29
1 Power Electronics System A Joint Course taught by Virginia Polytechnic Institute and State University University of Wisconsin – Madison Rensselaer Polytechnic Institute University of Puerto Rico – Mayaguez North Carolina A&T State University 2 Required course work — Attendance of all lectures and discussion sessions. Active participation in discussion sessions, including preparation of at least one question prior to each discussion session.

Power Electronics System

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

1

Power Electronics System

A Joint Course taught byVirginia Polytechnic Institute and State University

University of Wisconsin – MadisonRensselaer Polytechnic Institute

University of Puerto Rico – MayaguezNorth Carolina A&T State University

2

Required course work —Attendance of all lectures and discussion sessions.

Active participation in discussion sessions, including preparation of at least one question prior to each discussion session.

2

3

Power Electronics System

by

Fred C. Lee

Virginia Tech

Introduction

4

Energy and Power Electronics

Computers4%

1800 1900 2000 210020 40 60 80 20 40 60 80 20 40 60 80

Electrical Energy

Total Energy

02

468

10

121416

1820

30% savings withimproved powerelectronics

Year

Total Energy

1997: 40%

* Output of 840power plants

* EPRI

2010: 80%

60% 20%

Lighting21%40%

ElectricalEnergy

Other25%

Motor55%

Electrical Energy

3

5

PowerElectronics

is an EnablingTechnology

Equipment Sales: $60B

Hardware Electronics$1,000B

Total Electronics Market $2,000B

The Worldwide Electronics Marketplace

Source: Microtech / IEEE

6

1985 1990 1995

50%

100%

Year

Mad

e in

US Power Supplies

Darnell Research

2000

Issues• Long design cycle• Non standard circuits and parts• High labor content• Poor reliability• High cost

State-of-the-Art of Power Electronics Technology

Losing Manufacture Base

4

7

IPEM

CPESMore

Integration

CPES Approach via IPEM

Research Goal: Improve the quality, reliability and cost effectiveness of power electronics systems

Research Goal: Improve the quality, reliability and cost effectiveness of power electronics systems

8

Product specifications

Expected outcome –a paradigm shift in industry

Automatic Assembly LineAutomatic Assembly Line

5

9

A Parallel between VLSI and IPEM

• Standardization

• Modularization

• Integration

• Manufacturability

• Volume Production

• Cost Reduction

1960 1970 1980 1990 2000 year

Market ($)1 T

Signal Processing

IC

1960 1970 1980 1990 2000 year

MarketPower Processing

IPEM 100X

1X

?

Moore’s Law

10

The IPEM Vision and Challenges

6

11

Microelectronics vs. Power Electronics

PowerProcessing

InformationProcessingInput Signals Output Signals

Control Signal

12

Paradigm Shift #1: Standardization

Most of Information Processing has been reduced to arithmetic and logic manipulation of binary numbers!

High Frequency Synthesis (“PWM”)

Control Signal

Digital Revolution

NumberCrunching

InputDevices Output

DevicesAnalog Input

A-to-DConv. D-to-A

Conv. Analog Output

A-to-D D-to-A

7

13

Paradigm Shift #2: Modularization

CMOSInverter

DRAMCellAll of “number crunching” is

implemented by 2 cells types• The cell design is optimized

through technology development• System design is reduced to

“combinatorics” and geometry

CMOS Technology BL

WL

SPMTVoltage

UnidirectionalSwitches +

+AC

Topology Convergence?

Energy-storageCell

Switch (PWM)Cells

14Possible Partitioning of Converters– a hypothesis –

C o n t r o l & S e n s o r S i g n a l s

T h e r m a l E n e r g y

Active IPEM(CMOS Inverter)

Passive IPEM(DRAM)

Filter IPEM

Low-frequency Storage(SRAM)

8

15Paradigm Shift #3: Integration of Information Processing

Volume Production

Product Quality, Reliability, and Cost Factors:

Manufacturing

Design&

DevelopmentMaterials

• Small number of different materials

• Rule-based

• Standard interfaces

• Hierarchical design

Cost Reduction

• Batch processing

• Small number of steps

16“Paradigm Shift #3:” NO Integration for Power Processing!

Low Volume Production

Product Quality, Reliability, and Cost Factors:

High Cost

Manufacturing

Design&

DevelopmentMaterials

• Small number of different materials

• Rule-based

• Standard interfaces

• Hierarchical design

• Batch processing

• Small number of steps

9

17

Pooling Core Expertise from 5 Universities and 80 Industries

CPES Approach -Industry/University Partnership

PowerElectronicsPackaging6 VT, RPI High-Freq.

PowerConversion

25 VT,UW-M

SystemIntegration

andDesign Tools

9 VT, RPI,UW-M

PowerElectronicControls3 UW-M,NC A&T

AdjustableSpeedDrives

19 UW-M,NC A&T,UPRM

ElectricMachines,

2 UW-M, RPI,UPRM

AdvancedMaterials4 RPI, VT

PowerIntegratedCircuits

6 RPI, VT

PowerSemicond.

Devices6 RPI, VT

IPEMS&

SystemIntegration

18

59 – USA

12 – Europe

7 – Asia

CPESIndustry Partners Worldwide

10

19

App

lied

Res

earc

h 20

%B

asic

Res

earc

h80

%

CPES Research Structure

IPEM-Based PowerConversion Systems

(IPEM-PCS)D. Boroyevich, VTE

ngin

eere

dS

yste

ms

Electro-Magneto-Thermo-Mechanical Integration Technology (EMTMIT)T. M. Jahns, UW-M

Ena

blin

gT

ech

no

log

y

Microprocessorand Converter

Integration

Standard-CellActive IPEMs

Standard-CellPassive IPEMs

Motor andConverterIntegration

IntegratableMaterials

(IM)G. Q. Lu, VT

Advanced Power Semiconductors

(APS)T. P. Chow, RPI

Control & SensorIntegration

(CSI)R. D. Lorenz, UW-M

High-DensityIntegration

(HDI)J. D. van Wyk, VT

Thermal-MechanicalIntegration

(TMI)E. P. Scott, VT

Fund

amen

tal

Kn

ow

led

ge

20

Fundamental Knowledge

11

21

YEAR 1 4 532 7 8 9 100 6

Silicon Carbide, GaAs PossibleDARPA / ONR / C-PES

Gen I IPEMs Gen II IPEMs Gen III IPEMs Gen IV IPEMs

Silicon ProcessTrench technology, low temperature

processing, new power devices

III-Nitride and DiamondWide-bandgap materials

Advanced Materials forPower Devices and IC

22

Why SiC?

Cap

acity

(VA

)

Operation Frequency (Hz)

12

23Advanced Power Semiconductor Devices (APSD)

(Year 1-5)Silicon Processing

N +

S o u r c e D r a i n S o u r c e

G a t e

N +

N +

N - e p i

P - b a s e

P - s u b s t r a t e

P - b a s e

P + P +

Lateral TrenchMOSFET

p+n+

p+n+

High-VoltageDevices

SiC Processing

CATHODE

N epitaxial Layer-

N Substrate+

P+

Schottky BarrierMetal

P+ P+ JTE JTEW S

High-Voltage Devices

source

drain

gate

EQUIVALENT CIRCUIT

p+n+

source

drain

gate

EQUIVALENT CIRCUIT

p+n+

DMOSFET with fast Diode

24Advanced Power Semiconductors (APS)

(Yr 6-10)

JBS diode

p+ n+p-

n-

n+ p+n-

p-

NMOS

PMOS

GND VG

.MOS-Gated Bi-DirectionalSwitch (GaN or SiC)

CATHODE

N Substrate+

P

Schottky BarrierMetal

W S

P PN N

PPN N

. Superjunction devices (Si & SiC)

N +

S o u r c e D r a i n S o u r c e

G a t e

N +

N +

N - e p i

P - b a s e

P - s u b s t r a t e

P - b a s e

P + P +

Novel Power IC Processes

DC

Substrate

DielectricSubstrate

Multi-level on-chip interconnects

Pro

cess

orw

afer

DC

-DC

Con

vert

erw

afer

Signal, I/O Ground

13

25High Density Integration:

Embedded Power Exploded View

Heat Spreader:

Base Substrate:DBCCeramic/copper

Chip Carrier:Ceramic

Interlayer:

Gate drives

Fabrication Process

Copper Trace

26Complete DC-DC Phase-Leg in Embedded Power: First Generation

Embedded Power

Packaging Module:MOSFET Chip:XXX24N50,

24A/500V;Gate Driver: Hybrid Circuitry

14

27

Cu

Al2O3Ni

NiBaTiO

3

Al2O3

Cu

+

_Integrated Power Electronic Module

IPEMLOAD_

+SOURC

E

RF-EMI

Filter

Integrated RF-EMI Filter (DM)

-15

-10

-5

0

1 10 100 1000 10000

Gai

n[D

B]

Frequency [kHz]

1 MHz: -3 dB10 MHz:-14 dB

LF: Conducting

f

|Z|

fo

RF

|ZB|

f

|Z|

fo

RF

|ZB|

HF: High Attenuation

28Embedded Power Packagingwith the Integration of an RF EMI Filters (DM)

Fitted to Embedded Power Structure:

Measurements show good attenuation at high frequencies

1 MHz10 kHz 100 MHz~22 MHz

0 dB

0 °

- 180 °

- 50 dB

Slope: 40 dB/decade

1 MHz10 kHz 100 MHz~22 MHz

0 dB

0 °

- 180 °

- 50 dB

Slope: 40 dB/decade

15

29

Heat Spreader

C-ChipS-ChipS-Chip

Component

I/O Pins

ComponentComponent

Base Substrate

R-CoilStruc. Ceramic

IntelligenceCurrent / Temperature

Sensing

fluxflux

Current

EMI Containment

P

NI

P

NI

Double sided Cooling

Increasing Functionality of IPEM

High-density Interconnect

30Integrated Electromagnetic Power Passive (IEPP) -- Principle

ab cdcDielectric

Metal

Metal

a

d

Magnitude

Phase

Magnitude

Phase

b

16

31Integration of Passive Components: Passive IPEM vs. Discrete Components

Discrete Components

Passive IPEM

Comparison

168

7

2.3

2

45

1.0

Discrete

82

1

2.5

1.8

45

1.0

Passive IPEM

C (uF)

Power (kVA)

Lm1,2 (uH)

Ls (uH)

Total Volume (cm3)

No. of Components

Parameter

+-

+

Gat

e d

rive

rs,

pro

tect

ion

an

dse

nsor

s

Active IPEM

Passive IPEM

E core

primaryhybrid winding

secondaryplanar winding

I coreprimary

& secondaryplanar windings

E core

32

400kHz PFC 200kHz AHB11.7W/in3

1.5X

Version IIntegrated converter

400kHz PFC 200kHz AHB7.5W/in3

1X

Integrated DPS Test-bed

•Integrated EMI filter

•Active IPEM•Passive IPEM

Discrete converter

400kHz PFC 400kHz LLC14.6W/in3

2X

Version IIIntegrated converter

17

33

Control & Sensor Integration (CSI)

IPEM Integratable Current Sensing (UWM)• Shunt Resistor

GateDrive

Gate

Drive

GateDrive

GateDrive

PHASE CURRENTRECONSTRUCTION

ELEMENT

PHASE CURRENT

RECONSTRUCTIONELEMENT

MICROCONTROLLER

A B

GateDrive

Gate

Drive

PHASE CURRENTRECONSTRUCTION

ELEMENT

C

34Magnetoresistive (MR) Current Sensorsin Cooperation with CSI Subthrust

MR BridgeField (Temperature) Detector

Power Module Test VehicleDetector A

Detector BMeasured Current Waveforms

Current Probe

MR Sensor

• MR current sensors offer opportunity to integrate galvanically-isolated current sensors directly into IPEM

18

35

Control and Sensor Integration (CSI)

Pilot Current Sensing

GMR Sensor Shunt with isolation

DielectricMain

conductor

Substrate

Embedded Rogowski CoilFor Current Sensing

Temperature Feed back

MotionController

θ ω*, * PWMInverter

P lossT measF s

w

v.i

&.

R a Motor

ThermalModel

3ϕ 2 ϕto

θ ω^, ^ θ ω^, ^

,T̂ j T̂ j

i abc

i abc^i q d

^

iqd** vqd*iqd*

swF-nor

mal

swF-in lim

itsRegion Based Thermal Controller

jT -normal

jT -high

jT -low

jT -high

jT -lowaxis 2 axis 3

axis

1I l imit

*

I limit

F sw*

v.

i&.*

Active Thermal feedback control

36

Synthesis and fabrication of nanomaterial with high permittivityand permeability into integrated passives (L and C)

MagneticCore

DielectricShell

I. Synthesis of dielectric coated Nano-magnetic particles.

II. Low-T powder processing à multi-functional substrate.

III. Metallization à integration of passives on the substrate.

Magnetic core à ferrite (MgZn, NiZn ferrite)Dielectric shell à barium titanate-based

Integratable Materials:Multifunctional Material for Integrated

Passives

19

37Integratable Materials (IM):

Novel Interconnect Technology for Si-Die

Solder Die-Attach

void

• Thermal conductivity: 2X

• Electrical conductivity: 6~20X

• Connection Strength: 2.5X

Nanoscale Process Die-Attach

uniform structure

Substrate

Silicon DieInterconnect

Higher reliability

38

Top of Heat Sink

Top of Heat Spreader

Top of Metallization 2

Top of Metallization 1

Beneath Gate Driver

44°C

42°C

Test Results with Infrared Image

Thermal-Mechanical Integration (TMI)

Modeling for multi-layer structure of a IPEM

45°C

35

43

37

39

4146°C

44°C

temperature of MOSFET 2

temperature of MOSFET 1

Simulation Results

20

39

Thermal-Mechanical Stress Simulation for Planar Layers in Embedded Power

593 MPa

0.692 MPa

Top copper

Bottom copper

solder

silicon

polyimide

Copper

Epoxy

Polyimide

Cross Section

ChipCeramic

Solder

40

Thermo-mechanical Analysisfor an Integrated Passive Module

Heatsink : 32~34.5 Celsius

Ferrite Core: 52~60 Celsius

§IR Camera Thermal Image from Experiment

Ceramic Substrate MetalizedWith Copper: 38.8~44.4 Celsius

§Finite-Element Thermal Modeling

§Thermal Result Using FEM

Ferrite Core: around 55.7~61.9 Celsius

Ceramic substrate metalizedwith copper: around 41.9~47.5 Celsius

Heatsink : around 36.9~38.1 Celsius

Stress

21

41

Enabling Technology

Electro-Magneto-Thermo-MechanicalIntegration Technology (EMTMIT)

- Standard-Cell IPEMs- Integration of IPEMs with Specific Loads

42

Vac

Co

• •

Passive IPEM

Vac

Co

• •

Discrete Components

Passive IPEM

EMI Filter IPEM

Exploded View of EMI Filter IPEM

Discrete EMI Filter

EMI Filter IPEM

Passive IPEMs:Integrated Passive Components

22

43Active IPEMIntegrated Active components:

Active Gate Drive

Active Gate Drive

AGD

AGD

AGD

AGD

Active IPEM

Flip-ChipOn Flex

44

Motor and Drives Integration

~

~

~fL

fC

sbV

saV

scV

aS bS cS

upS vpS wpS

wnSvnSunS

p

n

dci

Machine

Pole UnitControllers

ModularPhase DriveUnit

Induction MotorCage Rotor

Integrated MD-IPEM and Motor

23

45Integration of Power Supplies with

Microprocessor

SiliconDevices

GHz Linear Regulator

ProcessorCore Die

CeramicCapacitors

Inductors

MHzVRM

Controller

Motherboard

C o R L

Q2Q1 io1

Q4Q3 io2

Q6Q5 io3

io

VRM

46

Engineered Systems:IPEM based Power Conversion Systems

24

47

IPEM-PCS – Functions and Goals

IPEMSpecifications

System Requirements

TechnologyRequirements

IPEM-Based Power Conversion Systems (IPEMPCS)

IPEMs

Processes&

Algorithms

Components&

Materials

IntegratableMaterials

(IM)

Advanced Power Semiconductors

(APS)

Control & SensorIntegration

(CSI)

High-DensityIntegration

(HDI)

Thermal-MechanicalIntegration

(TMI)

Fundamental Knowledge

DPS

Motor Drive

Test Bed

Electro-Magneto-Thermo-MechanicalIntegration Technology (EMIMIT)

Enabling TechnologyProcessor

Motherboard

Test Bed Test Bed

Integrated Motor

extend

Space Power Station

Future Electrical Vehicle

extend

Future Home

IT

48

Engineered Systems: A Representative Testbed

Possible Testbed

AC/DC

DC/ACBattery

UPS

AC/DC DC/AC

Battery

Server

120 V1F AC

120 V1F AC

PFCRectifier

208 V3F AC

PFCRectifier

Battery

ASICs

MemIsolated POL

Converter

Fan

DigitalICs

LED

AnalogICs

– 48 V, DC

DC/DCConverter

120 V, 1F AC

Emergency Lighting

Telecom Power System Computer Power System

480 V, 3F AC

AC/DC

DC/ACBattery

24 V, 1F AC

Fire Alarm System

StandbyGenerator

120 V, 1F AC

Lighting

ElectronicBal last

ElectronicBal last

ElectronicBal last

ASD+

Motor

Com-pressor

ASD+

Motor

CentralFan

120 V, 1F AC

480 V, 3F AC

HVAC System Pumps and Fans

TransferSwitch

VSCFConverter

RenewableEnergy Source

SourceConverter

Utility

ASICs

Mem

DC/DCConverter

Isolated POLConverter

Fan

DigitalICs

LED

AnalogICs

AC/DCFront -End

Server

48 VDC

+ µPNon-IsolatedPOL ConverterµP +

Non-IsolatedPOL Converter

PowerDistributionConverter

IntegratedConverter

+ Load

EnergyStorage

Legend:

•••

Modeling, simulation, and scaled-down testingRule-based, IPEM-based, system integration, and concept demonstration

25

49

Some Success StoriesIn

The First Five Years

50

Intelligent Power Modules (IPM)

Toshiba Fuji Semikron

Powerex Eupec/Infineon

• Standard modules• Low labor content• Improved reliability• Reduced cost

26

51Commercialization of New Packaging Concept:

Wire-Bond

First time powerFirst time powerMOSFET devices MOSFET devices

are packaged are packaged without wire bondwithout wire bond

Non-Wire Bond

IR Direct FET

52Commercialization of New Packaging Concept

Non-Wire Bond

Fairchild BGA

RenesasLead Free

ST MicroelectronicsPower FLAT

27

53

Commercial Power Modules: Dr. MOS

Intersil

Philips

On Semi

IR

54

VRM

Decoupling cap in the cavity

VRM

Every Intel processor is powered with CPES proposed multiphase voltage regulation module.

A success story: CPES researchers leading the VRM development

Intel desktop board D850MV for Pentium 4

28

55

Development of Multi-Phase Buck VRM

National Analog

On Semiconductor

Semitec Linear

Intersil

Pentium III1.5V30A

1GHz

320nH

320nH

320nH

320nH

1.2mF

CB

Controller

Controller

Controller

Controller

56TI’s Monolithically Integrated Power IC

for DC/DC Converter

Stop1

PWM controller

Sbottom1

L

Driver

29

57

ONRNSWCThalesNorthrop Grumman,Rockwell Automation,

General DynamicscvABB

Bettis

DOEONRAlstomACIPEMCOTVA

TITISRCSRCVolterraVolterraPrimarionPrimarion

FujiFujiFairchild STMicro.eupeceupecPowerexPowerex

CelesticaHitachiIRToshibaToshibaSemikronSemikronIXYSIXYS

10 MW IPEM

20 cm

4.5 kV, 4 kA ETO

10 W IPEM

4 mm

1.2V, 8A Monolithic VRM

EconoEcono 33

1 kW IPEM

5cm

400 V, 2.5 A ZVS phase-leg

Universal Controller

30 kW IPEM

10 cm

800 V, 40 A ZCT phase-leg

100 kW IPEM

20 cm

1.8 kV, 60 A, 3-level ZCT phase-leg

Support of IPEM Concept

58Emerging Technologies and Applications

Automation

Space Power Station

IT

Telecon

ElectricVehicle

Future Home

Solar

Wind