Prac 1 Control

Embed Size (px)

Citation preview

  • 7/27/2019 Prac 1 Control

    1/37

    Transformada de Laplace

    1.-() () z=20;

    syms t

    f=3*(t^z);

    c= laplace (f)

    pretty (c)

    2.-() () z=20;

    syms t

    f= exp(z*t);

    c= laplace (f)

    pretty (c)

  • 7/27/2019 Prac 1 Control

    2/37

    3.-() () () ()z= 20;

    w= sym (w);

    t= sym (t);

    f=z*sin (w*t);

    c= laplace (f)

    pretty (c)

  • 7/27/2019 Prac 1 Control

    3/37

    Fracciones parciales

    4.-

    ()

    =

    ()

    z= 20;

    num=[0 0 1];

    den= [1 3 z];

    [R,P,K]=residue (num,den)

  • 7/27/2019 Prac 1 Control

    4/37

    5.- () () Z=20;

    num =[2 0 8 z];

    a=3*z

    den =[1 6 11 a];

    [R,P,K]=residue (num,den)

    primera

  • 7/27/2019 Prac 1 Control

    5/37

    6.- () ()() () z=20;

    num= [0 0 z];

  • 7/27/2019 Prac 1 Control

    6/37

    den=[1 3 2];

    [R,P,K]=residue (num,den)

    Inversa de Laplace

    7.-

    () ()

    ()() ()

    () () )

    ()

    ()()

    Z=20;

    syms s

    f= (z*(s+2))/((s^2)*(s+1)*(s+3));

  • 7/27/2019 Prac 1 Control

    7/37

    c= ilaplace (f)

    pretty (c)

    or

    f= (z*(s+2))/((s^4)+(4*s 3)+(3*s^2));

    c= ilaplace (f)

    pretty (c)

    8.- () ()()() ()() () ()()()Z=20;

    syms s

    f= (z)/((s+1)*(s+1)*(s+3));

    c= ilaplace(f)

  • 7/27/2019 Prac 1 Control

    8/37

    pretty (c)

    or

    f= (z)/((s^3)+(5*s^2)+(7*s)+(3));

    c= ilaplace (f)

    pretty (c)

  • 7/27/2019 Prac 1 Control

    9/37

    9.- () () () () Z=20;

    syms s

    f= ((z)*(s+2))/(s^2);

    c= ilaplace (f)

    pretty (c)

  • 7/27/2019 Prac 1 Control

    10/37

    or

    f= ((z*s)+(z*2))/(s^2);

    c= ilaplace (f)

    pretty (c)

  • 7/27/2019 Prac 1 Control

    11/37

    Buscar help sintaxis

    >> residue(num,den)

    help residue

    RESIDUE Partial-fraction expansion (residues).

    [R,P,K] = RESIDUE(B,A) finds the residues, poles and direct term of

    a partial fraction expansion of the ratio of two polynomials B(s)/A(s).

    If there are no multiple roots,B(s) R(1) R(2) R(n)

    ---- = -------- + -------- + ... + -------- + K(s)

    A(s) s - P(1) s - P(2) s - P(n)

    Vectors B and A specify the coefficients of the numerator and

    denominator polynomials in descending powers of s. The residues

    are returned in the column vector R, the pole locations in column

    vector P, and the direct terms in row vector K. The number of

    poles is n = length(A)-1 = length(R) = length(P). The direct term

    coefficient vector is empty if length(B) < length(A), otherwise

    length(K) = length(B)-length(A)+1.

    If P(j) = ... = P(j+m-1) is a pole of multplicity m, then the

    expansion includes terms of the form

    R(j) R(j+1) R(j+m-1)-------- + ------------ + ... + ------------

    s - P(j) (s - P(j))^2 (s - P(j))^m

    [B,A] = RESIDUE(R,P,K), with 3 input arguments and 2 output arguments,

    converts the partial fraction expansion back to the polynomials with

    coefficients in B and A.

    Warning: Numerically, the partial fraction expansion of a ratio of

  • 7/27/2019 Prac 1 Control

    12/37

    polynomials represents an ill-posed problem. If the denominator

    polynomial, A(s), is near a polynomial with multiple roots, then

    small changes in the data, including roundoff errors, can make

    arbitrarily large changes in the resulting poles and residues.

    Problem formulations making use of state-space or zero-pole

    representations are preferable.

    Class support for inputs B,A,R:

    float: double, single

    See also poly, roots, deconv.

    Reference page in Help browser

    doc residue

    >>laplace(f)

    help laplace

    --- help for sym/laplace ---

    LAPLACE Laplace transform.

    L = LAPLACE(F) is the Laplace transform of the scalar sym F with

    default independent variable t. The default return is a function

    of s. If F = F(s), then LAPLACE returns a function of t: L = L(t).

    By definition L(s) = int(F(t)*exp(-s*t),0,inf), where integration

    occurs with respect to t.

    L = LAPLACE(F,t) makes L a function of t instead of the default s:

    LAPLACE(F,t) L(t) = int(F(x)*exp(-t*x),0,inf).

    L = LAPLACE(F,w,z) makes L a function of z instead of the

    default s (integration with respect to w).

    LAPLACE(F,w,z) L(z) = int(F(w)*exp(-z*w),0,inf).

    Examples:

    syms a s t w x

    laplace(t^5) returns 120/s^6

    laplace(exp(a*s)) returns 1/(t-a)

    laplace(sin(w*x),t) returns w/(t^2+w^2)

    laplace(cos(x*w),w,t) returns t/(t^2+x^2)

    laplace(x^sym(3/2),t) returns 3/4*pi^(1/2)/t^(5/2)

    laplace(diff(sym('F(t)'))) returns laplace(F(t),t,s)*s-F(0)

    See also sym/ilaplace, sym/fourier, sym/ztrans.

    Reference page in Help browser

    doc sym/laplace

    >>syms

    help syms

    SYMS Short-cut for constructing symbolic objects.

    SYMS arg1 arg2 ...

    is short-hand notation for

    arg1 = sym('arg1');

    arg2 = sym('arg2'); ...

  • 7/27/2019 Prac 1 Control

    13/37

    SYMS arg1 arg2 ... real

    is short-hand notation for

    arg1 = sym('arg1','real');

    arg2 = sym('arg2','real'); ...

    SYMS arg1 arg2 ... positive

    is short-hand notation for

    arg1 = sym('arg1','positive');

    arg2 = sym('arg2','positive'); ...

    SYMS arg1 arg2 ... clear

    is short-hand notation for

    arg1 = sym('arg1','clear');

    arg2 = sym('arg2','clear'); ...

    Each input argument must begin with a letter and must contain only

    alphanumeric characters.

    By itself, SYMS lists the symbolic objects in the workspace.

    Examples:

    syms x beta real

    is equivalent to:

    x = sym('x','real');

    beta = sym('beta','real');

    syms k positive

    is equivalent to:

    k = sym('k','positive');

    To clear the symbolic objects x and beta of 'real' or 'positive' status, type

    syms x beta clear

    See also sym.

    Reference page in Help browser

    doc syms

    >>pretty

    help pretty

    --- help for sym/pretty ---

    PRETTY Pretty print a symbolic expression.

    PRETTY(S) prints the symbolic expression S in a format that

    resembles type-set mathematics.

    See also sym/subexpr, sym/latex, sym/ccode.

    Reference page in Help browser

    doc sym/pretty

  • 7/27/2019 Prac 1 Control

    14/37

    >>sym(variable)

    help sym

    SYM Construct symbolic numbers, variables and objects.

    S = SYM(A) constructs an object S, of class 'sym', from A.If the input argument is a string, the result is a symbolic number

    or variable. If the input argument is a numeric scalar or matrix,

    the result is a symbolic representation of the given numeric values.

    If the input is a function handle the result is the symbolic form

    of the body of the function handle.

    x = sym('x') creates the symbolic variable with name 'x' and stores the

    result in x. x = sym('x','real') also assumes that x is real, so that

    conj(x) is equal to x. alpha = sym('alpha') and r = sym('Rho','real')

    are other examples. Similarly, k = sym('k','positive') makes k a

    positive (real) variable. x = sym('x', 'clear') restores x to a

    formal variable with no additional properties (i.e., insures that x

    is NEITHER real NOR positive). Defining the symbol 'i' will use

    sqrt(-1) in place of the imaginary i until 'clear' is used.

    See also: SYMS.

    Statements like pi = sym('pi') and delta = sym('1/10') create symbolic

    numbers which avoid the floating point approximations inherent in the

    values of pi and 1/10. The pi created in this way temporarily replaces

    the built-in numeric function with the same name.

    S = sym(A,flag) converts a numeric scalar or matrix to symbolic form.

    The technique for converting floating point numbers is specified by

    the optional second argument, which may be 'f', 'r', 'e' or 'd'.

    The default is 'r'.

    'f' stands for 'floating point'. All values are transformed fromdouble precision to exact numeric values N*2^e for integers N and e.

    'r' stands for 'rational'. Floating point numbers obtained by

    evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q and 10^q

    for modest sized integers p and q are converted to the corresponding

    symbolic form. This effectively compensates for the roundoff error

    involved in the original evaluation, but may not represent the floating

    point value precisely. If no simple rational approximation can be

    found, the 'f' form is used.

    'e' stands for 'estimate error'. The 'r' form is supplemented by a

    term involving the variable 'eps' which estimates the difference

    between the theoretical rational expression and its actual floating

    point value. For example, sym(3*pi/4,'e') is 3*pi/4-103*eps/249.

    'd' stands for 'decimal'. The number of digits is taken from the

    current setting of DIGITS used by VPA. Using fewer than 16 digits

    reduces accuracy, while more than 16 digits may not be warranted.

    For example, with digits(10), sym(4/3,'d') is 1.333333333, while

    with digits(20), sym(4/3,'d') is 1.3333333333333332593,

    which does not end in a string of 3's, but is an accurate decimal

  • 7/27/2019 Prac 1 Control

    15/37

    representation of the double-precision floating point number nearest

    to 4/3.

    See also syms, class, digits, vpa.

    Overloaded methods:

    inline/sym

    Reference page in Help browser

    doc sym

    >>ilaplace(F)

    help ilaplace

    --- help for sym/il aplace ---

    I LAPLACE I nverse Laplace transform.

    F = I LAPLACE(L ) is the inverse Laplace transform of the scalar sym L

    with defaul t independent vari able s. The defaul t return is a

    function of t. I f L = L(t), then IL APLACE r eturns a function of x:F = F(x).

    By defin ition, F(t) = int(L(s)*exp(s* t),s,c-i*i nf,c+i* inf )

    where c is a real number selected so that al l singul ari ties

    of L (s) are to the left of the li ne s = c, i = sqrt( -1), and

    the integration is taken with respect to s.

    F = I LAPLACE(L ,y) makes F a function of y i nstead of the default t:

    I LAPLACE(L ,y) F(y) = int(L (y)*exp(s* y),s,c-i* inf ,c+i*i nf).

    Here y is a scalar sym.

    F = I LAPLACE(L ,y,x) makes F a function of x instead of the default t:

    IL APLACE(L,y,x) F(y) = int(L(y)*exp(x*y),y,c-i* inf,c+i*inf),

    integration is taken with respect to y.

    Examples:

    syms s t w x y

    il aplace(1/(s-1)) return s exp(t)

    il aplace(1/(t^ 2+1)) returns sin (x)

    il aplace(t^ (-sym(5/2)),x) returns 4/3/pi^ (1/2)*x ^ (3/2)

    il aplace(y/(y^2 + w^ 2),y,x) returns cos(w*x )

    ilaplace(sym('laplace(F(x),x,s)'),s,x) returns F(x)

    See also sym/laplace, sym/i fou ri er, sym/i ztrans.

    Reference page in Help browser

    doc sym/ilaplace

  • 7/27/2019 Prac 1 Control

    16/37

    Practica 2

    Polinomio y races de una matriz con >>sym2poly y >>roots .

    1.- [ ]z= 20;

    s= sym (s);

    A= [1 2 0; z 2 2; 0 -1 1];

    I= eye (3);

    p= det(s*I-A)

    pretty (p)

    p1=sym2poly(p)

    roots (p1)

    2.- [ ]

  • 7/27/2019 Prac 1 Control

    17/37

    z= 20;

    s= sym (s);

    A= [1 -3 4; 2 -2 z; 2 -1 0];

    I= eye (3);

    p= det(s*I-A)

    pretty (p)

    p1=sym2poly(p)

    roots (p1)

    Polinomio y raices con eig ()

    1.- [ ]z= 20;

    A= [1 2 0; z 2 2; 0 -1 1];

  • 7/27/2019 Prac 1 Control

    18/37

    eig(A)

    2.- [ ]z= 20;

    A= [1 -3 4; 2 -2 z; 2 -1 0];

    eig(A)

  • 7/27/2019 Prac 1 Control

    19/37

    Matrices de Vectores propios sus valores propios

    1.- [ ]z= 20;

    A= [1 2 0; z 2 2; 0 -1 1];

    [X, D]= eig (A)

  • 7/27/2019 Prac 1 Control

    20/37

    2.- [ ]z= 20;

    A= [1 -3 4; 2 -2 z; 2 -1 0];

    [X, D]= eig(A)

  • 7/27/2019 Prac 1 Control

    21/37

    Resolver si 1.- s= sym(s);

    a= sym(a);

    c= sym(c);

    d= sym(d);

    b= sym(b);

    A=[-a c; d -b]

    I=eye(2);

    C=inv(s*I-A)

    pretty (C)

  • 7/27/2019 Prac 1 Control

    22/37

    2.-det s= sym(s);

    a= sym(a);

    c= sym(c);

    d= sym(d);

    b= sym(b);

    A=[-a c; d -b]

    I=eye(2);

    C=det(s*I-A)

    pretty (C)

  • 7/27/2019 Prac 1 Control

    23/37

    Explique cada comando utilizado en la prctica. Utilice help si es necesario revisar la sintaxis

    Eye()

    >> help eye

    EYE Identity matrix.

    EYE(N) is the N-by-N identity matrix.

    EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1's on

    the diagonal and zeros elsewhere.

    EYE(SIZE(A)) is the same size as A.

    EYE with no arguments is the scalar 1.

    EYE(M,N,CLASSNAME) or EYE([M,N],CLASSNAME) is an M-by-N matrix with 1's

  • 7/27/2019 Prac 1 Control

    24/37

    of class CLASSNAME on the diagonal and zeros elsewhere.

    Note: The size inputs M and N should be nonnegative integers.

    Negative integers are treated as 0.

    Example:

    x = eye(2,3,'int8');

    See also speye, ones, zeros, rand, randn.

    Overloaded methods:

    distributed/eye

    codistributor2dbc/eye

    codistributor1d/eye

    codistributed/eye

    Reference page in Help browser

    doc eye

    det()

    >> help det

    DET Determinant.

    DET(X) is the determinant of the square matrix X.

    Use COND instead of DET to test for matrix singularity.

  • 7/27/2019 Prac 1 Control

    25/37

    See also cond.

    Overloaded methods:

    sym/det

    gf/det

    laurmat/det

    Reference page in Help browser

    doc det

    >>sym2poly y >>roots

    >> help sym2poly

    --- help for sym/sym2poly ---

    SYM2POLY Symbolic polynomial to polynomial coefficient vector.

    SYM2POLY(P) returns a row vector containing the coefficients

    of the symbolic polynomial P.

    Example:

    sym2poly(x^3 - 2*x - 5) returns [1 0 -2 -5].

    See also poly2sym, sym/coeffs.

    Reference page in Help browser

  • 7/27/2019 Prac 1 Control

    26/37

    doc sym/sym2poly

    >> help roots

    ROOTS Find polynomial roots.

    ROOTS(C) computes the roots of the polynomial whose coefficients

    are the elements of the vector C. If C has N+1 components,

    the polynomial is C(1)*X^N + ... + C(N)*X + C(N+1).

    Note: Leading zeros in C are discarded first. Then, leading relative

    zeros are removed as well. That is, if division by the leading

    coefficient results in overflow, all coefficients up to the first

    coefficient where overflow occurred are also discarded. This process is

    repeated until the leading coefficient is not a relative zero.

    Class support for input c:

    float: double, single

    See also poly, residue, fzero.

    Overloaded methods:

    gf/roots

    localpoly/roots

    Reference page in Help browser

    doc roots

  • 7/27/2019 Prac 1 Control

    27/37

    eig()

    >> help eig

    EIG Eigenvalues and eigenvectors.

    E = EIG(X) is a vector containing the eigenvalues of a square

    matrix X.

    [V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a

    full matrix V whose columns are the corresponding eigenvectors so

    that X*V = V*D.

    [V,D] = EIG(X,'nobalance') performs the computation with balancing

    disabled, which sometimes gives more accurate results for certain

    problems with unusual scaling. If X is symmetric, EIG(X,'nobalance')

    is ignored since X is already balanced.

    E = EIG(A,B) is a vector containing the generalized eigenvalues

    of square matrices A and B.

    [V,D] = EIG(A,B) produces a diagonal matrix D of generalized

    eigenvalues and a full matrix V whose columns are the

    corresponding eigenvectors so that A*V = B*V*D.

    EIG(A,B,'chol') is the same as EIG(A,B) for symmetric A and symmetric

    positive definite B. It computes the generalized eigenvalues of A and B

  • 7/27/2019 Prac 1 Control

    28/37

    using the Cholesky factorization of B.

    EIG(A,B,'qz') ignores the symmetry of A and B and uses the QZ algorithm.

    In general, the two algorithms return the same result, however using the

    QZ algorithm may be more stable for certain problems.

    The flag is ignored when A and B are not symmetric.

    See also condeig, eigs, ordeig.

    Overloaded methods:

    sym/eig

    lti/eig

    codistributed/eig

    Reference page in Help browser

    doc eig

    >>[X,D]=eig(A),

    PRACTICA 3

    Funcion transferencia () 1.- comando impulse

    z=20;

    num = [0 1 z];

    den=[1 5 6];

    t = [0: 0.1: 5];

  • 7/27/2019 Prac 1 Control

    29/37

    y=impulse(num, den, t);

    plot (t, y), grid, title (' La respuesta al impulso del sistema con comando impulse ()')

  • 7/27/2019 Prac 1 Control

    30/37

    2- Funcion escalon

    z=20;

    num = [0 1 z];

    den=[1 5 6];

    t = [0: 0.1: 5];

    y=step(num, den, t);

    plot (t, y), grid, title (' La respuesta a escaln del sistema con comando step()')

  • 7/27/2019 Prac 1 Control

    31/37

    3- Respuesta a una entrada sen(2t)

    z=20;

    num = [0 1 z];

    den=[1 5 6];

    t = [0: 0.2: 20];

    u=sin(2*t);

    y= lsim(num, den, u, t);

    plot (t, y), grid, title (' La respuesta del sistema a la entrada sen(2t) con comando Isim()')

  • 7/27/2019 Prac 1 Control

    32/37

    4.- Seal de salida a exp -t

    z=20;

    num = [0 1 z];

  • 7/27/2019 Prac 1 Control

    33/37

    den=[1 5 6];

    t = [0: 0.1: 5];

    u=exp(-t);

    y= lsim(num, den, u, t);

    plot (t, y), grid, title (' La seal de salida del sistema a una entrada et con comando Isim()')

  • 7/27/2019 Prac 1 Control

    34/37

    2. La dinmica de un sistema en tiempo discreto est representado por la siguiente funcin de

    transferencia:

    ()

    num = [0 1 -1];

    den=[1 -2.5 1];

    t = [0: .1; 1.5];

    y= dimpulse(num, den, t);

    axis([0 10 0 1.5]);

    plot (t, y), grid, title ('La respuesta al impulso del sistemacon comando dimpulse()')

  • 7/27/2019 Prac 1 Control

    35/37

  • 7/27/2019 Prac 1 Control

    36/37

    2.- La respuesta a escaln del sistema. Hacer uso de dstep(num, den, t) con axis([0 10 0 1.5]).

    num = [0 1 -1];

    den=[1 -2.5 1];

    t = [0: .1; 1.5];

    y= dstep(num, den, t);

    axis([0 10 0 1.5]);

    plot (t, y), grid, title (' La respuesta a escaln del sistema con comando dstep()')

  • 7/27/2019 Prac 1 Control

    37/37