21
[email protected] ACFC 2011, 487. WE-Heraeus-Seminar “Precision mass and g-factor measurements for fundamental studies” Klaus Blaum July 19, 2011

“Precision mass and g-factor measurements for fundamental

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: “Precision mass and g-factor measurements for fundamental

[email protected]

ACFC 2011, 487. WE-Heraeus-Seminar

“Precision mass and g-factor measurements for

fundamental studies”

Klaus BlaumJuly

19, 2011

Page 2: “Precision mass and g-factor measurements for fundamental

Outline

Introduction and motivation

Principle of Penning traps

Precision mass and g-factor measurements

Setup and measurement procedure

Page 3: “Precision mass and g-factor measurements for fundamental

Storage and cooling techniques

particles at nearly rest in space relativistic particles

ion cooling ∗

long storage times∗

single-ion sensitivity ∗

high accuracy

Storage ring

TSR/ESR

0 2.5 5 m

Penning trap

0 0.5 1 cm

z0

r0

Page 4: “Precision mass and g-factor measurements for fundamental

Single ion sensitivitySchottky

detection

in astorage

ring

SchottkyPick-ups

Stored ion beam

f ~ 2 MHz0

FFT

Narrow

band FT-ICR in aPenning

trap

5 cm 3 cm

Page 5: “Precision mass and g-factor measurements for fundamental

Part I

High-precisionmass measurements

Page 6: “Precision mass and g-factor measurements for fundamental

Why measuring atomic masses?

δm/m

General physics & chemistry ≤

10‐5

Nuclear structure physics‐

separation of isobars

10‐6

Astrophysics

separation of isomers

10‐7

Weak interaction studies ≤

10‐8

Metrology ‐

fundamental constants

Neutrino physics≤

10‐9

CPT tests ≤

10‐10

QED in highly‐charged ions‐

separation of atomic states

10‐11

N ·

– binding energy

+ Z · + Z ·

Sources:Accelerator or reactor basedradioactive beam facilities

and electron beam ion traps.CERN IMP/GSI MPIK TRIGA

KATRIN-TRAP

TRIGA-TRAP

THe-TRAP

PENTA-TRAP

Experimentalsetups

CSRe/ESR

ISOLTRAP

SHIPTRAP

Atomic and nuclear binding energies reflect all forces acting in the atom/nucleus.

Page 7: “Precision mass and g-factor measurements for fundamental

Principle of Penning trap mass spectrometry

Cyclotron frequency:

Bmqfc ⋅⋅=

π21

B

q/m

PENNING trapStrong homogen. magnetic fieldWeak electric 3Dquadrupole field

B

Typical freq.q = e m = 100 uB = 6 T⇒

f-

≈ 1kHzf+

≈ 1MHz

ν-

ν+

νz

Page 8: “Precision mass and g-factor measurements for fundamental

TOF cyclotron resonance detection

MCPDetector

(1) Excitation of theion motion

(3) TOF measurement

(2) Energy conversion

e

e

mmmm

ff

--

=refc

refc,Determine atomic mass from frequency ratio

with a well-known “reference mass”.

Bmq

πf 21

=c

Centroid:

0 1 2 3 4 5 6 7 8 9240

270

300

330

360

390

63Ga T1/2 = 32.4 s

Mea

n tim

e of

flig

ht /

μs

Excitation frequency νRF - 1445125 / Hzfrf

e

e

mmmm

ff

--

=refc

refc,Determine atomic mass from frequency ratio

with a well-known “reference mass”.

Bmq

πf 21

=c

Centroid:

0 1 2 3 4 5 6 7 8 9240

270

300

330

360

390

63Ga T1/2 = 32.4 s

Mea

n tim

e of

flig

ht /

μs

Excitation frequency νRF - 1445125 / Hzfrf

Bmq

πf 21

=c

Centroid:

0 1 2 3 4 5 6 7 8 9240

270

300

330

360

390

63Ga T1/2 = 32.4 s

Mea

n tim

e of

flig

ht /

μs

Excitation frequency νRF - 1445125 / Hzfrf

Page 9: “Precision mass and g-factor measurements for fundamental

TRIGA-SPEC: TRIGA-LASER + TRIGA-TRAP

TRIGA MainzG. Hampel

K. EberhardtN. Trautmann

steady 100 kW, pulsed 250 MW, neutron flux 1.8x1011 / cm2s TRIGA-TRAP

TRIGA-LASERW. Nörtershäuser

ECR ion source

Mass separator

RFQ

Nucl. Instrum. Meth. A 594, 162 (2008)

project start @ TRIGA: 01/08start data taking: 05/09

Page 10: “Precision mass and g-factor measurements for fundamental

Making gold in nature

D. Rodríguez et al., Phys. Rev. Lett. 93, 161104 (2004) X.L. Tu et al., Phys. Rev. Lett. 106, 112501 (2011)S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008) E. Haettner et al., Phys. Rev. Lett. 106, 122501 (2011)

Conditions

for

an A=80 abundance

peak

situation

2007with

new

80Zn masswith

new

81Zn mass

r-process nucleosynthesisMost nuclear data experimentally unknownTheoretical predictions neededAstrophysical site uncertainObservational data to be matched

Page 11: “Precision mass and g-factor measurements for fundamental

Where is the predicted“island of stability“?

Direct mass measurements on No and LrM. Block et al., Nature 463, 785 (2010)M. Dworschak et al., PRC 81, 064312 (2010)

-15 -10 -5 0 5 1075

80

85

90

95

Mea

n To

F / μ

s

Exc. Frequency + 843324.5 / Hz

255Lr2+

256Lr radionuclide with lowest yield ever measured in a Penning trap (2 ions/minute)

Page 12: “Precision mass and g-factor measurements for fundamental

Neutrino-less double EC (0ν2EC)

2ν2EC (T1/2 >1024y) 0ν2EC (T1/2 >1030y)

Is the neutrino a Majorana or Dirac particle?

0ν2EC might

be

resonantly

enhanced

(T1/2 ~1025y)

Contribution

of Penning

traps:Search

for

nuclides

with

Δ=(Qεε

−B2h -Eγ

) < 1 keVby

measurements

of

Qεε

–valuesat ~100 eV

accuracy

level

Page 13: “Precision mass and g-factor measurements for fundamental

Resonance enhancement factors

152Gd: Phys. Rev. Lett. 106, 052504 (2011)

2EC - transition Δ (old), keV Δ (new), keV T1/2 • m2, yr

152Gd → 152Sm -0.2(3.5) 0.9(0.2) 1026

164Er → 164Dy 5.2(3.9) 6.81(0.12) 1030

180W → 180Hf 13.7(4.5) 12.4(0.2) 1027

Page 14: “Precision mass and g-factor measurements for fundamental

THe-TRAP for KATRIN A high-precision Q(3T-3He)-value measurement

Qlit =18 589.8 (1.2) eVν++→ −eHeH 32

31

We

aim

for: δQ(3T 3He) = 20 meVδm/m = 7·10-12

ΔT < 0.05 K/d at 24°CΔB/B < 10 ppt

/ h Δx ≤

0.1 μm

First 12C4+/16O6+

mass

ratio

measurement

at δm/mstat = 4·10-11

performed.

Page 15: “Precision mass and g-factor measurements for fundamental

Part II

High-precisiong-factor measurements

10 c

m

Page 16: “Precision mass and g-factor measurements for fundamental

Single ion signals

B

Ctrap CpRp Lres

amplifier

detection circuit

Penning trap

Superconducting helicalresonator

Ultra-low noise cryogenic amplifier

Page 17: “Precision mass and g-factor measurements for fundamental

One measurement cycle

i.Detection

of spin-orientation

in analysis

trap

ii.Transport to precision

trapiii.Measurement

of eigenfrequencies

and simultaneous

irradiation

with

microwaves

iv.Transport to analysis

trapv.Detection

of spin

orientation

in analysis

trapSpin flip in theprecision trap?

High-precision g-factor measurement

COMSOL simulation

Lωh

Page 18: “Precision mass and g-factor measurements for fundamental

g-factor resonance of a single 28Si13+ ion

ion

e

mm

eqg Γ= 2

gs = 2 + ae + ab + b + c

Dirac

QEDfree electron

BS-QED

Relativistic

Nuclearcorrection

our measurement

gexp

= 1.995 348 958 7 (5)(3)(8)gtheo

= 1.995 348 958 0 (17)Error is dominated by uncertainty

of the electron mass.

Most stringent test of BS-QED in strong fields.

Coauthors from theory: Harman, Keitel, Zatorski S. Sturm et al., Phys. Rev. Lett. 107, 023002 (2011)

Page 19: “Precision mass and g-factor measurements for fundamental

g-factor resonance of a single protonCompare g-factors of p and p:

Test of matter-antimatter symmetry.Highly challenging experiment since

one million times harder compared to e-.

1E-21 1E-18 1E-15 1E-12 1E-9 1E-6 1E-3

planned

e+ e-

(g-2)

p p

μ+ μ−

e+ e-

K0 K0

relative precision

H H

g-factor

mass

g-factor

mass difference

HFS-spectroscopy (planned)

charge/mass

p p

achieved

g-factor

49.8 49.9 50.0 50.1 50.2 50.3 50.4 50.5

-10

0

10

20

30

40

50

60

spin

flip

pro

babi

lity

(%)

drive frequency (MHz)

20 kHz

We aim for δg/g = 10-9.

Larmor resonance based onfirst spin flip ever observedwith a nuclear magnetic moment.

PDG:

S. Ulmer et al., Phys. Rev. Lett. 106, 253001 (2011)

Page 20: “Precision mass and g-factor measurements for fundamental

Summary

-

Accurate masses have been obtained for reliable nucleosynthesis

calculations.

-

First direct mass measurements above uranium bridge the gap to the island of stability

-

Discovery of a suitable candidate for 0ν2EC search

-

Most stringent test of bound-state QED and first direct g-factor measurement on a free proton

-

Development of novel and unique storage devices

-

… and many more!

Breathtaking results in high-precision experiments with stored and cooled ions have been achieved!

100

120

114

162

184

108

152N

Z

100

120

114

162

184

108

152

100

120

114

162

184

108

152N

Z

Page 21: “Precision mass and g-factor measurements for fundamental

Thanks

Email: [email protected]

WWW: www.mpi-hd.mpg.de/blaum/

Thanks a lot for the invitation and your attention!