Presentasi1 Bagian Fatigue-nominal Stress Approach

Embed Size (px)

Citation preview

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    1/43

    December, 2011

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    2/43

    HullStruc

    turalAssessment

    1. Introduction

    2. Objectives and Scope of Works

    3. Code and Standard

    4. Methodology

    5. Data

    6. Calculation of Static Load

    7. Finite Element Model

    8. Stress Analysis Result

    9. Remaining life

    10. Conclusion and Recommendation

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    3/43

    HullStruc

    turalAssessment

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    4/43

    HullStruc

    turalAssessment

    The Pertamina Hulu Energi (PHE) ONWJ production sharing contracts in

    the Java Sea cover 8,300 square kilometers, from north of Cirebon in the

    east to Pulau Seribu in the west.

    PHE ONWJ will assess the structural of Arco Ardjuna Hull based on actual

    condition.

    The condition influenced by problems of aging hull structural such as

    general corrosion and local pitting, thinner material leads to higher stress

    and lower buckling capacity and fatigue damage accumulation, cracks

    and crack growth.

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    5/43

    HullStruc

    turalAssessment

    Arco Ardjuna Hull structural assessment for evaluation of FSO hull

    strength is needs to be done to provide the necessary structural integrity

    throughout its service life.

    For this purpose, the environmental condition is defined with a specific

    combination of wind, waves and current.

    This environmental load combined to the operational and deformation

    load used as load input to the analysis.

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    6/43

    HullStruc

    turalAssessment The objective of this assessment is to obtain safety factor from stress

    analysis result and life time for the hull structure based on actual

    condition.

    Data collection and preliminary study

    Site visit

    Calculation of environmental, operational and deformation load

    Perform stress analysis for hull structural using finite element method with

    static, dynamic and impact loading

    Strength/structural integrity evaluation

    Calculation of hull structural life time with consideration of: Corrosion

    Fatigue

    Stability due to cargo transfer operation

    Stability due to buckling or collapse

    Mechanical damage Generate conclusion and recommendation

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    7/43

    HullStruc

    turalAssessm

    ent

    Preliminary Study

    Site Visit

    Data Collection

    Stress Analysis

    Structural Integrity

    Evaluation

    Remaining Life

    Presentation

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    8/43

    HullStruc

    turalAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    9/43

    HullStruc

    turalAssessm

    ent

    Floating Storage and Offloading Barge (FSO)ARCO Ardjuna

    Name ARCO Ardjuna

    Description Floating Storage and Offloading Barge (FSO)

    Classification society American Bureau of Shipping (ABS)

    Class notation A1, Oil Tank Barge, Storage Service

    LOA (Length Overall) 142.6 m

    LBP (Length Between

    Perpendicular)142.6 m

    Molded Breadth 48.2 m

    Molded Depth 26.5 m

    Max. Draft (design) 24.0 m

    Min. Draft (Light Load) 6 m

    Dead weight 137,673 tonnes

    Gross tonnage 54,236 tonnes

    Net tonnage 53,653 tonnes

    Light ship weight 15,529 tonnes

    Light draft 2.52 m

    Summer draft 19.68 m

    Free board 6.87 m

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    10/43

    HullStruc

    turalAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    11/43

    HullStruc

    turalAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    12/43

    HullStruc

    turalAssessm

    ent

    1. Static Hull Girder Loadsa. Hull girder still water bending moment

    b. Hull girder still water shear force

    2. Local Static Loads

    a. Static sea pressureb. Static tank pressure

    c. Static deck loadSagging

    Hogging

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    13/43

    HullStruc

    turalAssessm

    ent

    Data Symbol Value UnitWave coefficient Cwv 8.775

    Block coefficient Cb 0.6

    SAGGINGat amidship Msw -579747.4 kNmat any longitudinal position

    Still-water Bending Moment at 0.4L

    amidship Msw -579747.4 kNmStill-water Bending Moment at 0.1L from

    A.P. or F.P. Msw -86962.1 kNmStill-water Bending Moment at A.P. or F.P. Msw 0.0 kNm

    HOGGINGat amidship Msw 931483.5 kNmat any longitudinal position

    Still-water Bending Moment at 0.4L

    amidship Msw 931483.5 kNmStill-water Bending Moment at 0.1L from

    A.P. or F.P. Msw 139722.5 kNmStill-water Bending Moment at A.P. or F.P. Msw 0.0 kNm

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    14/43

    HullStruc

    turalAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    15/43

    HullStructuralAssessm

    ent

    Still-water Shear Force Symbol Value Unit

    Considering the Side Shell

    Plating

    SWSFp (at 0L) #DIV/0!

    kN

    SWSFp (at 0.2L-0.3L) #DIV/0!SWSFp (at 0.4L-0.6L) #DIV/0!SWSF (at 0.7L-0.85L) #DIV/0!

    SWSFp (at L) #DIV/0!SWSFn (at 0L) #DIV/0!

    SWSFn (at 0.2L-0.3L)

    #DIV/0!

    SWSFn (at 0.4L-0.6L) #DIV/0!SWSn (at 0.7L-0.85L) #DIV/0!

    SWSFn (at L) #DIV/0!

    Considering Various

    Longitudinal Bulkhead Plating

    SWSFp (at 0L) #DIV/0!

    kN

    SWSFp (at 0.2L-0.3L) #DIV/0!SWSFp (at 0.4L-0.6L) #DIV/0!SWSF (at 0.7L-0.85L)

    #DIV/0!

    SWSFp (at L) #DIV/0!SWSFn (at 0L) #DIV/0!

    SWSFn (at 0.2L-0.3L) #DIV/0!SWSFn (at 0.4L-0.6L) #DIV/0!SWSn (at 0.7L-0.85L) #DIV/0!

    SWSFn (at L) #DIV/0!

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    16/43

    HullStructuralAssessm

    ent

    Local Static Loads Symbol Value Unit

    Static sea pressure Phys kN/m2

    Static tank pressure Pin-tk kN/m2

    Static deck Pdeck 16 kN/m2

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    17/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    18/43

    HullStructuralAssessm

    ent

    Modeling:Geometry, Material, Property

    Input Parameter:Constrain and Loads

    Finite Element Analysis

    Convergent Result

    Output:

    Stress Contour andDeformation

    No

    Yes

    The FEM software that used forcalculate and analyze the

    maximum stress is performed by

    MSC Nastran.

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    19/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    20/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    21/43

    HullStructuralAssessm

    ent

    Bottom Stiffener

    Bottom Stiffener

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    22/43

    HullStructuralAssessm

    ent

    Amidship and Bracket

    Amidship Stiffener

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    23/43

    HullStructuralAssessm

    ent

    OT Stiffener

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    24/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    25/43

    HullStructuralAssessm

    ent

    Swash Stiffener

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    26/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    27/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    28/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    29/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    30/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    31/43

    HullStructuralAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    32/43

    HullStructuralAssessm

    ent

    RemainingLife

    Corrosion

    Fatigue

    Stability dueto cargotransfer

    operation Stability due

    to bucklingor collapse

    Mechanicaldamage

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    33/43

    HullStructuralAssessm

    ent

    Remaining Life

    ratecorrosion

    ttLifemaining actual minRe

    Where:

    tactual = the thickness, in mm, recorded at the time of inspection for a

    given location or componenttmin = minimum allowable thickness, in mm, for a given location or

    component

    Corrosion Rate

    actualprevious

    actualprevious

    tandtbetweenyears

    ttRateCorrosion

    Where:

    tprevious = the thickness, in inches (millimeters), recorded at the same

    location as t actual measured during a previous inspection.

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    34/43

    HullStructuralAssessm

    ent

    Main Deck 25 30 17.5 14.7 0.278 -10

    Bottom Plating - CT1 21 20 16.8 21.9 0.278 18

    Bottom Plating - WT1 21 20 16.8 21.5 0.278 17

    Bottom Plating - CT2 21 20 16.8 21.6 0.278 17

    Bottom Plating - WT2 21 20 16.8 21.8 0.278 18Bottom Plating - CT3 21 20 16.8 21.7 0.278 18

    Bottom Plating - WT3 21 20 16.8 21.5 0.278 17

    17 25 12.75 22.4 0.278 35

    18 25 13.5 22 0.278 31

    Remaining

    Life (Years)

    Side Shell

    Original

    Thickness

    [mm]

    Max. Alwb

    Dim

    [%]

    Min allowable

    thickness

    (mm)

    Min actual

    thickness

    (mm)

    Max corrosion

    rate

    (mm/year)

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    35/43

    HullStructuralAssessm

    ent

    Based on Palmgren-Miner cumulative damagerule. The fatigue capability is not acceptable

    if DM > 1

    The fatigue assessment is to be applied towelded connections where the steel has a

    minimum yield strength of less than

    400N/mm2.

    =

    =

    =1

    ni: Number of cycles of stress range Si

    Ni: Number of cycles to failure at stress range Si

    ntot: Total number of stress range blocks

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    36/43

    HullStructuralAssessm

    ent

    Materials

    Data

    Stress Range

    Load

    Selection ofthe Design S-

    N Curve

    Calculation ofCummulative

    Damage =

    2

    =1

    =

    1

    +

    2

    +

    3

    +

    4

    /

    2

    = 2

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    37/43

    HullStructuralAssessm

    ent

    Static loadWave induced loads

    Impact loads

    Cyclic loads

    Transient loads

    Residual stress

    Hull girder loads

    Dynamic wave pressuresDynamic tank pressure loads resulting from

    ship motion

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    38/43

    HullStructuralAssessm

    ent

    fSN 1,06; factor to account for joint in combined

    protected & unprotected environment

    f1, f2, f3, and f4 stress combination factor

    Sv Stress range due to vertical bending moment,N/mm2

    Sh Stress range due to horizontal bending moment,

    N/mm2

    Se Stress range due to external wave or internaltank pressure, N/mm2

    Si Stress range due to external wave or internal

    tank pressure, N/mm2

    =

    1

    +

    2

    +

    3

    +

    4

    /

    2

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    39/43

    HullStructuralAssessm

    ent

    S Stress range cumulative

    N predicted number of cycles to failure

    under stress range

    m constant depending on material andweld type, type of loading, geometrical

    configuration and environmental conditions

    (air or sea water)

    K2 constant depending on material and

    weld type, type of loading, geometrical

    configuration and environmental conditions

    (air or sea water)

    = 2

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    40/43

    HullStru

    cturalAssessm

    ent

    DMi Cumulative fatigue damage ratio for

    the applicable loading condition

    i = 1 for full load condition

    = 2 for normal ballast condition

    =2

    =1

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    41/43

    HullStru

    cturalAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    42/43

    HullStru

    cturalAssessm

    ent

  • 8/2/2019 Presentasi1 Bagian Fatigue-nominal Stress Approach

    43/43

    HullStru

    cturalAssessm

    ent