Power Plant Base

Embed Size (px)

Citation preview

  • 7/28/2019 Power Plant Base

    1/11

    Optimisation of integrated energy conversionsystems

    Dr. Franois Marechal

    Computer aided energy system analysis and synthesis group

    Laboratoire dnergtique industrielle (LENI)

    Ecole Polytechnique fdrale de Lausannehttp://leniwww.epfl.ch

    mailto:[email protected]

    Example : Thermo-economic modeling of power plants

    Thermodynamic models

    mi ,Wi ,Pi ,Ti => Sizei

    Costi = f(Sizei ,Pi )

    Thermo-economic models

    mNG ,mCO2, Wii

    "

    OC= mNG *CGN + mCO2*TCO2

    #Cel * Wii

    "

    System Performances

    IC= Costii

    "

    System investment

    Flowsheets and models

  • 7/28/2019 Power Plant Base

    2/11

    Superstructures

    Equipments optionsLow Nox burner, O2 burning

    Equipments selection1 / 2 gas turbines, CO2 separation

    Equipments interconnectiondraw-off, heat exchangers

    System integrationheat exchange system

    Optimisation

    Decisionvariables

    Continuous Variables

    mi ,Ti ,Pi

    Integer Variables

    Optioni ,equipmenti

    Objectivefunctions

    Total cost

    Investment

    Emissions

    Efficiency

    Op. cost

    Solving methods

  • 7/28/2019 Power Plant Base

    3/11

    Multi-objective optimisation

    Decisionvariables

    Continuous Variables

    mi ,Ti ,Pi

    Integer Variables

    Optioni ,equipmenti

    Objectivefunctions

    Total cost

    Investment

    Emissions

    Efficiency

    Op. cost

    Multi-objective optimisation (MOO)!Evolutionary algorithm!Mixed Integer Non Linear Prog.!Clusters of solutions

    Pareto Curves

    Emissions(kgCO

    2/kWh)

    Investment Cost ($/kW)

    Infeasible

    Min Emissions for a max Investment

    Min Investment for a max emission

    PerformancesSystem configurationEquipment design specifications

    PerformancesSystem configurationEquipment design specifications

  • 7/28/2019 Power Plant Base

    4/11

    Pareto Curves

    Emissions(kgCO2/kWh)

    Investment Cost ($/kW)

    For each configuration

    Selected equipments

    Operating conditions : T, P, m Interconnections

    Sizes

    "E

    "Inv

    Calculations for 1 plant size

    Technicallyinaccessible

    region

    1GT/2P level

    1GT/SQ+3P level + reheat

    CO2 capture solutions

    Typification MapGT & NGCCs based onALSTOM Catalogue1

    1Based on public data from ALSTOM Website

    1 GT26 420MW2 GT26850MW

    1 GT11175 MW

    2 GT11350 MW

    3 GT11530 MW

    1 GT13250 MW

    3 GT13770 MW

    2 GT13510 MW

    50.7%

    53%

    seq comb. Effelec=59.5%;3p with RH STTfiring = 1425C, PR =31

    Effelec=58.7%; 3p with RH STTfiring = 1421C, PR =21

    simple combustionEffelec=56.6%; 3p STTfiring = 1367C, PR=18

    seq comb. Effelec=58.8%;3p with RH STTfiring = 1387C, PR =24

  • 7/28/2019 Power Plant Base

    5/11

    Definition of technology port-folio

    Competing options

    Different markets

    Different objectives

    Market identification

    For a given technology

    For a given goal

    E.g. CO2 emissions

    CDM Potential

    Effect of CO2 value

    ! ! wrt to baselineEmissions(kgCO2

    /kWh)

    Investment Cost ($/kW)

    1Based on public data from ALSTOM Website

    1 GT262 GT26

    1 GT112 GT113 GT11

    1 GT133 GT13 2 GT13

    800

    600

    400

    200

    300

    500

    700

    Specific Investment cost including gas supply subsystem (US$/kWh)

    Typification Through Thermoeconomic Modellingand Multi-Objective Optimization

    Natural Gas Price Sensitivity Analysis(1)Natural gas price: 1 UScents/kwh, Annual operating hours: 7500, Depreciation period: 15 years

    OptimalConfiguration57.9 %849 MW

    OptimalConfiguration57.16 %419 MW

    With 2 GT26

    With 1 GT26

  • 7/28/2019 Power Plant Base

    6/11

    Typification Through Thermoeconomic Modellingand Multi-Objective Optimization

    Natural Gas Price Sensitivity Analysis (2)Natural gas price: 2UScents/kwh, Annual operating hours: 7500, Depreciation period: 15 years

    58.39 %856 MW

    58.08 %426 MW

    With 2 GT26

    With 1 GT26

    Typification Through Thermoeconomic Modellingand Multi-Objective Optimization

    Natural Gas Price Sensitivity Analysis (3)Natural gas price: 3 UScents/kwh, Annual operating hours: 7500, Depreciation period: 15 years

    58.45 %857 MW

    58.14 %426.3 MW

    With 2 GT26

    With 1 GT26

  • 7/28/2019 Power Plant Base

    7/11

    Cost of Electricity vs CO2 Emission RateNGCCs based onALSTOM Catalogue

    1 GT262 GT26

    1 GT112 GT113 GT11

    1 GT133 GT131 GT13

    800

    600

    400

    200

    300

    500

    700

    1Based on public data from ALSTOM Website

    1 GT262 GT26

    1 GT112 GT11

    3 GT11

    1 GT133 GT13 2 GT13

    800

    600

    400

    200

    300

    500

    700

    Specific Investment cost including gas supply subsystem (US$/kWh) %CO2abatement

    Sensitivity analysis : CO2 impact

    CO2 abatment cost [$/tonCO2]

    mNG[kg /s]

    E[kW]

    I[$]mCO2

    [kg /s]

    mCO2

    ref,i" mCO2

    mCO2

    ref,i

    (mNGCiNG +O

    i+

    1

    "iIi)#LEC

    ref,i E

    mCO2

    ref,i# m

    CO2

    From technology data base

    Country i

    Country 2

    Country 1

  • 7/28/2019 Power Plant Base

    8/11

    The same system in different context

    Configuration with 2 GT 26

    Advanced power plants

    CO2 Sequestration

    Subsystem

    GAS TURBINESUBSYSTEMS

    GAS SUPPLYSUBSYSTEM

    STEAM

    CYCLE

    SUBSYSTEMS

    Transportation and

    Storage

  • 7/28/2019 Power Plant Base

    9/11

    Project : Supply 400 MW to a community

    subject to

    Average Cost of Electricity COEav[US$/kWh]=

    (Annual Capital Cost + Annual O&M Cost + Annual Fuel Cost+ Annual MEA Solvent and CO2 Disposal Cost+ Power ImportationCost)/ Total Annual Power Demand

    Average CO2 Emission Rate RCO2av[gCO2/kWh]=

    (Annual CO2 Emission from NGCC combustion +Annual CO2 Emission Due to Natural Gas Leakage +Annual CO2 Emission due to PowerImportation)/ Total Annual Power Demand

    Min (COEav, RCO2av) =

    Pareto Optimization Frontier (POF)Of A 400 MW Power Supply Project in Germany

    Natural gas price is of 1 UScents/kWh; Electricity importation price is of 3.8 UScents/kWh

    400MW NGCCwith MEA

    NGCCwith

    CO

    2cap

    ture

    GrowingSize

    400MWNGCC

    400MWNGCC withCO2capture

    All Power Importedfrom the Grid

    176MW

    CO2emissionlimitation

    CO2emissionlimitation

    CO2emissionlimitation

  • 7/28/2019 Power Plant Base

    10/11

    Sensitivity Analysis (I)Different CO2 Tax Levels

    0 US$/tonCO2Baseline:Full Power Imported from

    the Power Grid

    B2 176MW

    D1400MW

    D2

    A1400MW

    400MW NGCC

    400MW NGCC

    with CO2 capture

    NGCC with CO2 capture

    + Grid Power Importation

    C1

    30 US$/tonCO2

    A1B2

    C1

    D2

    CO2emissionlimitation

    D1

    COEav

    (UScents/kWh)

    RCO2av

    (gCO2/kWh)

    CO2abatement percentage (AP) [%]

    CO2abatement cost (ABC) [US$/tonCO2]

    Alternative Presentation: Relative CO2 Abatement Cost

    For a given baseline (Reference Case)

    (RCO2av RCO2baseline) [gCO2/kWh]

    RCO2baseline [gCO2/kWh]AP=

    (COEav COEbaseline) [US$/kWh]

    (RCO2av RCO2baseline) [tonCO2/kWh]ABC=

  • 7/28/2019 Power Plant Base

    11/11

    CO2 Abatement Percentage vs CO2 Abatement Cost

    BASELINE: Full Electricity Importation from Power Grid

    Profitable

    Non-Profitable

    Further financial aid is needed