32
SCHOTT North America, Inc. Interfaces in Functional Materials Practical aspects and implications of interfaces in glass-ceramics Mark J. Davis SCHOTT North America, Inc. Outline Key questions to address Interfacial effects in glass-ceramics---a laundry list Glass-ceramics in general: SCHOTT commercial examples Commercial or near-commercial gc / interface examples Key questions: review

Practical aspects and implications of interfaces in glass ... · Practical aspects and implications of interfaces in glass-ceramics ... How is a commercial glass-ceramic produced?

  • Upload
    vuque

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

SCHOTT North America, Inc. Interfaces in Functional Materials

Practical aspects and implications of interfaces in glass-ceramics

Mark J. DavisSCHOTT North America, Inc.

Outline

Key questions to address

Interfacial effects in glass-ceramics---a laundry list

Glass-ceramics in general: SCHOTT commercial examples

Commercial or near-commercial gc / interface examples

Key questions: review

SCHOTT North America, Inc. Interfaces in Functional Materials

Key Questions (from H. Jain)

What has been the role of interfaces in the development of

emerging applications?

With regard to applications, what aspects of interfaces are most

important and why?

What are the scientific issues that require basic understanding

of interfaces in glass-ceramics? What is the relative importance

of each?

What properties of glass-ceramics hold promise for the future?

SCHOTT North America, Inc. Interfaces in Functional Materials

Microstructural developmentsurface energies and their impact on nucleation

general glass stability; controlled vs. un-controlled crystallization (i.e., critical cooling rate in a commercial setting vs. academic…)

Structuraldetailed nature of interface (e.g., “pristine”, microcracked…)

crack blunting processes

residual stresses, crystal clamping

permeability

ElectricalEffective connectivity

Resistive / capacitive behavior

Opticalscattering effects

Practical Effects (Internal)

SCHOTT North America, Inc. Interfaces in Functional Materials

Joining (low-temperature)Hydrophilic vs. hydrophobic surfaces

Competitive bonding technologies

Glass-to-metal sealing (high-temperature)Flow vs. crystallization “stiffening”

Interfacial reactions

Hermeticity (CTE matching)

PolishingCrystal vs. glass effects (mostly proprietary know-how)

Practical Effects (External)

SCHOTT North America, Inc. Interfaces in Functional Materials

Why glass-ceramics?Single Crystals often exhibit the highest property performance,

but are generally more difficult and expensive to manufacture

Ceramics are easier to manufacture, but are typically porous to

some degree and may exhibit inhomogeneities, aging, decreased

strength, etc.

Glasses take advantage of processing ease, homogenization

efficiency, and tailorable compositions, but lack certain functions

(e.g., novel CTE combinations, lack of center-of-symmetry)

Glass-ceramics can be seen as “glass packaged crystals” and

combine the ease of glass processing and potential for new

property combinations (e.g., ultra-low thermal expansion, 2nd-

harmonic generation, piezoelectricity)

SCHOTT North America, Inc. Interfaces in Functional Materials

How is a commercial glass-ceramic produced?

Ceramization

Melting

glass

glass-ceramic

Inspection

SCHOTT North America, Inc. Interfaces in Functional Materials

Thermal expansion tailoring

From Sect. 6.5, Glass-Ceramics for Optical Applications, M. Davis in Optical Materials and Their Applications, Springer-Verlag

Aluminum

Same composition for all curvesMicrocracking and hysteresis

SCHOTT North America, Inc. Interfaces in Functional Materials

Pressed glass-ceramic reflectors

Glass-ceramic cooktops

Examples of SCHOTT glass-ceramics

Ring-laser gyroscopes

8.2 m telescope mirror blanks

SCHOTT North America, Inc. Interfaces in Functional Materials

VLT telescope in Chile (8.2 m mirrors with adaptive optics)

(www.eso.org)

Zerodur mirror fabrication

On the road to Cerro Paranal, Chile

Large mirror blank production (Zerodur)Large mirror blank production (Zerodur)

SCHOTT North America, Inc. Interfaces in Functional Materials

Non-isothermal ~2 oC/hr

bar = 200 nm

Maier and Muller, 1987

~50 nm high-quartz solid-solution crystals~50 nm high-quartz solid-solution crystals

Typical LAS (Zerodur) glass-ceramic microstructure

Internal surface area ~ 30 m2/gm

~1022 m-3 HQSS crystals

~1025 m-3 ZrTiO4 crystals

SCHOTT North America, Inc. Interfaces in Functional Materials

Isothermal heat treatment

Petzoldt and Pannhorst, 1991

SCHOTT North America, Inc. Interfaces in Functional Materials

Permeability of Zerodur

*

*Fused Silica

*

*Zerodur

Pyrex/Duran*

*Fused Silica

*

*Fused Silica

*

*Zerodur

*

*Zerodur

Pyrex/Duran

Figure from Suckow et al. (1990)

SCHOTT North America, Inc. Interfaces in Functional Materials

Zerodur permeability enables high-precision RLG production

Ring Laser Gyroscope (RLG)

Sagnac EffectSagnac Effect

SCHOTT North America, Inc. Interfaces in Functional Materials

World’s biggest RLG (Bavarian Forest)to measure subtle Earth motions

SCHOTT North America, Inc. Interfaces in Functional Materials

IR only (visible blocking filter RG 1000)λ > 850 nm

Scattering example in glass-ceramics (DWDM substrate)

small particle limit:

ρλ

τ 42

3 1)(3

4 nnaΔ⋅=

Rayleigh (1881)

Visible light only (IR blocking filter KG3)λ < 850 nm

Sample thickness ~ 35 mm

Crystal size ~35 nm

SCHOTT North America, Inc. Interfaces in Functional Materials

Quantitative scattering example in glass-ceramics (Zerodur)

From Sect. 6.5, Glass-Ceramics for Optical Applications, M. Davis in Optical Materials and Their Applications, Springer-Verlag

λ-4 dependence

λ-8 dependence

SCHOTT North America, Inc. Interfaces in Functional Materials

Expected behavior

Crystal clamping of a FE phase (Lynch and Shelby 1984)

GlassGlass

PbTiO3

No crystalclamping

Crystalclamping

Also Grossman and Isard (1969)

Assuming ~1% strains and E ~ 260 GPa, calculated residual stresses ~ 3 GPa (!)

SCHOTT North America, Inc. Interfaces in Functional Materials

Residual stress studies (crystal/glass interface)

Estimated from data of Grossman and Isard (1969)

~3000 (?)PbTiO3 – BaO – B2O3

Zevin et al. (1978)~400LAS

Mastelaro and Zanotto (1996)~200Soda-lime silicate

Mastelaro and Zanotto (1999)~150Li2O-2SiO2

SourceMax |σ| (MPa)System

⇒ In all cases, calculated stresses >> nominal 20 MPatensile strength of typical (imperfect) external glass surfaces

SCHOTT North America, Inc. Interfaces in Functional Materials

Engineered microstructure examples (G. Beall)

Fluorrichterite

Canasite

Enstatite

High Crystallinity

Interlocking Crystals

Grain-size from 1-10 μm

Acicular Crystals (Rods)

Bladed Crystals (Laths)

Polysynthetic Twinning

SCHOTT North America, Inc. Interfaces in Functional Materials

PhysisorbedChemisorbed

Si

Si

Li+O OO O O

O OHOH OH

OH OHOH

Al

Al

Li+Li+O O O

O OHOH

H HO

HHO

HHOH HO HH

OH HO H HO

HHO

H HO

H HO

Si

Si Al

Al

Si

Si

AlSiSi

Si Si Si HydrophilicSurface

Bulk Zerodur

PhysisorbedChemisorbed

Si

Si

Li+O OO O O

O OHOH OH

OH OHOH

Al

Al

Li+Li+O O O

O OHOH

H HO

HHO

HHOH HO HH

OH HO H HO

HHO

H HO

H HO

Si

Si Al

Al

Si

Si

AlSiSi

Si Si Si HydrophilicSurface

Bulk Zerodur

A lLi +

OOH OHOH

OHOH OH

A lLi +

OOH OH

HHO

HHO

Li +

O OHOH OHOH OHOH

A l

O OHOH

H HO

HHO

H HOH HO

HHO

O

OHOHO

O

OHOHOO

OHOHO

OH

OHOHO

O

OOHOO

OHO

OO

OOHO

Li +

Li +

Li +

Li +

OH-

OH-

OH-

OH-

OH-HH HO

+

HH HO

+

Si

Si

SiSiAlSiSiSi

Si

Si

SiSi

SiSi

Si Al Si Si Si Al

InorganicJoiningLiquid

Bulk Zerodur

Bulk Zerodur

OriginalSurfaces

A lLi +

OOH OHOH

OHOH OH

A lLi +

OOH OH

HHO

HHO

Li +

O OHOH OHOH OHOH

A l

O OHOH

H HO

HHO

H HOH HO

HHO

O

OHOHO

O

OHOHOO

OHOHO

OH

OHOHO

O

OOHOO

OHO

OO

OOHO

Li +

Li +

Li +

Li +

OH-

OH-

OH-

OH-

OH-HH HO

+

HH HO

+

Si

Si

SiSiAlSiSiSi

Si

Si

SiSi

SiSi

Si Al Si Si Si Al

InorganicJoiningLiquid

Bulk Zerodur

Bulk Zerodur

OriginalSurfaces

Al Li +

O

O

OO

O

O

Al

AlLi +Al

H HO

OH

H HOHH

O

OH O

O

OO

O

OH HO

H HO

H HO

OH

OLi +Li +

O

O

OO

O

OO

Li +

Li +

H HO

OH

H HO

H HO

H HO

H HO

H HO

OH OH

Si

Si Si

SiAlSiSiSi

SiSi Si Si

Si

Si

Si

Si

SiAl

ReAl

Si

Si

Si

Bulk Zerodur

Bulk Zerodur

RigidJoint

Interface

OriginalSurfaces

Al Li +

O

O

OO

O

O

Al

AlLi +Al

H HO

OH

H HOHH

O

OH O

O

OO

O

OH HO

H HO

H HO

OH

OLi +Li +

O

O

OO

O

OO

Li +

Li +

H HO

OH

H HO

H HO

H HO

H HO

H HO

OH OH

Si

Si Si

SiAlSiSiSi

SiSi Si Si

Si

Si

Si

Si

SiAl

ReAl

Si

Si

Si

Bulk Zerodur

Bulk Zerodur

RigidJoint

Interface

OriginalSurfaces

Al Li +

O

O

OO

O

O

Al

AlLi +Al

H HO

OH

H HOHH

O

OH O

O

OO

O

OH HO

H HO

H HO

OH

OLi +Li +

O

O

OO

O

OO

Li +

Li +

H HO

OH

H HO

H HO

H HO

H HO

H HO

OH OH

Si

Si Si

SiAlSiSiSi

SiSi Si Si

Si

Si

Si

Si

SiAl

ReAl

Si

Si

Si

Bulk Zerodur

Bulk Zerodur

RigidJoint

Interface

OriginalSurfaces

0

2

4

6

8

10

12

14

Heat Treatment Temperature (C)25 60 90

Mon

olith

ic G

lass

120None0

2

4

6

8

10

12

14

Heat Treatment Temperature (C)25 60 90

Mon

olith

ic G

lass

120None0

2

4

6

8

10

12

14

Heat Treatment Temperature (C)25 60 90

Mon

olith

ic G

lass

120None0

2

4

6

8

10

12

14

Heat Treatment Temperature (C)25 60 90

Mon

olith

ic G

lass

120None

Aqueous based low-temperature bonding

SCHOTT North America, Inc. Interfaces in Functional Materials

Glass and glass-ceramic sealing materials

High overpressure tolerance

Good high-CTE match

Metal / glass-ceramic chemical reaction

SCHOTT North America, Inc. Interfaces in Functional Materials

Bubble interfaces as nucleation sites- curiosity or more widespread?

Davis and Ihinger (1998)

Lithium disilicate composition

SCHOTT North America, Inc. Interfaces in Functional Materials

Piezoelectric glass-ceramics (SCHOTT)

0.5 mm

• Strong crystalline alignment

• Non-ferroelectric (polar)

Li2Si2O5 - B2O3 system

R.E. Newnham, PSU

SCHOTT North America, Inc. Interfaces in Functional Materials

Piezo resonance results

Faint resonance still detected

Polar

Li2Si2O5 - B2O3 system

35 mm disks

No resonance detected

Ferroelectric

NaNbO3 – SiO2 system

SCHOTT North America, Inc. Interfaces in Functional Materials

Prasad et al. (2002)

Ferroelectric glass-ceramic: SBN + Li2B4O7

SCHOTT North America, Inc. Interfaces in Functional Materials

-15

-10

-5

0

5

10

15

-800 -600 -400 -200 0 200 400 600 800

BST 50/50 Glass

Pola

rizat

ion

(µC

/cm

2 )

Electric Field (kV/cm)

BST50/50 Glass

-15

-10

-5

0

5

10

15

-800 -600 -400 -200 0 200 400 600 800

BST 50/50 "Hazy" Glass

Pola

rizat

ion

(µC

/cm

2 )

Electric Field (kV/cm)

BST50/50 “Hazy” Glass

-15

-10

-5

0

5

10

15

-800 -600 -400 -200 0 200 400 600 800

BST 50/50 "Hazy" Glass

Pola

rizat

ion

(µC

/cm

2 )

Electric Field (kV/cm)

BST50/50 “Hazy” Glass

-15

-10

-5

0

5

10

15

-800 -600 -400 -200 0 200 400 600 800

BST 50/50 1200°C/2hrs

Pola

rizat

ion

(µC

/cm

2 )

Electric Field (kV/cm)

BST50/50 Glass-ceramic

-15

-10

-5

0

5

10

15

-800 -600 -400 -200 0 200 400 600 800

BST 50/50 1200°C/2hrs

Pola

rizat

ion

(µC

/cm

2 )

Electric Field (kV/cm)

BST50/50 Glass-ceramic

Hysteresis due to interfacial polarization (alk.-niobate gc’s)

Ming-Jen Pan, NRL

GlassBST

0.01cm0.01cm

Area = 1 cm2

GlassBST

0.01cm0.01cm

Area = 1 cm2

Glass

BST

Glass

BST

How best to model?

SCHOTT North America, Inc. Interfaces in Functional Materials

Alkali-niobate-silicate glass-ceramics (1)

TEM micrographs courtesy of M. Lanagan and G. Yang (PSU) and Ming-Jen Pan (NRL)

As-quenched glass

SCHOTT North America, Inc. Interfaces in Functional Materials

TEM micrographs courtesy of M. Lanagan and G. Yang (PSU) and Ming-Jen Pan (NRL)

Alkali-niobate-silicate glass-ceramics (2)

20 nm

Residual glass

5 nm

SCHOTT North America, Inc. Interfaces in Functional Materials

Key Questions Review (1)

What has been the role of interfaces in the development of

emerging applications (for glass-ceramics)?

Somewhat taken for granted to date with the exception

of special “tough” glass-ceramics (e.g., amphibole-

bearing…)

SCHOTT North America, Inc. Interfaces in Functional Materials

With regard to applications, what aspects of interfaces are most

important and why?

Structural integrity

Impact on optical scattering

Effect on electrical properties

Key Questions Review (2)

SCHOTT North America, Inc. Interfaces in Functional Materials

What are the scientific issues that require basic understanding of

interfaces in glass-ceramics? (What is the relative importance of

each?)

Stress environment in high-crystal fraction glass-ceramics and means

by which to control/predict

Quantitative optical scattering models for “non-dilute” glass-ceramics

Advanced techniques (e.g., impedance spectroscopy) to investigate

electrical properties of complex glass-ceramics in light of structure-

property relations to design superior materials

Key Questions Review (3)

SCHOTT North America, Inc. Interfaces in Functional Materials

What properties of glass-ceramics hold promise for the future?

Good Question!

Key Questions Review (4)

Mechanical (e.g., ballistic performance)

Optical (e.g., a more measured look at gc lasers, etc)

Electrical (true competitors to well-known, low-cost

ceramics?)