6
8/20/2019 Practical Bollard-Pull Estimation http://slidepdf.com/reader/full/practical-bollard-pull-estimation 1/6 Marine Technology, Vol. 24, No. 3, July 1987, pp. 220-225 Practical Bollard-Pull Estimation Y. A. Isin 1 During the preliminary design of a tugboat, the use of minicomputers can permit the designer to give a very quick estimate of propeller characteristics such as pitch-diameter ratio, expanded area ratio, revolutions per second, and the thrust and delivered horsepower for the bollard-pull condition. These estimates can be made by the use of charts derived from polynomial expressions of experimental propeller series data, for example, the Wageningen B-Screw Series. THE REASON for the existence of a tugboat is the pulling or pushing of large vessels and, hence, it follows that one of the tugboat's most important components is its propeller. Tugs operate under various conditions, that is, free running, towing at some intermediate speed, and bollard pull. Thus, when powering a tug all these conditions must be considered. Harbor tugs are designed for general operation in and around a harbor and as such specific requirements cannot be quoted, except that the tug should have a certain free-running speed and that it should have a specified minimum bollard pull. For preliminary design purposes, a well-designed propeller should develop about 15 kg (33.5 lb) of bollard-pull thrust per delivered horse- power installed. Argyriadis [1]2 has stated that for the tug L. E. Norgaard the expected bollard pull is about 15.2 kg/DHP (34 lb/DHP), for the E. F. Moran it lies between 13 and 13.6 kg/ DHP (29.1-30.4 lb/DHP) and for D. S. Simpson it is equal or close to 10 kg/DHP (22.4 lb/DHP). The design of the propeller for the bollard-pull condition is, of course, somewhat academic since tugs do not, in general, operate at this condition. It is still an important design condi- ti~n for harbor tugs as it is the simplest and most comm on one. Design for bollard pull The design of a propeller for bollard pull introduces four issues; (1) choice of the propeller's main dimensions, (2) estima- tion of the bollard pull, (3) estimation of the tug's free speed, and (4) estimation of the tug's overall towing performance. The tug's free-speed and towing performance depend on the choice of the optimum propeller for the required bollard pull and can be estimated from the hull resistance and the machinery char- acteristics (power and rpm). The choice of the propeller dimensions for bollard pull re- volves around one main criterion, that is, to install the largest- diameter propeller possible. Considerations are the tug's draft and the hull-propeller clearance. The maximum practical di- ameter of an open propeller is about 85 percent of the draft aft. The rpm of the propeller should be chosen, if possible, to keep the pitch-diameter ratio (P/D) between 0.6 and 1.25. However, the best bollard pull P/D is about 0.6. The minimum blade-area ratio should be between 0.50 and 0.55 in order to give all-around towing performance and high astern bollard pull. The area of the blade should be distributed to give fairly wide tips. In general practice, propellers fitted on single-screw tugs have three blades and those fitted on twin-screw tugs have three or four blades. 1 Senior research engineer, State University of Liege, Liege, Belgium. 2 Numbers in brackets designate References at end of paper. Original manuscript received at SNAM E headquarters July 7, 1985; revised manuscript received March 14, 1986. The bollard-pull condition is the condition during the pull operation when the tug speed is zero and the propeller advance coefficient (J) is zero: nD where VA = propeller advance speed n -- propeller revolutions per unit time D = propeller diameter The advance coefficient (J) is nondimensional and at the bol- lard-pull condition is zero as VA is zero. Also, at this condition, the wake coefficient W is zero since both the tug speed and the propeller advance speed are zero and the thrust deduction coef- ficient t can be assumed to be about 2 or 3 percent. For most tug forms the relative rotative efficiency ~R can be assumed to be about unity. Bollard-pull charts For preliminary design purposes Argyriadis [1] gives the fol- lowing equations (changed to the metric system) for the bol- lard-pull and the corresponding rpm N: KT BHP° × Tc with T c 60 X -- T(kg)=716X NoXD =20~ KQ BHP 0 ~ 1 /2 N = 60 X 6.55 × with T r = KQ N o X D ~ X Tr] The symbols are defined in the Nomenclature. The values of Tc and Tr are given in Fig. 1 as a function of the propeller pitch- diameter ratio for three- and four-bladed propellers with a disk-area ratio of 0.50. Strictly speaking, the curves apply only to propellers with airfoil shape sections from 0.5 radius to the tip. In the discussion to reference [1] both Kimon and Morgan point out that the coefficient from Fig. 1 can be strictly applied only to constant-torque installations. Morgan [1] derives the expression for bollard-pull and the corresponding rpm for both constant-power installations for three, four, and five-bladed Troost propellers with different expanded area ratios. Figures 2 and 3 reproduce here the three and four-bladed propeller data, respectively. Since these diagrams are based on open-water tests, the bollard pull tends to be overestimated by a few per- cent (up to 10 percent). These corresponding equations, in the metric system, are: 220 0 0 2 5 331618712403 0220500.3710 MARINE TECHNOLOGY

Practical Bollard-Pull Estimation

Embed Size (px)

Citation preview

Page 1: Practical Bollard-Pull Estimation

8/20/2019 Practical Bollard-Pull Estimation

http://slidepdf.com/reader/full/practical-bollard-pull-estimation 1/6

Mar ine Techno logy , Vo l . 24 , No . 3 , Ju l y 1987 , pp . 22 0-2 25

Pract ical Bol lard-Pul l Est imat ion

Y . A . I s in 1

During the pr e l i m i na r y de s i gn of a t u g b o a t, t h e u s e o f m i n i c o m p u t e r s c a n p e r m i t t h e d e s i g n e r t o g ive a v e r y

qu ick es t imate o f

pr op e l l e r c ha r a c te r i s t i c s s uc h a s p i tc h -d i a me te r r a t io , e x pa nde d a r e a r a t io , r e v o l u t ions pe r

second, and t h e t h r u s t a n d d e l iv e r e d h o r s e p o w e r f o r t h e b o l l a rd - p u ll c o n d i ti o n . T h e s e e s t i m a t e s c a n b e m a d e

by the use o f char ts der i ved f rom p o l y n o m i a l e x p r e s s i o n s o f e x p e r i m e n t a l p r o p e l l e r s e r i e s d a t a , f o r

e x a mp l e , t h e W a g e n in g e n B - Sc r e w S e r i e s .

T H E R E A SO N fo r t h e e x i s t e n c e o f a t u g b o a t i s t h e p u l l i n g o r

p u s h i n g o f l a rg e v e s s e l s a n d , h e n c e , i t f o l lo w s t h a t o n e o f t h e

t u g b o a t ' s m o s t i m p o r t a n t c o m p o n e n t s i s it s p ro p e l l e r. T u g s

o p e r a t e u n d e r v a r i o u s c o n d i t i o n s , t h a t i s, f r e e r u n n i n g , t o w i n g

a t s o m e i n t e r m e d i a t e s p e e d , a n d b o l l a r d p ul l. T h u s , w h e n

p o w e r i n g a t u g a l l t h e s e c o n d i t i o n s m u s t b e c o n s i d e r e d. H a r b o r

t u g s a r e d e s i g n e d f or g e n e ra l o p e r a t i o n i n a n d a r o u n d a h a r b o r

a n d a s s u ch s p e c i fi c r e q u i r e m e n t s c a n n o t b e q u o t e d , e x c e p t t h a t

t h e t u g s h o u l d h a v e a c e r t a i n f r e e - r u n n i n g s p e e d a n d t h a t i t

s h o u l d h a v e a s p e c i fi e d m i n i m u m b o l l a r d p ul l. F o r p r e l i m i n a r y

d e s i g n p u r p o s e s , a w e l l - d e s i g n e d p r o p e l l e r s h o u l d d e v e l o p

a b o u t 1 5 k g ( 3 3. 5 lb ) o f b o l l a r d - p u l l t h r u s t p e r d e l i v e r e d h o r s e -

p o w e r i n s t a l l e d . A r g y r i a d i s [ 1 ] 2 h a s s t a t e d t h a t f o r t h e t u g L . E .

N o r g a a r d t h e e x p e c t e d b o l l a r d p u l l is a b o u t 1 5 .2 k g / D H P ( 34

l b / D H P ) , f o r th e E . F . M o r a n i t l ie s b e t w e e n 1 3 a n d 1 3 .6 k g /

D H P ( 2 9. 1- 3 0. 4 l b / D H P ) a n d f o r D . S . S i m p s o n i t i s e q u a l o r

c l o s e t o 1 0 k g / D H P ( 22 .4 l b / D H P ) .

T h e d e s i g n o f t h e p r o p e l l e r f o r t h e b o l l a r d - p u l l c o n d i t i o n i s ,

o f c o u rs e , s o m e w h a t a c a d e m i c s i n c e tu g s d o n o t , i n g e n e r a l ,

o p e r a t e a t t h i s c o n d i t i o n . I t is s t i l l a n i m p o r t a n t d e s i g n c o n d i -

t i ~ n f or h a r b o r t u g s a s i t i s t h e s i m p l e s t a n d m o s t c o m m o n o n e .

D e s i g n f o r b o l l a r d p u l l

T h e d e s i g n o f a p r o p e l l e r f o r b o l l a r d p u l l i n t r o d u c e s f o u r

i s s u es ; (1 ) c h o i ce o f t h e p r o p e l l e r ' s m a i n d i m e n s i o n s , ( 2 ) e s t i m a -

t i o n o f t h e b o l l a r d p u l l , (3 ) e s t i m a t i o n o f t h e t u g ' s f r e e s p e e d ,

a n d ( 4) e s t i m a t i o n o f t h e t u g ' s o v e r a l l t o w i n g p e r f o r m a n c e . T h e

t u g ' s f re e - s p e e d a n d t o w i n g p e r f o r m a n c e d e p e n d o n t h e c h o ic e

o f t h e o p t i m u m p r o p e l l e r f o r t h e r e q u i r e d b o l l a r d p u l l a n d c a n

b e e s t i m a t e d f r o m t h e h u l l r e s is t a n c e a n d t h e m a c h i n e r y c h a r -

a c t e r i s t i c s (p o w e r a n d r p m ) .

T h e c h o i c e o f t h e p r o p e l l e r d i m e n s i o n s f o r b o l l a r d p u l l re -

v o l v e s a r o u n d o n e m a i n c r i t e r i o n , t h a t i s , t o i n s t a l l th e l a r g e s t -

d i a m e t e r p r o p e l l e r p o s s ib l e . C o n s i d e r a t i o n s a r e t h e t u g ' s d r a f t

a n d t h e h u l l - p r o p e l le r c l e a ra n c e . T h e m a x i m u m p r a c t i c a l d i -

a m e t e r o f a n o p e n p r o p e l l e r i s a b o u t 8 5 p e r c e n t o f t h e d r a f t a f t .

T h e r p m o f t h e p r o p e l l e r s h o u l d b e c h o s e n , i f p o s s i b l e , t o k e e p

t h e p i t c h - d i a m e t e r r a t io ( P / D ) b e t w e e n 0 . 6 a n d 1 .2 5 . H o w e v e r ,

t h e b e s t b o l l a r d p u l l P / D i s a b o u t 0 .6 . T h e m i n i m u m b l a d e - a r e a

r a t i o s h o u l d b e b e t w e e n 0 . 5 0 a n d 0 . 55 i n o r d e r t o g i v e a l l - a r o u n d

t o w i n g p e r fo r m a n c e a n d h i g h a s t e r n b o l l a r d p u ll . T h e a r e a o f

t h e b l a d e s h o u l d b e d i s t r i b u t e d t o g i v e f a i r l y w i d e t i p s . I n

g e n e r a l p r a c t i c e , p r o p e l l e r s f i t t e d o n s i n g l e - s c r e w t u g s h a v e

t h r e e b l a d e s a n d t h o s e f i t t e d o n t w i n - s c r e w t u g s h a v e t h r e e o r

f o u r b l a d e s .

1 Senior research engineer , S ta te Un ivers i ty of Liege , Liege , Belgium.

2 Num be r s i n b r a c ke t s de s i gna t e Re f e r e nce s a t e nd o f pa pe r .

Or i g i na l ma nu s c r i p t r e c e ive d a t SN AM E he a dqua r t e r s J u l y 7 , 1985 ;

revised manu scr ip t rece ived Ma rch 14, 1986.

T h e b o l l a r d - p u l l c o n d i t i o n i s t h e c o n d i t i o n d u r i n g t h e p u l l

o p e r a t i o n w h e n t h e t u g s p e e d i s z er o a n d t h e p r o p e l l e r a d v a n c e

c o e f f i c i e n t ( J ) i s z e r o :

n D

w h e r e

VA = p r o p e l l e r a d v a n c e s p e e d

n - - p r o p e l l e r r e v o l u t i o n s p e r u n i t t i m e

D = p r o p e l l e r d i a m e t e r

T h e a d v a n c e c o e f f i c ie n t (J ) i s n o n d i m e n s i o n a l a n d a t t h e b o l -

l a r d - p u l l c o n d i t i o n i s z e r o a s VA i s z e r o . A l s o , a t t h i s c o n d i t i o n ,

t h e w a k e c o e f f i c i e n t W is z e r o s in c e b o t h t h e t u g s p e e d a n d t h e

p r o p e l l e r a d v a n c e s p e e d a r e z e ro a n d t h e t h r u s t d e d u c t i o n c o e f -

f i c i e n t t c a n b e a s s u m e d t o b e a b o u t 2 o r 3 p e r c e n t . F o r m o s t t u g

f o r m s t h e r e l a t i v e r o t a t i v e e f f i c i e n c y ~R c a n b e a s s u m e d t o b e

a b o u t u n i ty .

B o l l a r d - p u l l c h a r t s

F o r p r e l i m i n a r y d e s i g n p u r p o s e s A r g y r i a d i s [ 1] g i v e s t h e f o l -

l o w i n g e q u a t i o n s ( c h a n g e d t o t h e m e t r i c s y s t e m ) f o r t h e b o l -

l a r d - p u l l a n d t h e c o r r e s p o n d i n g r p m N :

K T

B H P ° × Tc w i t h T c 6 0 X - -

T ( k g ) = 7 1 6 X N o X D = 2 0 ~ K Q

B H P 0 ~ 1 /2

N = 60 X 6 . 55 × w i t h T r = K Q

N o X D ~ X Tr ]

T h e s y m b o l s ar e d e f i n e d in t h e N o m e n c l a t u r e . T h e v a l u e s o f Tc

a n d T r a r e g i v e n i n F i g . 1 a s a f u n c t i o n o f t h e p r o p e l l e r p i t c h -

d i a m e t e r r a t i o f or t h r e e - a n d f o u r - b l a d e d p r o p e l l e r s w i t h a

d i s k - a r e a r a t i o o f 0. 50 . S t r i c t l y s p e a k i n g , t h e c u r v e s a p p l y o n l y

t o p r o p e l l e r s w i t h a i r f o i l s h a p e s e c t i o n s f r o m 0 . 5 r a d i u s t o t h e

t i p .

I n t h e d i s c u s s i o n to r e f e r e n ce [1 ] b o t h K i m o n a n d M o r g a n

p o i n t o u t t h a t t h e c o e f f i c i e n t fr o m F i g . 1 c a n b e s t r i c t l y a p p l i e d

o n l y t o c o n s t a n t - t o r q u e i n s t a l l a t i o n s . M o r g a n [1 ] d e r i v e s t h e

e x p r e s s io n f o r b o l l a rd - p u l l a n d t h e c o r r e s p o n d i n g r p m f o r b o t h

c o n s t a n t - p o w e r i n s t a l l a t i o n s f o r t h r e e , f o u r, a n d f i v e - b l a d e d

T r o o s t p r o p e l l e rs w i t h d i f f e re n t e x p a n d e d a r e a r a t i o s . F ig u r e s 2

a n d 3 r e p r o d u c e h e r e t h e t h r e e a n d f o u r - b l a d e d p r o p e l l e r d a t a ,

r e s p e c ti v e l y . S i n c e t h e s e d i a g r a m s a r e b a s e d o n o p e n - w a t e r

t e s t s , t h e b o l l a r d p u l l t e n d s t o b e o v e r e s t i m a t e d b y a f e w p e r -

c e n t ( u p t o 1 0 p e r c e n t ) .

T h e s e c o r r e s p o n d i n g e q u a t i o n s , i n t h e m e t r i c s y s t e m , a r e :

2 2 0 0 0 2 5 3 3 1 6 1 8 7 1 2 4 0 3 0 2 2 0 5 0 0 . 3 71 0 M A R I N E T E C H N O L O G Y

Page 2: Practical Bollard-Pull Estimation

8/20/2019 Practical Bollard-Pull Estimation

http://slidepdf.com/reader/full/practical-bollard-pull-estimation 2/6

) . I 0

I i

o

c

¢

g

~ 9

o-

. 9

3 . 0 8

0 . 07

O . O

0.05

O . O t .

0 . 6 0 . 7

O . R 0 . 9 1 . 0 I . I 1 . 2

P l t c h / D i o . m e t o r R o t l o

1 2

F i g . 1

1.3

0.0]

0 . 0 2

1 . ( .

N o m e n c l a t u r e

AE = e x p a n d e d a r e a o f p r o p e l l e r b l a d e s , m 2

A0 = d i sk a r e a o f p r o p e l l e r , m z ( = 7 r D2 /4 )

A p = p r o j e c t e d a r e a o f p r o p e l l e r b l a d e s , m 2

B H P = b r a k e h o r s e p o w e r a t b o l la r d p u l l

D H P 0 = d e l i v e r e d h o r s e p o w e r a t d e s i g n s p e e d

( m a x i m u m p o w e r)

E A R = e x p a n d e d a r e a r a ti o =

A E / A o

E A R 0 = m i n i m u m e x p a n d e d a r e a r a ti o fo r f r e e

B H P 0 = b r a k e h o r s e p o w e r a t d e s i g n s p e e d

( m a x i m u m p o w e r )

C = C a ld w e l l ' s c a v i t a t i o n c o e f f i c i e n t

C Z AR = e x p a n d e d a r e a r a t i o c o e f f i c i e n t

= 0 . 6 7 . ~ ( C T L S ' 8 ~

C N = p r o p e l l e r r o t a t i o n a l c o e f f i c i e n t

K r

_ 7 5 . C r a / z _ _

27r KQ

C T = th r u s t c o e f f i c i e n t

/ 75 \2/3 KT-

= t ~ p 1 /2 ) K p Z/~

D = p r o p e l l e r d i a m e te r , m

D H P = d e l i v e r e d h o r s e p o w e r a t b o ll a r d p u l l

c a v i t a t i o n se r v i c e

J = p r o p e l l e r a d v a n c e c o e f f i c i e n t

= V a / n D

K 0 = t o r q u e c o e f f i c i e n t

Q / p n 2 D 5

K r = th r u s t c o e f f i c i e n t

= T / p n 2 D 4

N = p r o p e l l e r r o t a t i o n a l sp e e d ( r p m ) a t

b o l l a r d p u l l

No = p r o p e l l e r r o t a t i o n a l sp e e d ( r p m ) a t d e -

s i g n s p e e d

n = p r o p e l l e r r o t a t i o n a l sp e e d ( r p s ) a t b o l -

l a r d p u l l

=

N / 6 0

~ R = p r o p e l l e r r e l a t i v e r o t a t i v e e f f i c i e n c y

P = p r o p e l l e r p i t c h ( m )

P / D = p r o p e l l e r p i t c h - d i a m e t e r r a t io

p = A p / A E

Q = p r o p e l l e r t o r q u e ( k g X m )

75

- D H P

27rn

O = m a s s d e n s i t y o f w a t e r ( k g X s 2 / m 4)

S H P = s h a f t h o r s e p o w e r

T = p r o p e l l e r t h r u s t ( k g ) a t b o l l a r d c o n d i -

t i o n

= p n 2D 4 • K T

t = t h r u s t d e d u c t i o n c o e f f i c i e n t

T c = p r o p e l l e r t o r q u e - th r u s t c o e f f i c i e n t s

r a t i o

6 0 K T K r

- - o r - -

20.7r KQ KQ

Tr = p r o p e l l e r t o r q u e c o e f f i c i e n t

= K 0

V = t u g s p e e d , m / s

V a = p r o p e l l e r s p e e d o f a d v a n c e , m / s

=v(1-w)

V t i p = p r o p e l l e r t ip s p e e d , m / s

= T r . n . D

w = wa k e c o e f f i c i e n t

J U L Y 1 9 8 7 2 2 1

Page 3: Practical Bollard-Pull Estimation

8/20/2019 Practical Bollard-Pull Estimation

http://slidepdf.com/reader/full/practical-bollard-pull-estimation 3/6

I 0.13

T r o o s t B S e r i e s /

I ~ /L O . Z

/% I

1 ~ 0.11

5 ~° -~- o. 3~- -~. y y o. o

g ~ o .o s g

7 o . o ~

/ o o~

5 0.05 ~

4 0.04

__ 0.03

/ / . ] 0 . 02

o.ol

0.5 06 O.'] 0.8 0.9

l.O I.I

I.?_ 1.3

1,4

P i t c h / O i a m ~ i e r R a t ; o

F i g 2

G

2

6

o~

L

#

t.

m:

}-

J

13

I Z l

I I ~ ~'Tc

I0 _ _ ~ ~

0.14

T r o o s t B S e r i e s

i /0 13

0.12

~ / O.ll

E A R 0 . 1 0

/ f o . s b ~ o .o g Y

_ _ 0 . 0 8

o

_ _ 0 . 0 7

0 0 s i

7 /

0,04

0.03

~ 'T r 4 B l a d e s

0.02

0.01

0.5 0.6 0.7 0,8 0.9 1.0 t .I I.?~ 13 I,q

P~ t c h / O ; a rne le r Ra { { o

F i g 3

- - f o r c o n s t a n t t o r q u e

D H P o X

T c K T

T

( kg ) = 716 x N O x D wi t h

Tc KQ

DHP o

~1/2

N = 60 x 6 . 85 X wi t h

T r = KQ

N o X D 5 X Tr]

- - a n d f o r c o n s t a n t p o w e r

D H P 0 X T c

T ( k g ) = 7 1 6 X

N X D

X D H P ° ~1/3

N = 6 0 X 0 .1 1 4 D ~ X T ~ ]

F i g u r e s 2 a n d 3 s h o w t h a t t h e t w o m a j o r f a c t o r s a f f e c t i n g t h e

b o l l a r d p u l l o f a tu g a r e t h e p r o p e l l e r d i a m e t e r D a n d t h e

h o r s e p o w e r D H P d e l i v e r e d b y t h e e n g in e . O t h e r b o l l a r d - p u l l

c h a r t s f o r c o n s t a n t - p o w e r i n s t a l l a t i o n c a n b e d e r i v e d f r o m t h e

b a s i c d e f i n i t i o n s o f KT, KQ, a n d Q a n d t h e p o l y n o m i a l e x p r e s -

s i o n s fo r t h e W a g e n i n g e n B - S c r e w S e r i e s [ 3] .

CT CN

G E A R c h a r t s

A t b o l l a r d p u l l, t h e r e l a t i o n s h i p b e t w e e n t h r u s t T , p r o p e l l e r

d i a m e t e r D , a n d e n g i n e d e l i v e r e d h o r s e p o w e r D H P c a n e a s il y

b e d e r i v e d b y e l i m i n a t i n g t h e r e v o l u t i o n s p e r s e c o n d n f r o m t h e

d e f i n i t i o n s o f t h e t h r u s t c o e f f i c i e n t KT, t h e t o r q u e c o e f f i c i e n t

K Q , a n d t h e e n g i n e d e l i v e r e d h o r s e p o w e r D H P . T h u s b y d e f i n i -

t i o n

K T =T~,KQpn2D - p n 2 ~ a n d D H P - 2~nQ75

t h e n

T = C T x ( D H P X

D ) 2/3

(1)

w h e r e

\2/3

= 75 pt /2) X KT

CT ~ KQ2/a

T h e r e v o l u t io n s p e r s e c o n d n c a n b e o b t a i n e d b y e l i m i n a t i n g

t h e p r o p e l l e r d i a m e t e r D f r o m t h e e x p r e s s io n s f o r KT, KQ a n d

T . T h u s

D H P 2

n = CN x T5/2 (2)

w h e r e

CN = 75 X

CT3/2 KT

2~r KQ

A t b o l l a r d - p u l l , w h e r e J = 0 , t h e v a l u e s o f CT a n d CN a r e

f u n c t i o n s o f t h e c o e f f i c i e n ts K T a n d KQ a n d t h e y c a n e a s i l y b e

c o m p u t e d f r o m a n y c h o s e n p r o p e l l e r s er i es c h a r t s f o r d i f fe r e n t

v a l u es o f p i t c h - d i a m e t e r r a t io P / D a n d o f e x p a n d e d a r e a r a t io

E A R .

T h e v a l ue o f E A R t o a v o i d c a v i t a t i o n t h r u s t b r e a k d o w n a n d

e r o s i o n h a s b e e n d e r i v e d b y C a l d w e l l [ 2 ] f r o m a n a n a l y s i s o f

B u r r i l l ' s c a v i t a t i o n c h a r t a s s u m i n g a p p r o x i m a t e l y 2 1/.2 p e r c e n t

b a c k ( s u c t i o n s i d e ) c a v i t a t i o n . T h e f o r m u l a i s g i v e n b y

(DH P/A~ ) 2/3

E A R 0 = C x

T h i s e q u a t i o n c a n b e w r i t t e n a s f o ll o w s

E A R 0 = [ ~ . 4 - C3/2. DHP 12 / 5

D 2 p O r - n - D ) l ° 8 J

w h e r e

p = p r o p e l l e r p r o j e c t e d a r e a - e x p a n d e d a r e a r a t i o

= Ap/AE =

1.067 - 0 .229

P / D

B y s u b s t i t u t i n g t h e e x p r e s s i o n s f o r n a n d D f o r t h e W a g e n i n g e n

B - S c r e w S e r i e s , E A R o c a n b e w r i t t e n i n t h e f o l lo w i n g f or m :

2 2 2 M A R I N E T E C H N O L O G Y

Page 4: Practical Bollard-Pull Estimation

8/20/2019 Practical Bollard-Pull Estimation

http://slidepdf.com/reader/full/practical-bollard-pull-estimation 4/6

where

EA Ro = CEAR X (D~HTP)°768

(3)

T/{~P

28 8

c o . 6 ( 6 T 1 ' 8 4 8 ~

CEAR=0 . 67×\

The value of the coeffi cien t C varies betw een 0.15 and 0.2. The lB.0

values of

GEAR ca n

be computed for the values of C T and CN for

given values of

P / D

and EAR.

Curves of

C T, C N,

and

GEAR,

develope d from the approp riate 16.8

propeller charts, can be plotted as functions of P / D and EAR

and used to give a quick estimat ion of the prope ller main di-

mensions for a given DHP and required bollard pull. Such

curves have been derived from the Wageningen B-Screw Series ,4.8

polynomi al expressions for three and f our-bladed pro pellers [3]

and are shown in Figs. 4, 5 ( a , b , e ) , and 6 ( a , b , c ) . Figure 4, CEAR

versus T/DHP, gives the minimum values of EAR to avoid

cavit ation thru st breakdown and erosion and Fig. 5 or Fig. 6 can ,2.8

be used to determine the dia meter D, revolutions per second n,

and

P / D

for the selec ted EAR f rom Fig. 4.

These figures and the equations for T versus C T and n versus re. e

C N can be used in different ways to determine the propeller

main characteristics for the required bollard pull at a given

DHP or the bollard pull and DH P for the chosen propeller. The

designer can obtain an opt imu m propelle r after some iterations. 8.8

One simple example, treated in the Appendix, shows how to

obtain by using these diagrams a quick estima te of the propell er

characteristics for a given DHP and required t hrust at bollard

pull.

C o n c l u s i o n

As can be seen from the exam ple trea ted in the Appendix, the

CT CN

G E A R

bollard-pull charts can be used to give a good

estimate of the propeller characteristics. Moreover, these data

should be adequate for preliminary design purposes.

When utilizing the new diagrams, the designer must keep in

mind that some corrections should be introduced, such as cor-

rections for Reynolds number and hull interference effects

(thrust-deduction factor and wake fraction). Without these cor-

rections, the values obtained from the chart may be overesti-

mated by a few percent. For preliminary design purposes, the

designer can decrease this over-estimation by decreasing the

calculated propeller diameter by 0.5 to 1 percent.

The C T, C N, CEARbollard-pull charts present ed in this paper

are derived from the polynomial expressions of

K T

and

K Q

for

the Wageningen open-water B-Screw Series for a Reynolds

numb er of 2 × 106. Corrections for other Rey nold' s numbers are

given in reference [3].

R e f e r e n c e s

1 Argyriadis, D. A., Modern Tug Design, with Particular Emphasis

on Propeller Design, Maneuverability, and Endurance,

T r a n s .

SNAME, Vol. 65, 1957, pp. 362-444.

2 Wood, J. N., C a l d w e l l' s S c r e w T u g D e s i g n , Hutchinson Publish-

ing Co., London, 1969.

3 Oosterveld, M. W. C., Fur ther Computer Analysed Data of Wa-

geningen B-Screw Series, Netherland Ship Model Basin Publicat ion

No. 479; also, I n t e r n a t i o n a l S h i p b u i l d i n g P r o g r e s s , Vol. 22, No. 251,

July 1975.

Appendix

E x a m p l e o f a p p l ic a t i o n

Estimate the three-bladed Wageningen B-Series propeller character-

istics

D , P / D ,

EAR and its rpm N for

:EAR mnmum for cavitation

free service

.S .6 .l .8 .9 1. 1.1

I l [

6 8 I0

CEAR

Fig . 4

• Available delivered horsepower at bollard (DHP) = 600 hp

• Reques ted thrust a t bollard (T) = 9300 kg

a. without any restriction on D

b. with D -- 2.6 m only

Case

a

With no restriction on D and N, the best propeller can be defined by

taking P / D = 0.5 to 0.6 and EAR = 0.5 to 0.7, if possible, to give all-

round towing performance and high astern bollard pull.

--From Fig. 4

T

DH~ = 15.5 -~ CEAR= 4.85

EAR = 0.6

--F rom Fig. 5(a)

EAR = 0.6

- - - , P /D = 0.52

CEA = 4.85

--From Figs. 5(b) and 5(c)

P / D =

0.52

C T =

70.56

EAR = 0.6 CN = 7.73 X 104

Then for

Thus we obtain

C T =

70.56, equation (1) gives D = 2.52 m

C N = 7.73 X 104, equation (2) gives N = 200

rpm.

D = 2.52 m Z = 3 blades

P / D = 0.52 N = 200 rpm

EAR = O.6

Case b

In this case, it is necessary to introduce D = 2.6 m in equation (1) to

compute

CT:

J U L Y 1 9 8 7 2 2 3

Page 5: Practical Bollard-Pull Estimation

8/20/2019 Practical Bollard-Pull Estimation

http://slidepdf.com/reader/full/practical-bollard-pull-estimation 5/6

1.2

I.I

1 . 8

B.9

B . 8

8.7

B.6

B.S

8 4

P / ~

EAR

.5 .7 .9 1.1

I I I | I I I

4 4 . 5 5 5 . 5 6 6 . 5

CEkR

F i g . 5 ( a )

1.2

I . I

1 . 8

8 . 9

8 . 8

8 . 7

@.6

8 . S

9 4

Z-3

P / l ) p ~

Z-3

1

I . I I 8 . 9 8 . 8 8 . 7 8 . e 8 . 5

I i i I

S , 6 8 6 5 78

F i g . 5 ( b )

I

C l

1 .2

I . I

1 . 8

8 . 9

8 . 8 i

8 . 7

8 . 6

8 . S

8 . 4

I . i

I o . g

f I

5 6

F i g . 5 ( c )

E A R

G . 6 8 . 7 6 . 6

I

8

Z-3

8 . $

I

C~.IO 4

- - F r o m e q u a t i o n ( 1 )

T = 9 . 3 0 0 k g

D H P = 6 0 0 h p - * C T = 6 9 . 2

D = 2 . 6 m

- - F r o m F i g . 5 ( b )

C T = 6 9 . 2

- - P / D = 0 . 4 4 2

E A R = 0 . 6

C T = 6 9 . 2

- - P / D = 0 . 4 9 2

E A R = 0 . 7

- - F r o m F i g . 5 ( a )

E A R = 0 . 6

P / D = 0 . 4 4 2 - * C E AR = 4 . 5 8

E A R = 0 . 7

P / D = 0 . 4 9 2 - * C E AR = 4 . 7 3

- - F r o m F i g . 4

= 4 . 5 8

C E A R = 4 . 7 3 - -~ m i n i m u m E A R - - 0 . 5 5 - 0 . 6

( f o r c a v i t a t i o n )

I f w e a s s u m e E A R = 0 . 6 a n d w i t h P / D = 0 . 4 4 2 :

- - F r o m F i g . 5 ( c )

E A R = 0 .6

P / D = 0 . 4 4 2 - - * C N = 8 . 0 6 × 1 0 4

T h e n f o r C N = 8 . 0 6 × 1 0 4, e q u a t i o n ( 2 ) g i v e s N - - 2 0 8 r p m . T h u s w e

o b t a i n

D = 2 . 6 m ( g i v e n ) Z = 3 b l a d e s

P / D = 0 . 4 4 2 N = 2 0 8 r p m

E A R = 0 . 6

2 2 4 M A R I N E T E C H N O L O G Y

Page 6: Practical Bollard-Pull Estimation

8/20/2019 Practical Bollard-Pull Estimation

http://slidepdf.com/reader/full/practical-bollard-pull-estimation 6/6

P/O

1.2

1 1

1 . 8

8 . 9

8 . 8

8.7

8 . 6

e.s

9 . 4

E A R

Z , 4

.7 .9 1.1

I I I I I I I

4 4.5 5 5.5 6 6.5 CEXR

F i g . 6 ( a )

P/D

1.2

I . I

t . 8

8 . 9

9 . 8

8 . 7

8 6

8 . S

8.4

I . I

E A R

0 . 9 8 . 8 8 . 7 9 . 6 0 . 5

I I

68

6S

F i g . 6 ( b )

70

Z=4

CT

hese calculat ions can be checked from the T c and T r curves given in

Figs. 2 and 3. P / 0

Case a 1.2

For D

=

2.52 m, from the Wageni ngen B-Screw Series polynomial

computa t ion:

P / D = 0.52 -* K T = 0.1995 T ¢ = 10.9 I. t

EAR = 0.6

Z = 3 blad es K Q = 0.018 3 T r = 0.018 3

1.8

Th en for DHP = 600 hp -~ N = 199.5 ~ 200 rpm

T = 9313.7 kg

C a s e b 9.9

For D = 2.6, from the Wa genin gen B-Screw Series polynomial com-

p u t a t i o n

P / D = 0.442 -~ K T = 0.1636 Tc = 11.7 e. 8

EAR = 0.6 K Q = 0.014 T r = 0.014

Z = 3 blad es

8.7

Then for DH P = 600 hp -* N = 207 rpm

T = 9336 kg

These resul ts are similar to those obtained from the CT , CN , CEAR

bollard -pull chart ; the observed small differences ar ise from the preci- 6.8

sion of the CT , CN , GEAR dia gra ms of Figs. 4 an d 5.

M e t r i c C o n v e r s i o n F a c t o r s

lm = 3 .28f t

1 kg = 2.20 lb

1 kW = 1.34 hp

e.S

e . 4

I . I I

I I

5 6

F i g . 6 ( c )

~AA

8 . g e . 8

I

7

Z . 4

0.7 8.8 9.5

t J

8 CN.10-4

JULY 1987 2 2 5