi+1−xi( )

2

⎢ ⎢ ⎢

⎥ ⎥ ⎥

γa,i−1γa,i

γa,i+1

⎢ ⎢ ⎢

⎥ ⎥ ⎥

=

0

1

0

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Page 48: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Variable Grid Spacing, Winds

Solve matrix equation to obtain coefficients (6.59)

γa,i+1 =xi −xi−1

xi+1−xi( ) xi+1−xi−1( )

γa,i =xi+1−xi( ) − xi −xi−1( )xi+1−xi( ) xi −xi−1( )

γa,i−1 =−xi+1−xi( )

xi −xi−1( ) xi+1−xi−1( )

Page 49: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Variable Grid Spacing, DiffusionExpand analytical diffusion term (6.60)

Second-order central-difference approx. to terms (6.61)

∂∂x

K∂N∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =

∂K∂x

∂N∂x

+K∂2N

∂x2

∂K∂x

≈γa,i−1Ki−1+γa,iKi +γa,i+1Ki+1

∂N∂x

≈γa,i−1Ni−1+γa,iNi +γa,i+1Ni+1

K∂2N

∂x2≈Ki γd,i−1Ni−1+γd,iNi +γd,i+1Ni+1( )

Page 50: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Variable Grid Spacing, DiffusionSolve matrix equation to obtain coefficients (6.63)

γd,i−1=2

xi −xi−1( ) xi+1−xi−1( )

γd,i =−2

xi+1−xi( ) xi −xi−1( )

γd,i+1=2

xi+1−xi( ) xi+1−xi−1( )

Page 51: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Variable Grid Spacing SolutionCrank-Nicolson form (c=0.5--> 2nd order time, space) (6.66)

Coefficients for diffusion term(6.65)

Write in tridiagonal form

Ni,t −Ni,t−hh

=−μc γau−βK( )N[ ]i−1+ γau−βK( )N[ ]i + γau−βK( )N[ ]i+1{ }t

−1−μc( ) γau−βK( )N[ ]i−1+ γau−βK( )N[ ]i + γau−βK( )N[ ]i+1{ }t−h

βK ,i−1 = γa,i−1Ki−1+γa,iKi +γa,i+1Ki+1( )γa,i−1+Kiγd,i−1

βK ,i = γa,i−1Ki−1+γa,iKi +γa,i+1Ki+1( )γa,i +Kiγd,i

βK ,i+1 = γa,i−1Ki−1+γa,iKi +γa,i+1Ki+1( )γa,i+1+Kiγd,i+1

AiNi−1,t +BiNi,t +DiNi+1,t =EiNi−1,t−h +FiNi,t−h+GiNi+1,t−h

Page 52: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Two Dimensional Solution Advection-diffusion equation in two dimensions

(6.67)

Central difference approximation(6.68)

Solve

∂N∂t

+∂ uN( )

∂x+

∂ vN( )∂y

−∂∂x

Kh,xx∂N∂x

⎛ ⎝ ⎜

⎞ ⎠ ⎟ −

∂∂y

Kh,yy∂N∂y

⎝ ⎜

⎠ ⎟ =0

Ni, j,t −Ni,j,t−hh

+uN( )i+1, j − uN( )i−1, j

2Δx+vN( )i, j+1− vN( )i,j−1

2Δy

⎣ ⎢ ⎢

⎦ ⎥ ⎥ t

− Kh,xxNi−1, j −2Ni, j +Ni+1, j

Δx2 +Kh,yyNi, j−1−2Ni, j +Ni, j+1

Δy2⎛

⎝ ⎜

⎠ ⎟ t=0

Ai, jNi−1, j,t +Bi, jNi, j,t +Di, jNi+1,j,t +Ei, jNi, j−1,t +Fi,jNi, j+1,t =Ni, j,t−h

Page 53: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Semi-Lagrangian Method

Nx,t =Nx−uh,t−h

Concentration at current time t and existing node x (6.69)

Values at time x-uh, t-h interpolated from existing nodes

Page 54: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Element Method Advection equation at node i

(6.70)

Trial function = series expansion approximation to N (6.71) = linear combination of basis functions

ej(x) = basis function

j = trial space

∂Ni∂t

+∂ uN( )i

∂x=0

Ni ≈Ni x( ) = Njej x( )

j∑

Page 55: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Element Method

Minimize residual (6.72) Force its weighted average to zero over domain

Residual in advection equation (6.73)

ei(x) = weight function

ei(x) = ej(x) --> Galerkin method of weighted residuals

ei(x) ≠ ej(x) --> Petrov-Galerkin technique

Ri x( )ei x( )dxx∫ =0

Ri x( ) =∂Ni x( )

∂t+u

∂Ni x( )∂x

⎣ ⎢ ⎤

⎦ ⎥ −∂Ni∂t

+u∂Ni∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥ =

∂Ni x( )∂t

+u∂Ni x( )

∂x⎡

⎣ ⎢ ⎤

⎦ ⎥ −0

Page 56: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Element Method Substitute

∂Ni x( )∂t

+u∂Ni x( )

∂x⎡

⎣ ⎢ ⎤

⎦ ⎥ ei x( )dxx∫

=∂∂t

Njej x( )

j∑

⎜ ⎜

⎟ ⎟ +u

∂∂x

Njej x( )

j∑

⎜ ⎜

⎟ ⎟

⎢ ⎢ ⎢

⎥ ⎥ ⎥ ei x( )dx

x∫

=∂Nj∂t

ej x( )ei x( )dxx∫

⎝ ⎜

⎠ ⎟

j∑ +u Nj

dej x( )

dxei x( )dx

x∫⎛

⎝ ⎜

⎠ ⎟

j∑ =0

Ri x( )ei x( )dxx∫ =0

Ri x( ) =∂Ni x( )

∂t+u

∂Ni x( )∂x

Ni x( )= Njej x( )

j∑

into

to obtain (6.74)

Page 57: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Element Method Take time difference of (6.74) over three nodes

(6.75)Ni−1,t −Ni−1,t−h

hei−1 x( )ei x( )xi−1

xi∫ dx+Ni,t −Ni,t−h

hei x( )ei x( )xi−1

xi+1∫ dx

+Ni+1,t −Ni+1,t−h

hei+1 x( )ei x( )xi

xi+1∫ dx

+u

Ni−1,tdei−1 x( )

dxei

xi−1

xi∫ x( )dx+Ni,t

dei x( )dx

ei x( )xi−1

xi+1

∫ dx

+Ni+1,tdei+1 x( )

dxei

xi

xi+1

∫ x( )dx

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

=0

Page 58: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Element Method Define basis functions as chapeau functions

(6.76)

Solve each integral(6.77)

ei x( )=

x−xi−1xi −xi−1

xi−1≤x≤xi

xi+1−xxi+1−xi

xi ≤x≤xi+1

0 all other cases

⎪ ⎪ ⎪

⎪ ⎪ ⎪

ei−1 x( )ei x( )xi−1

xi∫ dx=

xi −xxi −xi−1

⎝ ⎜

⎠ ⎟

x−xi−1xi −xi−1

⎝ ⎜

⎠ ⎟

xi−1

xi∫ dx=

x−xi−16

Page 59: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Finite Element Method Substitute integral solutions back into (6.75)

(6.78)Ni−1,t −Ni−1,t−h( )Δxi + Ni,t −Ni,t−h( )2 Δxi+1+Δxi( ) + Ni+1,t −Ni+1,t−h( )Δxi+1

6h

+uNi+1,t −Ni−1,t

2=0

Solve with tridiagonal matrix solution --> 4th-order in space, 2nd order in time

Page 60: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Tests with a Finite Element Method Preservation of a Gaussian peak during finite element transport after

eight revolutions around a circular grid when uh/x= 0.02

-200

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

Concentration (generic)

Grid cell number

Fig. 6.8

Con

cent

ratio

n

Page 61: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Tests with a Finite Element Method Preservation of a Gaussian peak during finite element transport after

eight revolutions around a circular grid when uh/x= 0.6

-400

-200

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

Concentration (generic)

Grid cell number Fig. 6.8

Con

cent

ratio

n

Page 62: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Pseudospectral Method Advection equation

(6.87)∂N∂t

+u∂N∂x

=0

Represent solution with infinite Fourier series(6.88)

N x,t( )= ak t( )eik2πx L

k=0

∑For t=0, integrate both sides of (6.88) from 0≤x≤L

(6.89)

ak 0( )=1L

N x,0( )0

L

∫ e−ik2πx Ldx

Page 63: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Pseudospectral Method Truncate infinite series

(6.90)

Central time-difference approximation of (6.90)(6.91)

Partial derivative of (6.90) with respect to space(6.92)

N x,t( )= ak t( )eik2πx L

k=0

K

∂N∂t

≈12h

ak,teik2πx L

k=0

K

∑ − ak,t−2heik2πx L

k=0

K

∑⎛

⎜ ⎜

⎟ ⎟

∂N∂x

=ik2πak,t−h

Leik2πx L

k=0

K

Page 64: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Pseudospectral Method

Substitute (6.91) and (6.92) into (6.87)(6.93)

Separate into K equations --> solve(6.94)

12h

ak,t−ak,t−2h( )eik2πx L

k=0

K

∑ =−uik2πak,t−h

Leik2πx L

k=0

K

ak,t −ak,t−2h2h

=−uik2πak,t−h

L

Page 65: Presentation Slides for Chapter 6 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Traits of a Good Advection Scheme

Final shape after six rotations around a 2-D grid. Walcek (2000)

Fig 6.9

BoundedNonoscillatoryMonotonic