66
Power Semiconductor Devices for Low-Temperature Environments Space Power Workshop 2004 21 April 2004, Manhattan Beach, California

Power Semiconductor Devices for Low-Temperature Environments Space Power Workshop 2004 21 April 2004, Manhattan Beach, California

Embed Size (px)

Citation preview

Power Semiconductor Devices

for

Low-Temperature Environments

Space Power Workshop 2004

21 April 2004, Manhattan Beach, California

2

R. R. Ward, W. J. Dawson, L. Zhu, R. K. Kirschman

GPD Optoelectronics Corp., Salem, New Hampshire

O. Mueller, M. J. Hennessy, E. K. Mueller

MTECH Laboratories, Ballston Lake, New York

R. L. Patterson, J. E. Dickman

NASA Glenn Research Center, Cleveland, Ohio

A. Hammoud

QSS Group Inc., Cleveland, Ohio

Supported by NASA Glenn Research Center and ONR/DARPA

3

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

4

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

5

Temperatures for Spacecraft

TemperatureBody or location

(°C) (K)

Phobos (satellite of Mars)a –112 160

Moona –150 120

Eros (near-Earth asteroid)a –150 120

Jupiter orbitb –150 120

Europa (satellite of Jupiter) –160 110

Saturn orbitb –180 90

Titan (satellite of Saturn) –180 90

Uranus orbitb –210 60

Neptune orbitb –220 50

Pluto orbitb –230 44

Triton (satellite of Neptune) –235 38

Interstellar spaceb <–233 <40

a“Nighttime” temperature. bBlack-body equilibrium temperature.

6

Solar System Temperatures

7

Benefits of Using Low-Temp Electronics

• Reduce mass & volume

• Reduce power requirements

• Reduce spacecraft complexity

• Reduce disruption of environment

• Increase operating/mission time

• Increase overall reliability

8

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

9

Semiconductor Materials Comparison

Parameter Want Si Ge SiGe

P-N junction forward V Low High Low Med

Reverse breakdown V High High (Low) High?

Mobility at cryo temps High Med High High

Switching speed High Adequate Adequate High

Operating temp range RT to ~20 K RT to ~100 K(due to BJT)

RT to < 20 K RT to < 4 K

Gate dielectric for MOS High quality,easily produced

Yes Difficult Yes

Compatibility withexisting Si fabrication

High High Low High

Bold = Exhibits desirable characteristic

10

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

11

Development Program

• Develop semiconductor devices: diodes and transistors

• Specifically designed for low temperatures

• For use down to 30 K (~ –240°C) and lower

• For spacecraft Power Management and Actuator Control

12

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

13

Ge Low-Temperature Power DiodesP- - N Bulk Design

N– ( )

N+ implant

P+ implant Metal

Metal

Guard ring(s)

14

Ge LT Power Diodes - Forward

0

0.5

1

1.5

0.2 A

0.2 A Si

Vf 0.2 A

Vf 0.2 A

Vf (0.2 A)

Vf (0.2 A)

0 40 80 120 160 200 240 280 320

Temperature (K)

Commercial Ge power diodes

Si power diodes

Ge cryo power diodes (2 thick, 2 thin)

If = 0.2 A

15

Ge LT Power Diodes - Forward

0

0.5

1

1.5

2

0 40 80 120 160 200 240 280 320

Temperature (K)

Commercial Ge power diodes

Si power diodes

Ge cryo power diodes (thick)

If = 4 A

Ge cryo power diodes (thick)

Ge cryo power diodes (thin)

16

Ge LT Power Diodes - Forward I-V

17

Ge LT Power Diode - Forward I-V

0 0.2 0.4 0.6 0.8 10

1

2

3

4

Forward Voltage (V)

120 K

300 K

40 K

20 K

4 K80 K

18

Ge Power Diodes - Reverse Breakdown

0

100

200

300

400

500

600

0 50 100 150 200 250 300

Temperature (K)

18-1-B2b

18-1-D1d

12-1-Aa

Commercial Ge power diodes

19

-12

-8

-4

0

4

8

12

0 200 400 600 800 1000 1200

Time (ns)

77 K

300 K

30-1-C1bJune 2003

Ge Power Diodes - Reverse Recovery

20

-12

-8

-4

0

4

8

12

0 200 400 600 800 1000 1200

Time (ns)

77 K

300 K

30-2-AaJune 2003

Ge Power Diodes - Reverse Recovery

21

0

1

2

3

4

0 2 4 6 8 10 12

Forward Diode Current (A)

77 K

300 K

Ge Power Diodes - Reverse Recovery

22

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

23

SiGe LT Power Diodes - Design

(N+ implant)

P+ SiGe Metal

Metal

N– Si epi

N+ Si

24

SiGe vs Si Power Diodes - Forward

0

20

40

60

80

100

I (mA)Ifor (mA) RTIf RT (mA)If (mA)

0 0.2 0.4 0.6 0.8 1 1.2

Si

Vfor

(V)

300 K

2ASiGe: 1A

25

SiGe vs Si Power Diodes - Forward

0

20

40

60

80

100

I (mA)Ifor (mA) LNIf LN (mA)If (mA)

0 0.2 0.4 0.6 0.8 1 1.2

Vfor

(V)

77 K

Si2ASiGe: 1A

26

SiGe LT Power Diodes - Forward

0

0.5

1

1.5

0.2 A0.2 A SiVf 0.2 AVf 0.2 A

Vf (0.2 A)Vf (0.2 A)Vf @ 0.2 A (V)

0 40 80 120 160 200 240 280 320

Temperature (K)

Ge commercial

SiGe

If = 0.2 A

SiGe

27

SiGe LT Power Diodes - Forward

28

SiGe LT Power Diodes - Forward

29

SiGe LT Power Diodes - Reverse

-0.02

0

0.02

0.04

0.06

0.08

0.1

-100 -80 -60 -40 -20 0 20 40

Voltage (V)

SiGe/SiDiodes300 K

30

SiGe LT Power Diodes - Reverse

-0.02

0

0.02

0.04

0.06

0.08

0.1

-100 -80 -60 -40 -20 0 20 40

Voltage (V)

SiGe/SiDiodes77 K

31

SiGe LT Power Diodes - Reverse Recovery

-4

-2

0

2

4

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.0

Dio

de

Cu

rren

t (A

)

Time (µs)

300 K

77 K

SiGe-1B

Silicon-Germanium Diode

32

SiGe LT Power Diodes - Reverse Recovery

-4

-2

0

2

4

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.0

Dio

de

Cu

rren

t (A

)

Time (µs)

300 K

77 K

GPD SiGe-2A

Silicon-Germanium Diode

33

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

34

Ge LT Power JFET or MISFET

~1.8 mm

G

S

D

S

G

35

Lateral Ge MISFET Design

Substrate contact

Source Gate

P+ implant

P substrate

Gate dielectric

N+ implant

Drain

36

Ge Power MISFET at +20°C

20 V

1 A ΔVGS = 1 V/step

37

Ge Power MISFET at –196°C (77 K)

20 V

1 A ΔVGS = 1 V/step

38

Ge Power MISFET at –269°C (4 K)

20 V

1 A ΔVGS = 1 V/step

39

Ge MISFET Switching - 50 kHz

0

5

10

15

20

-0.05

0

0.05

0.1

0.15

0 10 20 30 40 50Time (s)

300 K

0

5

10

15

20

-0.05

0

0.05

0.1

0.15

0 10 20 30 40 50Time (s)

77 K

0

5

10

15

20

-0.05

0

0.05

0.1

0.15

0 10 20 30 40 50Time (s)

4 K

~30 Load

40

Ge MISFET Switching - 5 MHz

~30 Load

0

5

10

15

20

-0.05

0

0.05

0.1

0.15

0 100 200 300 400 500Time (ns)

300 K

0

5

10

15

20

-0.05

0

0.05

0.1

0.15

0 100 200 300 400 500Time (ns)

77 K

0

5

10

15

20

-0.05

0

0.05

0.1

0.15

0 100 200 300 400 500Time (ns)

4 K

41

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

42

Ge JFET Cross-Section (n-channel)

Back gate contact

SourceFront gate

P+ implant

P+ substrate

N epitaxial layer

N+ implant

Drain

P+ implant

43

Power Ge JFET at +20°C

10 V

2 A ΔVGS = 1 V/step

44

Power Ge JFET at –196°C (77 K)

10 V

2 A ΔVGS = 1 V/step

45

Power Ge JFET at –269°C (4 K)

10 V

2 A ΔVGS = 1 V/step

46

Another Power Ge JFET at –253°C (20 K)

10 V

1 A ΔVGS = 1 V/step

47

Power Ge JFET at +20°C

50 V

1 A ΔVGS = 1 V/step

48

Power Ge JFET at –196°C (77 K)

50 V

1 A ΔVGS = 1 V/step

49

Power Ge JFET at –269°C (4 K)

50 V

1 A ΔVGS = 1 V/step

50

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

51

Ge SIT (Static Induction Transistor)

Drain

SourceGate

N+ implant

N– substrateP implantN+ implant

52

Ge SIT - FET-Like Region

53

Ge SIT - Triode-Like Region

54

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

55

Ge Bipolar - Double-Implant

Collector

Base Emitter

N+ implant

N– substrate

P implant

N+ implant

56

Ge BJT at +20°C

10 V

0.1 A ΔIB = 0.5 mA/step

57

Ge BJT at –196°C (77 K)

10 V

0.1 A ΔIB = 1 mA/step

58

Ge and Si Bipolar Comparison

1

10

100

1000

01020304050

Temperature -1 (1000/K)

SiGe

20 30 50 80 300120

Temperature (K)

59

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

60

SiGe HBT (Heterojunction Bipolar Transistor)

~0.5 μm n+ Si

~0.4 μm p SiGe

~20 μm n– Si

Emitter contact

~300 μm n+ Si

Collector contact

Base contact

61

SiGe HBT at +20°C

20 V

0.2 A ΔIB = 1 mA/step

62

SiGe HBT at –196°C (77 K)

50 V

ΔIB = 0.5 mA/step0.2 A

63

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

64

Summary

• Electronics capable of low-temperature operation will be

important for spacecraft (cold environments and space

observatories)

• We have been developing semiconductor devices for

operation down to ~20 K (~ –250°C)

• We are basing the devices on Ge and SiGe

• We have developed Ge low-temperature power diodes,

junction field-effect transistors (JFETs), and metal-insulator-

semiconductor field-effect transistors (MISFETs)

• We are in process of developing SiGe low-temperature power

diodes, metal-insulator-semiconductor field-effect transistors

(MISFETs), and heterostructure bipolar transistors (HBTs)

65

Outline

Why low-temperature electronics for space?

Semiconductor materials options

Development program

Designs and results

Diodes: Ge & SiGe

FETs: Ge MISFETs, Ge JFETs & Ge SITs

Bipolars: Ge BJTs & SiGe HBTs

Summary

Future

66

Future

• Continue to develop low-temperature power

SiGe diodes, SiGe bipolar transistors,

SiGe MOS field-effect transistors

• Investigate low-temperature power SiGe IGBTs

• Proposed development of low-temperature power

thyristors (SCRs)