1
www.postersession.com Preclinical studies characterize tumor type sensitivity to FASN inhibition and the mechanism and efficacy of novel drug combinations with TVB-2640 Timothy S. Heuer , Richard Ventura, Julie Lai, Joanna Waszczuk, Kasia Mordec, Claudia Rubio, Glenn Hammonds, Marie O’ Farrell, Douglas Buckley and George Kemble 3-V Biosciences, Menlo Park, CA Introduction Classification of Tumor Lipogenic and Epithelial Gene Expression Aligns with FASN-Inhibitor Sensitivity In Vitro 3-V Biosciences’ lead, oral FASN inhibitor is in Phase I clinical development for the treatment of solid tumors Fatty acid synthase (FASN) catalyzes the synthesis of palmitate from acetyl-CoA, malonyl-CoA, and NADPH Tumor cells have an increased dependence on FASN-synthesized palmitate compared to non-tumor cells FASN Inhibition decreases cellular levels of palmitate and saturated fatty acids and induces tumor cell apoptosis In vitro and in vivo studies have identified multiple mechanisms of action for FASN inhibition efficacy that include: (1) Membrane and lipid raft architecture remodeling; (2) Tumor cell gene expression reprogramming; (3) Signal transduction pathway inhibition Studies to understand the mechanisms of action and biological consequences of FASN inhibition are guiding the discovery of tumors highly dependent on FASN and biomarkers for assessment of pharmacodynamic activity and patient selection Figure 7. CALU-6 NSCLC cells respond to FASN inhibition in the presence of 1% glutamine but not glutamine-free media. Similar results observed in PANC-1 tumor cells. CASP1 and ELOVL6 gene expression by qPCR are representative of more global gene expression effects. Conclusions Combined FASN Inhibition with PD1 Immunotherapy Enhances Xenograft Efficacy Lipogenic gene expression signatures classify FASNi sensi7vity Lipogenic gene expression is increased in Krasmutant NSCL tumors; Kras mutant NSCLC cell lines have increased FASNi sensi7vity Palmitoyla7on of Rasassociated signaling proteins is increased in Kras mutant NSCLC cell lines and is inhibited by FASN inhibi7on with TVB3664 FASN inhibi7on combines with PD1 immunotherapy or VEGF inhibi7on (bevacizumab) to increase significantly in vivo tumor xenograR efficacy TVB2640 CLIN002 tumor mRNA shows bcatenin, mito7c cell cycle, VEGFR and Ras pathway dysregula7on in responsive, not unresponsive, pa7ents Figure 9. TVB-3664 combined with bevacizumab shows increased tumor growth inhibition compared to single agent treatment. In vitro assays measuring endothelial cell tube formation (Incucyte analysis, Essen biosciences) shows that media conditioned with COLO-205 cells treated with TVB-3644 inhibits tube length in combination with axitinib better that axitinib alone or COLO-205 cells treated with vehicle (DMSO). Results Figure 1. Tumor cell line classification by gene expression analysis. Methods described in the Collisson et al and Daemen et al reports were followed using in vitro viability data (cell titer glo) with TVB-3166. Gene expression data were from the CCLE (Broad Institute, Cambridge, MA). #4743 Published literature reports gene expression signatures of lipogenic, glycoly7c, epithelial, and mesenchymal phenotypes Lipogenic and epithelial phenotypes cosegregate Glycoly7c and mesenchymal phenotypes cosegregate Applica7on to 3V In vitro data shows associa7on with FASN inhibitor sensi7vity Applica7on to TCGA tumor data (8588 samples) to iden7fy candidate tumor types and biomarkers of FASN inhibitor sensi7vity Stra7fica7on and analysis of molecular gene7c features of tumors TVB Sensitive TVB Insensitive 0 20 40 60 80 100 Epithelial/Mesenchymal % of Cell Lines Classical/Exocrine QM-PDA TVB Sensitive TVB Insensitive 0 10 20 30 40 50 Lipogenic/Glycolytic Lipogenic Glycolytic References 1. Collisson et al. Nat Med. 2011 Apr;17(4):5003. Epub 2011 Apr 3. PMID: 21460848 2. Daemen et al. Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E44107. Epub 2015 Jul 27. PMID: 26216984 PRAD LIHC STAD COAD BLCA LUAD CESC ESCA BRCA READ UCEC KICH OV LUSC PAAD HNSC UVM CHOL THCA ACC KIRC KIRP SKCM UCS PCPG TGCT MESO SARC GBM 0 200 400 600 800 1000 1200 Tumor Type Abbreviation Number Lipogenic-Glyclotic Stratification of TCGA Tumor Data - Sample Number Q1 - Lipogenic Q2 - Undetermined Q3 - Undetermined Q4 - Glycolytic LIHC READ KICH PRAD COAD STAD CHOL ESCA BLCA UCEC LUAD CESC UVM ACC PAAD OV KIRP BRCA LUSC HNSC UCS THCA KIRC SKCM PCPG TGCT MESO SARC GBM 0 20 40 60 80 100 Tumor Type Abbreviation Percent Total Lipogenic-Glyclotic Stratification of TCGA Tumor Data Normalized gene expression scores WScore: Weighted sum of 4 gene sets plus VIM and FASN. Weights determined by mul7variable linear least squares regression for best match to FASNi sensi7vity. VIM: Vimen7n, high mesenchymal expression, low epithelial expression. Alpha: FASN sensi7vityderived gene set. Difference between mean zscore of 17 posi7ve correla7on genes and mean zscore of 20 nega7ve correla7on genes. MES: PDACderived mesenchymal/epithelial gene set. Difference between mean zscore of 20 mesenchymal genes and mean zscore of 22 epithelial genes. FASN: TVB2640 target. Synthesizes palmitate that provides a substrate for complex lipids that func7on in cell signaling and metabolism. KRAS-Mutant NSCLC Tumors are More Lipogenic Classification of Lipogenicity in TCGA Tumor mRNA Data RAS Mutation Associated with FASN Sensitivity in NSCLC Cell Lines FASN Inhibition Remodeled Membrane Architecture Disrupted Signal Transduction Altered Gene Expression RTK RTK Cytoplasm p85 Extracellular Ras PI3K AKT AKT !"#$ &'() $") *+,, -./012 3 45.6768, !9*81+:7: ;<'= >?@4A) $&4A BC* *+,, &./,7D+.8E/: 3 45.6768, -4)( *FG,7: H &F.5681+ *71.81+ ;G+1F, */; -,5G/I+ -,518!7:+ J;4= "KL9(MAA $;4 !9*81+:7: < < < N$&A &8,!7181+ J$OH Signal Transduction Gene Expression Organized Lipid Raft Membrane Microdomain RTK RTK Cytoplasm p85 Extracellular Ras PI3K AKT AKT !"#$ &'() & $") *+,, -./012 3 45.6768, !9*81+:7: ;<'= >=" ?@A4B) $&4B CD* *+,, &./,7E+.8F/: 3 45.6768, -4)( *GH,7: I &8,!7181+ &G.5681+ *71.81+ ;H+1G, */; C8,/:G, */; =;I&J -,5H/K+ -,518!7:+ & & L;4= $;4 $;4 !9*81+:7: & L$MI N$&B & & FASN? FASN? AKT mTOR Raptor PI3K FASN P RTK Palmitate SREBP1C Glucose Pyruvate Citrate Acetyl CoA FASN Malonyl CoA NADPH Glutamine NADPH KRAS KRAS Increased Glutamine metabolism ReducFve glutamine metabolism can promote lipid synthesis via pyruvate and NADPH producFon Increased Glucose metabolism GlycolyFc pyruvate anabolism can promote lipid synthesis Increased nonoxidaFve PPP biosynthesis and NADPH producFon Oncogenic KRAS Reprograms Tumor Cell Metabolism Combined FASN and Angiogenesis Inhibition Enhances Efficacy Figure 5. In vitro acyl-biotinyl exchange and Western blot analysis of protein palmitoylation and inhibition by treatment with 2-bromopalmitate or the FASN inhibitor TVB-3664. TVB-3664 treatment for 72 hours. 2-BP treatment for 16 hours. + 1% L-Glutamine - 1% L-Glutamine CASP1 ELOVL6 1.0 5.1 1.0 2.2 4.5 1.0 3.0 5.9 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.50% 0.1!M 1!M DMSO 3166 3166 Relative quantity (relative to DMSO) 1.0 7.8 1.0 1.9 6.5 1.0 2.2 7.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.50% 0.1!M 1!M DMSO 3166 3166 Relative quantity (relative to DMSO) Original 1% CF-FBS Serum Free CASP1 ELOVL6 ! #!! $!! %!! &!! '!!! '#!! '$!! '%!! & '! '# '$ '% '& #! ## #$ #% #& ()*+, -+.)*/ 0**12 3456 47/, ()*+, 89+:).4;+9 !"#$%&" (!)*+,,- . /0120 34 5676 )"89%$:;/9< = /0120 )>? $656 (!)*+,,- @ )"89%$:;/9< . /0120 @ = /0120 Figure 8. FASN inhibition sensitizes the LLC/LL NSCLC mouse tumor model to anti-PD immunotherapy. In vitro, FASN inhibition induces PD-L1 expression in NSCLC tumor cell lines H460 H1975 Glutamine Sensitizes KRAS-Mutant Tumor Cells to FASN Inhibition TVB-3664 Inhibits Increased Palmitoylation of RAS- Associated Signaling Proteins in KRAS-Mutant NSCLC Lines COLO205 XenograV TVB3664 DMSO FASN Inhibition Blocks RAS-Associated Signaling Pathways 0 500 1000 1500 2000 2500 3000 14 16 18 20 22 24 26 28 Tumor Volume (mm3) Days After Tumor Inoculation Vehicle (30% PEG400) TVB-3664 1 mg/kg RMP1-14 10 mg/kg TVB-3664+RMP1-14 1 mg/kg+10 mg/kg Vehicle TVB-3664 1 mg/kg QD RMP-14 10 mg/kg BIW TVB-3664 + RMP1-14 (1+10) 0 500 1000 1500 2000 2500 3000 3500 Tumor Growth (%) 0 200 400 600 800 1000 1200 1400 1600 1800 14 16 18 20 22 24 26 28 Tumor Size (mm3) Days post Tumor Inoculation Vehicle TVB-3664 2 mg/kg QD p.o. Sorafinib 20 mg/kg QD p.o. HEPG2 (LIHC 1 ): Undefined Lipogenic Score 0 100 200 300 400 500 600 700 800 900 1000 13 15 17 19 21 23 25 27 Tumor Size (mm3) Days post Tumor Inoculation Vehicle TVB-3664 2 mg/kg QD p.o. Paclitaxel 10 mg/kg Q4D p.o. A549 (LUAD 2 ): Undefined Lipogenic Score Figure 3. In vivo mouse tumor xenograft efficacy analysis of the HEPG2 liver tumor and A549 NSCLC tumor model. Liver tumors classify as the most highly lipogenic by gene expression analysis (GEA); lung adenocarcinomas are moderately lipogenic by GEA. HEPG2 and A549 tumor cell lines classify as undetermined; thus, not as highly lipogenic as other liver or lung adenocarcinoma tumor cell lines. In-life analysis of tumor growth efficacy was conducted by Crown Biosciences (Santa Clara, CA) Ventura et al. EBioMedicine. 2015 Jul 2;2(8):806-22 PMID: 26425687; 3-V Biosciences. Figure 6. Activated KRAS reprograms tumor cell metabolism to increase utilization of glutamine and glucose. One of the consequences is high levels of pyruvate production. Son et al. 2013 Nature; Ying et al. 2012 Cell. A possible fate of pyruvate is metabolism to citrate and acetyl CoA, the substrate for palmitate synthesis by FASN. LLC/LL2 NSCLC Mouse Syngeneic XenograV Mean Tumor Growth In Vitro Tube Formation In vitro induction of PD-L1 expression Classifier Gene Set Z-score normalization across samples per gene Classifier score calculation Top Half Bottom Half 0 5 10 15 FASN Sensitivity NSCLC Cell Lines Number of Cell Lines RAS Mutant RAS WT W-Score VIM Alpha MES FASN 0.0 0.2 0.4 0.6 0.8 Gene or Gene Set Normalized Score KRAS G12 Mutation Increases NSCLC Lipogenic Gene Expression G12 Mutant Wild Type Low score = increased lipogenicity p=0.001 p=0.002 p=0.002 p=0.046 p=0.074 Tumor Cell Line Xenograft Sensitivity Aligns with TCGA Tumor Classification A427 NCI-H520 KRAS G12D KRAS WT -3 -2 -1 0 1 0 20 40 60 80 100 120 Log TVB-3166 Concentration, !M % Viability (Cell Titer Glo) -3 -2 -1 0 1 0 20 40 60 80 100 120 Log TVB-3166 Concentration, !M PD-L1 D 3693 3693 D - IFN! + IFN! 2640 2640 TVB-2640 Biomarker Analysis in CLIN-002 Tumor RNA Tumor mRNA expression of genes in the Wnt/bcatenin, mitoFc cell cycle, VEGFR and Ras signaling pathways segment responding and nonresponding paFents treated with TVB2640 Further invesFgaFon in larger set of paFents Ayasdi (Menlo Park, CA) Core Topological Data Analysis !"#"$%& () *%#%+,%& -$". /"0". 123%# 4567 891$%::;"3 *%#%+,%& -$". /"0". 123%# 4567 891$%::;"3 (%:, <8!=*> ?6 *6 ?< ?6 *6 ?< ?6 *6 ?< ?6 *6 ?< !"#"$%& () *%#%+,%& @AB;,%CD *6 @/#E%C 4567 891$%::;"3 *%#%+,%& @AB;,%CD *6 @/#E%C 4567 891$%::;"3 >6F G%3% *%, HI G%3%:J KL "- HI M3,N/O+2,%3;3 12,BA2) PQ G%3%:J M3,N/O+2,%3;3R .;,"S+ +%## +)+#%R T8G4< 23& <2: :;U32#;3U 12,BA2):J 1VKWXX8OKH ," KWXX8OXI Individual Samples Best RECIST Grouping Topological Data Analysis Network Grouping !"#$%&'(#)*)&+,+#%- !"#$%&'(#)/012 !"#$%&'(#)32"4 !"#$%&'(#)56& !"#$ &' ()#"*++, " - " - " ./,0 .,!1 2!* !"#$%&'(#)7"89 !"#$%&'(#):)&+,+#%- " - " - " - 3.45"+ 2/!6 27*0/ " - " - 2/!6 ./,0 !"#'&8&"$9:8;<9<= >!6 ?@A ()#"*++, >/6 B@A CD9E F=B&<GH= I7!J I7!K I7!3 L+7C M( M( M( I7!J NJ343 3=:: 4;B= PD-L1 D 3664 3664 3693 3693 D - IFN! + IFN! 1 2 Figure 2. Classification of 8558 TCGA tumor sample data using the Daemen et al 2015 methods. Data were downloaded, processed, and analyzed at 3-V Biosciences. In figure 3 below, tumor cell line xenografts representing (1) liver tumors (LIHC) and (2) lung adenocarcinoma tumors (LUAD) were assessed for tumor growth inhibition efficacy using TVB-3166. Figure 4. Cell Titer Glo in vitro assay was used to asses cell viability in response to treatment with the FASN inhibitor TVB-3166. Cell were treated for 7 days with TVB-3166.

Preclinical studies characterize tumor type sensitivity to ... · Preclinical studies characterize tumor type sensitivity to FASN inhibition and the mechanism and efficacy of novel

  • Upload
    lamphuc

  • View
    230

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Preclinical studies characterize tumor type sensitivity to ... · Preclinical studies characterize tumor type sensitivity to FASN inhibition and the mechanism and efficacy of novel

www.postersession.com

Preclinical studies characterize tumor type sensitivity to FASN inhibition and the mechanism and efficacy of novel drug combinations with TVB-2640

Timothy S. Heuer, Richard Ventura, Julie Lai, Joanna Waszczuk, Kasia Mordec, Claudia Rubio, Glenn Hammonds, Marie O’ Farrell, Douglas Buckley and George Kemble 3-V Biosciences, Menlo Park, CA

Introduction

Classification of Tumor Lipogenic and Epithelial Gene Expression Aligns with FASN-Inhibitor Sensitivity In Vitro

•  3-V Biosciences’ lead, oral FASN inhibitor is in Phase I clinical development for the treatment of solid tumors

•  Fatty acid synthase (FASN) catalyzes the synthesis of palmitate from acetyl-CoA, malonyl-CoA, and NADPH

•  Tumor cells have an increased dependence on FASN-synthesized palmitate compared to non-tumor cells

•  FASN Inhibition decreases cellular levels of palmitate and saturated fatty acids and induces tumor cell apoptosis

•  In vitro and in vivo studies have identified multiple mechanisms of action for FASN inhibition efficacy that include: (1) Membrane and lipid raft architecture remodeling; (2) Tumor cell gene expression reprogramming; (3) Signal transduction pathway inhibition

•  Studies to understand the mechanisms of action and biological consequences of FASN inhibition are guiding the discovery of tumors highly dependent on FASN and biomarkers for assessment of pharmacodynamic activity and patient selection

Figure 7. CALU-6 NSCLC cells respond to FASN inhibition in the presence of 1% glutamine but not glutamine-free media. Similar results observed in PANC-1 tumor cells. CASP1 and ELOVL6 gene expression by qPCR are representative of more global gene expression effects.

Conclusions

Combined FASN Inhibition with PD1 Immunotherapy Enhances Xenograft Efficacy

•  Lipogenic  gene  expression  signatures  classify  FASNi  sensi7vity  •  Lipogenic  gene  expression  is  increased  in  Kras-­‐mutant  NSCL  tumors;  Kras-­‐

mutant  NSCLC  cell  lines  have  increased  FASNi  sensi7vity  •  Palmitoyla7on  of  Ras-­‐associated  signaling  proteins  is  increased  in  Kras-­‐

mutant  NSCLC  cell  lines  and  is  inhibited  by  FASN  inhibi7on  with  TVB-­‐3664  •  FASN  inhibi7on  combines  with  PD1  immunotherapy  or  VEGF  inhibi7on  

(bevacizumab)  to  increase  significantly  in  vivo  tumor  xenograR  efficacy  •  TVB-­‐2640  CLIN-­‐002  tumor  mRNA  shows  b-­‐catenin,  mito7c  cell  cycle,  VEGFR  

and  Ras  pathway  dysregula7on  in  responsive,  not  unresponsive,  pa7ents  

Figure 9. TVB-3664 combined with bevacizumab shows increased tumor growth inhibition compared to single agent treatment. In vitro assays measuring endothelial cell tube formation (Incucyte analysis, Essen biosciences) shows that media conditioned with COLO-205 cells treated with TVB-3644 inhibits tube length in combination with axitinib better that axitinib alone or COLO-205 cells treated with vehicle (DMSO).

Results

Figure 1. Tumor cell line classification by gene expression analysis. Methods described in the Collisson et al and Daemen et al reports were followed using in vitro viability data (cell titer glo) with TVB-3166. Gene expression data were from the CCLE (Broad Institute, Cambridge, MA).

#4743

•  Published  literature  reports  gene  expression  signatures  of  lipogenic,  glycoly7c,  epithelial,  and  mesenchymal  phenotypes  •  Lipogenic  and  epithelial  phenotypes  co-­‐segregate  •  Glycoly7c  and  mesenchymal  phenotypes  co-­‐segregate  

•  Applica7on  to  3-­‐V  In  vitro  data  shows  associa7on  with  FASN  inhibitor  sensi7vity  

•  Applica7on  to  TCGA  tumor  data  (8588  samples)  to  iden7fy  candidate  tumor  types  and  biomarkers  of  FASN  inhibitor  sensi7vity  •  Stra7fica7on  and  analysis  of  molecular  gene7c  features  of  tumors    

TVB Sensitive TVB Insensitive0

20

40

60

80

100

Epithelial/Mesenchymal

% o

f Cel

l Lin

es

Classical/ExocrineQM-PDA

TVB Sensitive TVB Insensitive0

10

20

30

40

50

Lipogenic/Glycolytic

LipogenicGlycolytic

References  

1.  Collisson  et  al.  Nat  Med.  2011  Apr;17(4):500-­‐3.  Epub  2011  Apr  3.  PMID:  21460848  

2.  Daemen  et  al.  Proc  Natl  Acad  Sci  U  S  A.  2015  Aug  11;112(32):E4410-­‐7.  Epub  2015  Jul  27.  PMID:  26216984  

PRADLIH

CSTAD

COADBLCA

LUADCESC

ESCABRCA

READUCEC

KICH OV

LUSCPAAD

HNSCUVM

CHOLTHCA

ACCKIR

CKIR

PSKCM

UCSPCPG

TGCTMESO

SARCGBM

0

200

400

600

800

1000

1200

Tumor Type Abbreviation

Num

ber

Lipogenic-Glyclotic Stratification of TCGA Tumor Data - Sample Number

Q1 - LipogenicQ2 - UndeterminedQ3 - UndeterminedQ4 - Glycolytic

LIHCREAD

KICHPRAD

COADSTAD

CHOLESCA

BLCAUCEC

LUADCESC

UVMACC

PAAD OVKIR

PBRCA

LUSCHNSC

UCSTHCA

KIRCSKCM

PCPGTGCT

MESOSARC

GBM0

20

40

60

80

100

Tumor Type Abbreviation

Perc

ent T

otal

Lipogenic-Glyclotic Stratification of TCGA Tumor Data

Q1 - LipogenicQ2 - UndeterminedQ3 - UndeterminedQ4 - Glycolytic

Ø  Normalized  gene  expression  scores      

§  W-­‐Score:  Weighted  sum  of  4  gene  sets  plus  VIM  and  FASN.  Weights  determined  by  mul7-­‐variable  linear  least  squares  regression  for  best  match  to  FASNi  sensi7vity.  

§  VIM:  Vimen7n,  high  mesenchymal  expression,  low  epithelial  expression.  

§  Alpha:  FASN  sensi7vity-­‐derived  gene  set.  Difference  between  mean  z-­‐score  of  17  posi7ve  correla7on  genes  and  mean  z-­‐score  of  20  nega7ve  correla7on  genes.  

§  MES:  PDAC-­‐derived  mesenchymal/epithelial  gene  set.  Difference  between  mean  z-­‐score  of  20  mesenchymal  genes  and  mean  z-­‐score  of  22  epithelial  genes.  

§  FASN:  TVB-­‐2640  target.  Synthesizes  palmitate  that  provides  a  substrate  for  complex  lipids  that  func7on  in  cell  signaling  and  metabolism.  

KRAS-Mutant NSCLC Tumors are More Lipogenic

Classification of Lipogenicity in TCGA Tumor mRNA Data

RAS Mutation Associated with FASN Sensitivity in NSCLC Cell Lines

FASN Inhibition

Remodeled Membrane Architecture

Disrupted Signal Transduction

Altered Gene Expression

RTK RTK

Cytoplasm

p85

Extracellular

Ras

PI3K AKT

AKT

!"#$%

&'()

$")%

*+,,%-./012%3%45.6768,%

!9*81+:7:%

;<'=

>?@4A)%

$&4A%BC*%%

*+,,%&./,7D+.8E/:%3%45.6768,%

-4)(%

*FG,7:%H%%

&F.5681+% *71.81+%

;G+1F,%*/;%

-,5G/I+%-,518!7:+%

J;4=%"KL9(MAA%

$;4% !9*81+:7:%

<%<%

<%

N$&A%

&8,!7181+%

J$OH%

Signal Transduction

Gene Expression

Organized Lipid Raft Membrane Microdomain

RTK RTK

Cytoplasm p85

Extracellular

Ras PI3K AKT

AKT

!"#$%

&'()

&%

$")%

*+,,%-./012%3%45.6768,%

!9*81+:7:%

;<'=

>="%

?@A4B)%

$&4B%CD*%%

*+,,%&./,7E+.8F/:%3%45.6768,%

-4)(%

*GH,7:%I%%&8,!7181+%

&G.5681+% *71.81+%

;H+1G,%*/;%C8,/:G,%*/;%

=;I&J%

-,5H/K+%-,518!7:+%

&%

&%

L;4=%

$;4%

$;4%

!9*81+:7:%

&%

L$MI%

N$&B%

&%&%

FASN? FASN?

AKT

mTORRaptor

PI3K

FASN

P

RTK

Palmitate

SREBP1C

Glucose

Pyruvate Citrate

Acetyl CoA

FASNMalonyl CoANADPH

Glutamine

NADPH

KRAS

KRAS

•  Increased  Glutamine  metabolism    –  ReducFve  glutamine  metabolism  can  promote  

lipid  synthesis  via  pyruvate  and  NADPH  producFon  •  Increased  Glucose  metabolism    

–  GlycolyFc  pyruvate  anabolism  can  promote  lipid  synthesis  

–  Increased  non-­‐oxidaFve  PPP  biosynthesis  and  NADPH  producFon  

Oncogenic KRAS Reprograms Tumor Cell Metabolism

Combined FASN and Angiogenesis Inhibition Enhances Efficacy

Figure 5. In vitro acyl-biotinyl exchange and Western blot analysis of protein palmitoylation and inhibition by treatment with 2-bromopalmitate or the FASN inhibitor TVB-3664. TVB-3664 treatment for 72 hours. 2-BP treatment for 16 hours.

+ 1% L-Glutamine - 1% L-Glutamine

CASP1 ELOVL6 1.0

5.1

1.0

2.2

4.53.9

0.7 0.71.0

3.0

5.9

4.9

1.6

0.5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.50% 0.1!M 1!M 10!M 30!M 60!M

DMSO 3166 3166 3166 3166 3166

Rel

ativ

e qu

antit

y (r

elat

ive

to D

MSO

)

Elovl6 Original1% CF-FBSSerum Free

1.0

7.8

1.0

1.9

6.5 6.3

3.5

1.31.0

2.2

7.0

5.5

3.4

1.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.50% 0.1!M 1!M 10!M 30!M 60!M

DMSO 3166 3166 3166 3166 3166

Rel

ativ

e qu

antit

y (r

elat

ive

to D

MSO

)

Casp1 Original1% CF-FBSSerum Free

1.0

3.7

1.0

2.4

5.8 5.8

1.61.21.0

2.6

5.05.4

2.7

0.8

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.50% 0.1!M 1!M 10!M 30!M 60!M

DMSO 3166 3166 3166 3166 3166

Rel

ativ

e qu

antit

y (r

elat

ive

to D

MSO

)

LPIN1 Original1% CF-FBSSerum Free

CASP1 ELOVL6

!""

#!!""

$!!""

%!!""

&!!""

'!!!""

'#!!""

'$!!""

'%!!""

&" '!" '#" '$" '%" '&" #!" ##" #$" #%" #&"

"()*

+,"-+.)*

/"0*

*12"

3456"47/,"()*+,"89+:).4;+9"

!"#$%&"'

(!)*+,,-'.'/0120'34'5676'

)"89%$:;/9<'='/0120')>?'$656'

(!)*+,,-'@')"89%$:;/9<'.'/0120'@'='/0120'

Figure 8. FASN inhibition sensitizes the LLC/LL NSCLC mouse tumor model to anti-PD immunotherapy. In vitro, FASN inhibition induces PD-L1 expression in NSCLC tumor cell lines

H460   H1975  

Glutamine Sensitizes KRAS-Mutant Tumor Cells to FASN Inhibition

TVB-3664 Inhibits Increased Palmitoylation of RAS-Associated Signaling Proteins in KRAS-Mutant NSCLC Lines

COLO-­‐205  XenograV    TVB-­‐3664  

DMSO  

FASN Inhibition Blocks RAS-Associated Signaling Pathways

0

500

1000

1500

2000

2500

3000

14 16 18 20 22 24 26 28

Tum

or V

olum

e (m

m3)

Days After Tumor Inoculation

Vehicle (30% PEG400)

TVB-3664 1 mg/kg

RMP1-14 10 mg/kg

TVB-3664+RMP1-14 1 mg/kg+10 mg/kg

LLC NSCLC Mouse Xenograft: TVB-3664 + Anti-PD1

Vehicl

e

TVB-3664

1 m

g/kg Q

D

RMP-14 10

mg/kg

BIW

TVB-3664

+ RMP1-1

4 (1+

10)

0

500

1000

1500

2000

2500

3000

3500

Treatment Group

Tum

or G

row

th (%

)

0

200

400

600

800

1000

1200

1400

1600

1800

14 16 18 20 22 24 26 28

Tum

or S

ize

(mm

3)

Days post Tumor Inoculation

Vehicle

TVB-3664 2 mg/kg QD p.o.

Sorafinib 20 mg/kg QD p.o.

HEPG2  (LIHC1):  Undefined  Lipogenic  Score  

0

100

200

300

400

500

600

700

800

900

1000

13 15 17 19 21 23 25 27

Tum

or S

ize

(mm

3)

Days post Tumor Inoculation

Vehicle

TVB-3664 2 mg/kg QD p.o.

Paclitaxel 10 mg/kg Q4D p.o.

A549  (LUAD2):    Undefined  Lipogenic  Score  

Figure 3. In vivo mouse tumor xenograft efficacy analysis of the HEPG2 liver tumor and A549 NSCLC tumor model. Liver tumors classify as the most highly lipogenic by gene expression analysis (GEA); lung adenocarcinomas are moderately lipogenic by GEA. HEPG2 and A549 tumor cell lines classify as undetermined; thus, not as highly lipogenic as other liver or lung adenocarcinoma tumor cell lines. In-life analysis of tumor growth efficacy was conducted by Crown Biosciences (Santa Clara, CA)

Ventura et al. EBioMedicine. 2015 Jul 2;2(8):806-22 PMID: 26425687; 3-V Biosciences.

Figure 6. Activated KRAS reprograms tumor cell metabolism to increase utilization of glutamine and glucose. One of the consequences is high levels of pyruvate production. Son et al. 2013 Nature; Ying et al. 2012 Cell. A possible fate of pyruvate is metabolism to citrate and acetyl CoA, the substrate for palmitate synthesis by FASN.

LLC/LL2  NSCLC  Mouse  Syngeneic  XenograV     Mean  Tumor  Growth  

In Vitro Tube Formation

In vitro induction of PD-L1 expression

Classifier Gene Set

Z-score normalization across samples per gene

Classifier score calculation

Top Half Bottom Half0

5

10

15

FASN Sensitivity NSCLC Cell Lines

Num

ber o

f Cel

l Lin

es RAS MutantRAS WT

W-S

core VIM

Alpha

MESFASN

0.0

0.2

0.4

0.6

0.8

Gene or Gene Set

Nor

mal

ized

Sco

re

KRAS G12 Mutation Increases NSCLC Lipogenic Gene Expression

G12 MutantWild Type

Low  score  =    increased  lipogenicity  

p=0.001   p=0.002   p=0.002   p=0.046   p=0.074  

Tumor Cell Line Xenograft Sensitivity Aligns with TCGA Tumor Classification

A427 NCI-H520 KRAS G12D KRAS WT

-3 -2 -1 0 10

20

40

60

80

100

120

Log TVB-3166 Concentration, !M

% V

iabi

lity

(Cel

l Ti

ter

Glo

)

-3 -2 -1 0 10

20

40

60

80

100

120

Log TVB-3166 Concentration, !M

PD-L1

D 3693

3693

D

- IFN! + IFN!

2640

2640

TVB-2640 Biomarker Analysis in CLIN-002 Tumor RNA Tumor  mRNA  expression  of  genes  in  the  Wnt/b-­‐catenin,  mitoFc  cell  cycle,  VEGFR  and  Ras  signaling  pathways  segment  responding  and  non-­‐responding  paFents  treated  with  TVB-­‐2640    Further  invesFgaFon  in  larger  set  of  paFents    Ayasdi  (Menlo  Park,  CA)  Core  Topological  Data  Analysis  

!"#"$%&'() ''''''''*%#%+,%&'-$".'/"0".'123%#''''''''''''''4567'891$%::;"3''''''''''''''''''*%#%+,%&'-$".'/"0".'123%#''''''''''4567'891$%::;"3''

(%:,'<8!=*>''''''''''''''''''''?6''''''''''''''*6''''''''''''?<''''''''''''''?6''''''''''''''*6''''''''''''?<''''''''''''''?6''''''''''''''*6''''''''''''?<''''''''''''''?6'''''''''''''*6'''''''''''''?<'

!"#"$%&'() ''''''''*%#%+,%&'@AB;,%CD''*6'@/#E%C''''''''''''''4567'891$%::;"3''''''''''''''''*%#%+,%&'@AB;,%CD''*6'@/#E%C''''''''''''''''4567'891$%::;"3'

>6F'G%3%'*%,''''''''HI'G%3%:J'KL'"-'HI'M3,N/O+2,%3;3'12,BA2) '''''''''''PQ'G%3%:J'M3,N/O+2,%3;3R'.;,"S+'+%##'+)+#%R'T8G4<'23&

' ' ' ' ''''''''''''''''''''''''''''''<2:':;U32#;3U'12,BA2):J'1VKWXX8OKH',"'KWXX8OXI'

Individual SamplesBest RECIST Grouping

Topological Data Analysis Network Grouping

!"#$%&'(#)*)&+,+#%-.

!"#$%&'(#)/012.

!"#$%&'(#)32"4.

!"#$%&'(#)56&.

!"#$%&'%()#"*++,% "%%%%%%%%-%%%%%%%%"%%%%%%%%%-%%%%%%%%"%

./,0% .,!1% 2!*%

!"#$%&'(#)7"89.

!"#$%&'(#):)&+,+#%-.

"%%%%%%%%-%%%%%%%%%"%%%%%%%-%%%%%%%"%%%%%%%%-%

3.45"+% 2/!6% 27*0/%

%%"%%%%%%%%%%-%%%%%%%%%%"%%%%%%%%%%-%

2/!6% ./,0%

!"#'&8&"$9:8;<9<=%>!6%?@A% ()#"*++,%>/6%B@A%

CD9E%F=B&<GH=%%%%%%%I7!J%%%%%%%%%I7!K%%%%%%%%I7!3%%%%%%%L+7C%%%%%%%%%%%M(%%%%%%%%%%%%M(%%%%%%%%%%%%%%%%%M(%%%%%%%%%%%%%%%%%I7!J%NJ343%3=::%4;B= %%

PD-L1

D 3664

3664

3693

3693

D

- IFN! + IFN!1   2  

Figure 2. Classification of 8558 TCGA tumor sample data using the Daemen et al 2015 methods. Data were downloaded, processed, and analyzed at 3-V Biosciences. In figure 3 below, tumor cell line xenografts representing (1) liver tumors (LIHC) and (2) lung adenocarcinoma tumors (LUAD) were assessed for tumor growth inhibition efficacy using TVB-3166.

Figure 4. Cell Titer Glo in vitro assay was used to asses cell viability in response to treatment with the FASN inhibitor TVB-3166. Cell were treated for 7 days with TVB-3166.