31
EE 434 POWER SYSTEM PROTECTION LECTURE 14: OPERATION PRINCIPLES Ernesto VazquezMartinez, ECERF

Power System Protection Operating Principles

Embed Size (px)

DESCRIPTION

Operating principles of power system protection

Citation preview

Page 1: Power System Protection Operating Principles

EE 434 POWER SYSTEM PROTECTIONLECTURE 14: OPERATION PRINCIPLES 

Ernesto Vazquez‐Martinez, ECERF

Page 2: Power System Protection Operating Principles

Typical protective devicelocation

Distributionsubstation

R

F3 F2

F1

S

F4

Recloser Sectionalizer

FuseCutouts

Relays

Page 3: Power System Protection Operating Principles

Overcurrent relays

Page 4: Power System Protection Operating Principles

Overcurrent relaysInstantaneous overcurrent relay

i

,e+

→∞

fr

F

Page 5: Power System Protection Operating Principles

Other structures

Page 6: Power System Protection Operating Principles

Instantaneous overcurrentrelay block and trip regions

Page 7: Power System Protection Operating Principles

Time‐delay overcurrent relay

Page 8: Power System Protection Operating Principles

Torque in the disc (TDR) 

Page 9: Power System Protection Operating Principles

Time‐delay overcurrent relay block and trip regions

Page 10: Power System Protection Operating Principles

Dynamic behavior of TDR

Page 11: Power System Protection Operating Principles

Overcurrent relaycharacteristics

Page 12: Power System Protection Operating Principles

CO‐8curves

Page 13: Power System Protection Operating Principles

Otherrelay

Page 14: Power System Protection Operating Principles

Digital time‐delay overcurrent relay 

IEEE C37.112 – 1996

IEC 225 ‐ 4

Page 15: Power System Protection Operating Principles

Typical protective devicelocation

Distributionsubstation

R

F3 F2

F1

S

F4

Recloser Sectionalizer

FuseCutouts

Relays

Page 16: Power System Protection Operating Principles

Fuses

Medium voltage distribution: Distribution transformers. Laterals:Overhead. Underground.

Page 17: Power System Protection Operating Principles

Functional characteristicsof fuses

Combine fault detection and current 

interruption.

Extremely inverse time current 

characteristic.

Single‐phase operation.

Require Replacement.

Page 18: Power System Protection Operating Principles

Distribution fuse cutouts

Page 19: Power System Protection Operating Principles

Fuse operation

Page 20: Power System Protection Operating Principles

Typical fuse time currentcharacteristic

Page 21: Power System Protection Operating Principles

Typical ratings (1)

Max. DesignVoltage

(kV)Type

Continuous Current

(A)

InterruptingCurrent

(Symm. kA)

5.2 Enclosed 50, 100 & 200 1.6 through 12.5

7.8 Enclosed 50, 100 1.4 through 8.0

7.8 Open Link 50 1.2

7.8/13.5 Open 100, 200 3.6 through 12.5

15.0 Open Link 50 1.2

Page 22: Power System Protection Operating Principles

Typical ratings (2)

Max. DesignVoltage

(kV)Type

Continuous Current

(A)

Interrupting Current

(Symm. kA)

15.0 Open 100, 200 2.8 through 10.0

15/26 Open 100, 200 2.8 through 5.6

18 Open Link 50 0.75

27 Open 100 1.1 through 8.0

38 Open 100 1.3 through 5.0

Page 23: Power System Protection Operating Principles

Selection of fuse nominal current

Above maximum load. Above transformer inrush current: 25X transformer nominal current for 0.01 sec. 10X transformer nominal current for 0.1 s.

Above motor starting current.

Page 24: Power System Protection Operating Principles

Typical protective devicelocation

Distributionsubstation

R

F3 F2

F1

S

F4

Recloser Sectionalizer

FuseCutouts

Relays

Page 25: Power System Protection Operating Principles

Functional characteristicsof recloser Combine fault detection, current interruption, and reclosing. Operation sequence includes three or four trips and two or three reclosures. Hydraulically or electronicallycontrolled.

Page 26: Power System Protection Operating Principles

Untanked single‐phasehydraulic recloser

UNIVERSAL, CLAMP‐TYPE TERMINALS accept copper or aluminum conductor in horizontal or vertical position

HEAD CASTING supports bushings and operating mechanism

HYDRAULIC MECHANISM counts operations to lockout and establishes dual time‐current characteristics; includes means for field‐changing of operating characteristics

MOVING CONTACTS provide double‐break interruption; are self‐cleaning

COVER‐CLAMPED BUSHINGS of wet‐process porcelain can be replaced in the field

SLEET HOOD protects manual operating handle, operations counter, and allows easy access with switch stick

MANUAL OPERATING HANDLE is easily operated by conventional switch stick; provides indication of lockout

SERIES‐TRIP SOLENOID trips recloser when current greater than minimum‐trip value flows.  Coils can be changed to convert to a different rating

Page 27: Power System Protection Operating Principles

Typical recloser operationsequence

Fast operations

Load current

Fault current

Time‐delayed operations

Reclosing intervals

Recloser lockout

Page 28: Power System Protection Operating Principles

Typical protective devicelocation

Distributionsubstation

R

F3 F2

F1

S

F4

Recloser Sectionalizer

FuseCutouts

Relays

Page 29: Power System Protection Operating Principles

Functional characteristicssectionalizer Lack fault‐ interrupting capability. Isolate faulted section. Combined with recloser or relayed breaker.

Count current‐interrupting operations. Hydraulically or electronically controlled. Fault closing capability. Load interrupting and closing capability.

Page 30: Power System Protection Operating Principles

Sectionalizer operation

Page 31: Power System Protection Operating Principles

EE 434 POWER SYSTEM PROTECTIONLECTURE 14: OPERATION PRINCIPLES 

Ernesto Vazquez‐Martinez, ECERF